1
|
Zhang Y, Zhang Y, Pan C, Wang W, Yu Y. HPV-driven heterogeneity in cervical cancer: study on the role of epithelial cells and myofibroblasts in the tumor progression based on single-cell RNA sequencing analysis. PeerJ 2024; 12:e18158. [PMID: 39346086 PMCID: PMC11438433 DOI: 10.7717/peerj.18158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024] Open
Abstract
Background Cervical cancer (CC) is a neoplasia with a high heterogeneity. We aimed to explore the characteristics of tumor microenvironment (TME) for CC treatment. Methods HPV positive (+) and negative (-) samples from cervical cancer (CC) patients were sourced from the Gene Expression Omnibus (GEO) database. The single-cell RNA sequencing (scRNA-seq) data were processed and annotated for cell types utilizing the Seurat package. Following this, the expression levels and biological roles of the marker genes were analyzed applying real-time PCR (RT-PCR) and transwell assays. Furthermore, the enrichment of genes with significantly differential expressions and copy number variations was assessed by the ClusterProlifer and inferCNV software packages. Results Seven main cell clusters were classified based on a total of 12,431 cells. The HPV- CC samples exhibited a higher immune cell infiltration level, while epithelial cells and myofibroblasts had higher proportion in the HPV+ CC samples with extensive heterogeneity. Immune pathways including antigen treatment and presentation, immunoglobulin production and T cell mediated immunity were significantly activated in the HPV- CC group with lower cell cycle and proliferation activity. However, the anti-tumor immunity of these cells was inhibited in HPV+ CC group with higher cell proliferation activity. Moreover, the amplification and loss of CNVs also supported that these cells in HPV- CC samples were prone to anti-tumor activation. Further cell validation results showed that except GZMA, the levels of APOC1, CEACAM6, FOXP3, SFRP4 and TFF3 were all higher in CC cells Hela, and that silencing TFF3 could inhibit the migration and invasion of CC cells in-vitro. Conclusion This study highlighted the critical role of HPV infection in CC progression, providing a novel molecular basis for optimizing the current preventive screening and personalized treatment for the cancer.
Collapse
Affiliation(s)
- Yunyun Zhang
- Department of Ultrasound in Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Yu Zhang
- Department of Ultrasound in Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Chenke Pan
- Department of Ultrasound in Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Wenqian Wang
- Department of Ultrasound in Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Yao Yu
- Department of Ultrasound in Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| |
Collapse
|
2
|
Liu ZL, Chen N, Li R, Ma YJ, Qiayimaerdan A, Ma CL. WGCNA reveals a biomarker for cancer-associated fibroblasts to predict prognosis in cervical cancer. J Chin Med Assoc 2024; 87:885-897. [PMID: 38946034 DOI: 10.1097/jcma.0000000000001129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are crucial components of the cervical cancer tumor microenvironment, playing a significant role in cervical cancer progression, treatment resistance, and immune evasion, but whether the expression of CAF-related genes can predict clinical outcomes in cervical cancer is still unknown. In this study, we sought to analyze genes associated with CAFs through weighted gene co-expression network analysis (WGCNA) and to create a predictive model for CAFs in cervical cancer. METHODS We acquired transcriptome sequencing data and clinical information on cervical cancer patients from the cancer genome atlas (TCGA) and gene expression omnibus (GEO) databases. WGCNA was conducted to identify genes related to CAFs. We developed a prognostic model based on CAF genes in cervical cancer using the least absolute shrinkage and selection operator (LASSO) Cox regression analysis. Single-cell sequencing data analysis and in vivo experiments for validation of hub genes in CAFs. RESULTS A prognostic model for cervical cancer was developed based on CAF genes including COL4A1 , LAMC1 , RAMP3 , POSTN , and SERPINF1 . Cervical cancer patients were divided into low- and high-risk groups based on the optimal cutoff value. Patients in the high-risk group had a significantly worse prognosis. Single-cell RNA sequencing data revealed that hub genes in the CAFs risk model were expressed mainly in fibroblasts. The real-time fluorescence quantitative polymerase chain reaction (PCR) results revealed a significant difference in the expression levels of COL4A1 , LAMC1 , POSTN , and SERPINF1 between the cancer group and the normal group ( p < 0.05). Consistently, the results of the immunohistochemical tests exhibited notable variations in COL4A1, LAMC1, RAMP3, POSTN, and SERPINF1 expression between the cancer and normal groups ( p < 0.001). CONCLUSION The CAF risk model for cervical cancer constructed in this study can be used to predict prognosis, while the CAF hub genes can be utilized as crucial markers for cervical cancer prognosis.
