1
|
Thapa R, Marmo K, Ma L, Torry DS, Bany BM. The Long Non-Coding RNA Gene AC027288.3 Plays a Role in Human Endometrial Stromal Fibroblast Decidualization. Cells 2024; 13:778. [PMID: 38727314 PMCID: PMC11083667 DOI: 10.3390/cells13090778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
During the secretory phase of the menstrual cycle, endometrial fibroblast cells begin to change into large epithelial-like cells called decidual cells in a process called decidualization. This differentiation continues more broadly in the endometrium and forms the decidual tissue during early pregnancy. The cells undergoing decidualization as well as the resulting decidual cells, support successful implantation and placentation during early pregnancy. This study was carried out to identify new potentially important long non-coding RNA (lncRNA) genes that may play a role in human endometrial stromal fibroblast cells (hESF) undergoing decidualization in vitro, and several were found. The expression of nine was further characterized. One of these, AC027288.3, showed a dramatic increase in the expression of hESF cells undergoing decidualization. When AC027288.3 expression was targeted, the ability of the cells to undergo decidualization as determined by the expression of decidualization marker protein-coding genes was significantly altered. The most affected markers of decidualization whose expression was significantly reduced were FOXO1, FZD4, and INHBA. Therefore, AC027288.3 may be a major upstream regulator of the WNT-FOXO1 pathway and activin-SMAD3 pathways previously shown as critical for hESF decidualization. Finally, we explored possible regulators of AC027288.3 expression during human ESF decidualization. Expression was regulated by cAMP and progesterone. Our results suggest that AC027288.3 plays a role in hESF decidualization and identifies several other lncRNA genes that may also play a role.
Collapse
Affiliation(s)
- Rupak Thapa
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; (R.T.)
| | - Kevin Marmo
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; (R.T.)
| | - Liang Ma
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Donald S. Torry
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | - Brent M. Bany
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; (R.T.)
| |
Collapse
|
2
|
Feng L, Wang C, Zhang C, Zhang W, Song W. Role of epigenetic regulation in glaucoma. Biomed Pharmacother 2023; 168:115633. [PMID: 37806089 DOI: 10.1016/j.biopha.2023.115633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023] Open
Abstract
Glaucoma is the world's leading irreversible blinding eye disease. Lowering intraocular pressure is currently the only effective clinical treatment. However, there is a lack of long-acting IOP-lowering drugs, and some patients still experience retinal ganglion cell loss even with good intraocular pressure control. Currently, there is no effective method for neuroprotection and regeneration in clinical practice for glaucoma. In recent years, epigenetics has been widely researched and reported for its role in glaucoma's neuroprotection and regeneration. This article reviews the changes in histone modifications, DNA methylation, non-coding RNA, and m6A methylation in glaucoma, aiming to provide new perspectives for glaucoma management, protection of retinal ganglion cells, and axon regeneration by understanding epigenetic alterations.
Collapse
Affiliation(s)
- Lemeng Feng
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Chao Wang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Cheng Zhang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Wulong Zhang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Weitao Song
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China.
| |
Collapse
|
3
|
Haghighi SS, Ghaderian SMH, Rakhshan A, Motamed N. Evaluation of the Expression of miRNAs, LncRNAs, and their Target Gene, Caspase 3 in Glioblastoma Multiform: A Case-Control Study. Mol Biotechnol 2023; 65:1444-1452. [PMID: 36637626 DOI: 10.1007/s12033-022-00632-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/01/2022] [Indexed: 01/14/2023]
Abstract
Glioblastoma multiform (GBM) is an invasive cancer that causes high mortality in patients. Disruption of the apoptosis process is one of the main pathogenesis of the disease. Recently, LncRNAs and miRNAs have been shown to play an important role in the process of apoptosis. To follow the aim of study, 100 patients participated in the two groups of 50 individuals, including 50 GBM patients and 50 healthy individuals as the control group. Mononuclear cells were isolated from peripheral blood samples and RNA extraction was done. The expression changes of miR-17-5p, miR-20-5p, LINC01605, FAS-AS1, and Caspase 3 were examined using RT-PCR in both groups. Expression of LINC01605, miR-20-5p, and miR-17-5p increased in patients, while Caspase 3 and FAS-AS1 decreased; the difference was statistically significant between the two groups. In addition, it was found that these factors have the appropriate sensitivity and specificity as diagnostic markers. Finally, It is suggested to use the LINC01605, FAS-AS1, miR-20-5p, miR-17-5p, and Caspase 3 as apoptosis predictors in the GM patients.
Collapse
Affiliation(s)
- Shirin Setoodeh Haghighi
- Department of Cellular and Molecular Biology, Kish International Campus, University of Tehran, Kish, Iran
| | | | - Azadeh Rakhshan
- Department of Pathology, School of Medicine, Shohada-E-Tajrish Educational Hospital, ShahidBeheshti University of Medical Sciences, Tehran, Iran
| | - Nasrin Motamed
- Department of Cellular and Molecular Biology, Kish International Campus, University of Tehran, Kish, Iran.
- Department of Cell & Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, 14155-6455, Iran.
| |
Collapse
|
4
|
Hydroxysafflor Yellow A (HSYA) Protects Endplate Chondrocytes Against IL-1 β-Induced Injury Through Promoting Autophagy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6326677. [PMID: 35832517 PMCID: PMC9273358 DOI: 10.1155/2022/6326677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022]
Abstract
Background Intervertebral disc degeneration (IDD) refers to intractable pain in patients' waist and legs, which is caused by internal structural disorder and degeneration of intervertebral. This disease severely affects the quality-of-life of people. It has been reported that hydroxysafflor yellow A (HSYA), the active ingredient in safflower extract, could inhibit IL-1β-induced apoptosis of endplate chondrocytes. However, the mechanism by which HSYA regulates the occurrence and progression of IDD remains unclear. Methods Rat endplate chondrocytes were isolated from the intervertebral disc. Next, toluidine blue staining and collagen II immunofluorescence staining were used to identify endplate chondrocytes. Then, MDC staining was used to detect the autophagy of endplate chondrocytes. In addition, Western blot was used to measure the expression of cleaved caspase 3, LC-3I/II and ATG7 in endplate chondrocytes. Results IL-1β obviously inhibited the viability and proliferation of endplate chondrocytes, while these phenomena were notably reversed by HSYA. Additionally, HSYA was able to inhibit IL-1β-induced apoptosis of endplate chondrocytes. Moreover, HSYA protected endplate chondrocytes against IL-1β-induced inflammation via inducing autophagy. Conclusion HSYA protected rat endplate chondrocytes against IL-1β-induced injury via promoting autophagy. Therefore, the present study might provide some theoretical basis for exploring novel and effective methods for patients with IDD.
Collapse
|