1
|
Zuo RK, Wang C, Yu ZY, Shi HM, Song XK, Zhou SD, Ma NN, Chang GJ, Shen XZ. A high concentrate diet inhibits forkhead box protein A2 expression, and induces oxidative stress, mitochondrial dysfunction and mitochondrial unfolded protein response in the liver of dairy cows. Microb Pathog 2024; 188:106570. [PMID: 38341108 DOI: 10.1016/j.micpath.2024.106570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/11/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
High-concentrate diet induce subacute ruminal acidosis (SARA) and cause liver damage in ruminants. It has been reported that forkhead box protein A2 (FOXA2) can enhance mitochondrial membrane potential but its function in mitochondrial dysfunction induced by high concentrate diets is still unknown. Therefore, the aim of this study was to elucidate the effect of high-concentrate (HC) diet on hepatic FOXA2 expression, mitochondrial unfolded protein response (UPRmt), mitochondrial dysfunction and oxidative stress. A total of 12 healthy mid-lactation Holstein cows were selected and randomized into 2 groups: the low concentrate (LC) diet group (concentrate:forage = 4:6) and HC diet group (concentrate:forage = 6:4). The trial lasted 21 d. The rumen fluid, blood and liver tissue were collected at the end of the experiment. The results showed that the rumen fluid pH level was reduced in the HC group and the pH was lower than 5.6 for more than 4 h/d, indicating that feeding HC diets successfully induced SARA in dairy cows. Both FOXA2 mRNA and protein abundance were significantly reduced in the liver of the HC group compared with the LC group. The activity of antioxidant enzymes (CAT, G6PDH, T-SOD, Cu/Zn SOD, Mn SOD) and mtDNA copy number in the liver tissue of the HC group decreased, while the level of H2O2 significantly increased, this increase was accompanied by a decrease in oxidative phosphorylation (OXPHOS). The balance of mitochondrial division and fusion was disrupted in the HC group, as evidenced by the decreased mRNA level of OPA1, MFN1, and MFN2 and increased mRNA level of Drp1, Fis1, and MFF. At the same time, HC diet downregulated the expression level of SIRT1, SIRT3, PGC-1α, TFAM, and Nrf 1 to inhibit mitochondrial biogenesis. The HC group induced UPRmt in liver tissue by upregulating the mRNA and protein levels of CLPP, LONP1, CHOP, Hsp10, and Hsp60. In addition, HC diet could increase the protein abundance of Bax, CytoC, Caspase 3 and Cleaved-Caspase 3, while decrease the protein abundance of Bcl-2 and the Bcl-2/Bax ratio. Overall, our study suggests that the decreased expression of FOXA2 may be related to UPRmt, mitochondrial dysfunction, oxidative stress, and apoptosis in the liver of dairy cows fed a high concentrate diet.
Collapse
Affiliation(s)
- Ran Kun Zuo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Can Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Zhi Yuan Yu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Hui Min Shi
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Xiao Kun Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Shen Dong Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Na Na Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Guang Jun Chang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Xiang Zhen Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China.
| |
Collapse
|