Collapse
Affiliation(s)
- Zao-Ling Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Nan Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Rong Li
- Department of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Ying-Jie Ma
- Department of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Aerna Qiayimaerdan
- Department of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Cai-Ling Ma
- Division of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
3
|
Li Y, Maimaitirexiati G, Wang J, Zhang J, Tian P, Zhou C, Ren J, Wang L, Zhao J, Wang H, Chen Z, Li X, Yan Q, Saitiniyazi N, Liu C, Wang J, Yang N, Xu X, Ding L, Ma C, Li R. Long non-coding RNA Linc00657 up-regulates Skp2 to promote the progression of cervical cancer through lipid reprogramming and regulation of immune microenvironment. Cytokine 2024; 176:156510. [PMID: 38308951 DOI: 10.1016/j.cyto.2024.156510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/01/2024] [Accepted: 01/16/2024] [Indexed: 02/05/2024]
Abstract
More and more evidence shows that long non-coding RNA (lncRNA) plays an important role in the biological behavior of many kinds of malignant tumors, but the specific function of lncRNA Linc00657 in cervical cancer is still unknown. The purpose of this study is to explore the effect of Linc00657 on the malignant progression of cervical cancer and its potential mechanism. In two kinds of cervical cancer cell lines and normal cervical epithelial cells, qRT-PCR showed increased expression of Linc00657 in cervical cancer cells. Through MTT, clone formation test, flow cytometry, wound healing test and Transwell test, it has been found that overexpression of Linc00657 could promote the proliferation,migration and invasion of cervical cancer cells,and inhibit apoptosis. Through the StarBase database, it was found that there may be a mutual regulatory relationship between Linc00657 and Skp2, and Skp2 may be the downstream target of Linc00657. QRT-PCR detection confirmed that the expression of Skp2 was increased in cervical cancer cells with overexpression of Linc00657. TIMER2 database found that Skp2 was associated with lipid metabolic enzymes and immune cell infiltration. It was found that Linc00657 knockdown inhibited tumor growth and metastasis and inhibited the expression of Skp2 in vivo. In short, our research shows that Linc00657 has carcinogenic properties in cervical cancer, and LINC00657 promotes the occurrence of cervical cancer by up-regulating the expression of Skp2. We predict that Linc00657/mir30s/Skp2 axis plays a role in the malignant progression of cervical cancer. In addition, Skp2 may participate in cancer immune response and promote lymph node metastasis of cervical cancer through lipid reprogramming. These findings also provide promising targets for the diagnosis and treatment of cervical cancer.
Collapse
Affiliation(s)
- Yuting Li
- Xinjiang key Laboratory of Special Environment and Health Research, China; College of Public Health, Xinjiang Medical University, China
| | - Gulikezi Maimaitirexiati
- College of Public Health, Xinjiang Medical University, China; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jing Wang
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, China
| | - Jin Zhang
- Urumqi Maternal and Child Health Hospital, Urumqi, Xinjiang, China
| | - Ping Tian
- State key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Changhui Zhou
- Xinjiang key Laboratory of Special Environment and Health Research, China; College of Public Health, Xinjiang Medical University, China
| | - Jingqin Ren
- Xinjiang key Laboratory of Special Environment and Health Research, China; College of Public Health, Xinjiang Medical University, China
| | - Lingjie Wang
- Xinjiang key Laboratory of Special Environment and Health Research, China; College of Public Health, Xinjiang Medical University, China
| | - Jiaqi Zhao
- Xinjiang key Laboratory of Special Environment and Health Research, China; College of Public Health, Xinjiang Medical University, China
| | - Hengyu Wang
- Xinjiang key Laboratory of Special Environment and Health Research, China; College of Public Health, Xinjiang Medical University, China
| | - Zhen Chen
- Xinjiang key Laboratory of Special Environment and Health Research, China; College of Public Health, Xinjiang Medical University, China
| | - Xue Li
- Xinjiang key Laboratory of Special Environment and Health Research, China; College of Public Health, Xinjiang Medical University, China
| | - Qi Yan
- Xinjiang key Laboratory of Special Environment and Health Research, China; College of Public Health, Xinjiang Medical University, China
| | - Nazila Saitiniyazi
- Xinjiang key Laboratory of Special Environment and Health Research, China; College of Public Health, Xinjiang Medical University, China
| | - Chengqing Liu
- Xinjiang key Laboratory of Special Environment and Health Research, China; College of Public Health, Xinjiang Medical University, China
| | - Jiabo Wang
- Xinjiang key Laboratory of Special Environment and Health Research, China; College of Public Health, Xinjiang Medical University, China
| | - Nan Yang
- Xinjiang key Laboratory of Special Environment and Health Research, China; College of Public Health, Xinjiang Medical University, China
| | - Xiaoya Xu
- Xinjiang key Laboratory of Special Environment and Health Research, China; College of Public Health, Xinjiang Medical University, China
| | - Lu Ding
- Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, China; Postdoctoral Research Center on Public Health and Preventive Medicine, Xinjiang Medical University, Xinjiang, China.
| | - Cailing Ma
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, China.
| | - Rong Li
- Xinjiang key Laboratory of Special Environment and Health Research, China; College of Public Health, Xinjiang Medical University, China.
| |
Collapse
|