1
|
Luo J, Xie Y, Zheng Y, Wang C, Qi F, Hu J, Xu Y. Comprehensive insights on pivotal prognostic signature involved in clear cell renal cell carcinoma microenvironment using the ESTIMATE algorithm. Cancer Med 2020; 9:4310-4323. [PMID: 32311223 PMCID: PMC7300420 DOI: 10.1002/cam4.2983] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 01/30/2020] [Accepted: 02/12/2020] [Indexed: 12/13/2022] Open
Abstract
Emerging evidence has highlighted that the immune and stromal cells formed the majority of tumor microenvironment (TME) which are served as important roles in tumor progression. In our study, we aimed to screen vital prognostic signature associated with TME in clear cell renal cell carcinoma (ccRCC). We obtained total 611 samples from TCGA database consisting of transcriptome profiles and clinical data. ESTIMATE algorithm was applied to estimate the infiltrating fractions of immune/stromal cells. We found that the immune scores revealed more prognostic significance in overall survival and positive associations with risk clinical factors than stromal scores. We carried out differential expression analysis between Immunescore and stromalscore groups to obtain the 72 intersect genes. Protein to protein interaction (PPI) network and functional analysis was performed to indicate potential altered pathways. Additionally, we further conducted multivariate Cox analysis to identify 12 hub genes associated highly with TME of ccRCC using a stepwise regression procedure. Accordingly, risk score was constructed from the multivariate Cox results and Receiver Operating Characteristic (ROC) curve was used to assess the predictive value (AUC = 0.781). The ccRCC patients with high risk scores suffered poor survival outcomes than that with low risk scores. In the validation cohort from GSE53757, TNFSF13B, CASP5, and GJB6 correlated positively with tumor stages, while FREM1 negatively correlated with tumor stages. Importantly, we further observed that TNFSF13B, CASP5 and XCR1 showed the remarkable correlations with tumor‐infiltrating immune cells. Taken together, our research identified specific signatures that related to the infiltration of stromal and immune cells in TME of ccRCC using the transciptome profiles, which reached a comprehensive understanding of tumor microenvironment in ccRCC.
Collapse
Affiliation(s)
- Jun Luo
- Department of Urology, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, China
| | - Yi Xie
- The First Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Yuxiao Zheng
- Department of Urology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University, Nanjing, China
| | - Chenji Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Feng Qi
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiateng Hu
- The First Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Yaoting Xu
- Department of Urology, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Wang W, Liu W. Integration of gene interaction information into a reweighted random survival forest approach for accurate survival prediction and survival biomarker discovery. Sci Rep 2018; 8:13202. [PMID: 30181543 PMCID: PMC6123437 DOI: 10.1038/s41598-018-31497-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 08/20/2018] [Indexed: 02/05/2023] Open
Abstract
Accurately predicting patient risk and identifying survival biomarkers are two important tasks in survival analysis. For the emerging high-throughput gene expression data, random survival forest (RSF) is attracting more and more attention as it not only shows excellent performance on survival prediction problems with high-dimensional variables, but also is capable of identifying important variables according to variable importance automatically calculated within the algorithm. However, RSF still suffers from some problems such as limited predictive accuracy on independent datasets and limited biological interpretation of survival biomarkers. In this study, we integrated gene interaction information into a Reweighted RSF model (RRSF) to improve predictive accuracy and identify biologically meaningful survival markers. We applied RRSF to the prediction of patients with glioblastoma multiforme (GBM) and esophageal squamous cell carcinoma (ESCC). With a reconstructed global pathway network and an mRNA-lncRNA co-expression network as the prior gene interaction information, RRSF showed better overall predictive performance than RSF on three GBM and two ESCC datasets. In addition, RRSF identified a two-gene and three-lncRNA signature, which showed robust prognostic values and had high biological relevance to the development of GBM and ESCC, respectively.
Collapse
Affiliation(s)
- Wei Wang
- Department of Mathematics, Heilongjiang Institute of Technology, Harbin, 150050, China
| | - Wei Liu
- Department of Mathematics, Heilongjiang Institute of Technology, Harbin, 150050, China.
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
3
|
Dagbay KB, Hill ME, Barrett E, Hardy JA. Tumor-Associated Mutations in Caspase-6 Negatively Impact Catalytic Efficiency. Biochemistry 2017; 56:4568-4577. [PMID: 28726391 DOI: 10.1021/acs.biochem.7b00357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Unregulated, particularly suppressed programmed cell death is one of the distinguishing features of many cancer cells. The cysteine protease caspase-6, one of the executioners of apoptotic cell death, plays a crucial role in regulation of apoptosis. Several somatic mutations in the CASP6 gene in tumor tissues have been reported. This work explores the effect of CASP6 tumor-associated mutations on the catalytic efficiency and structure of caspase-6. In general, these mutations showed decreased overall rates of catalytic turnover. Mutations within 8 Å of the substrate-binding pocket of caspase-6 were found to be the most catalytically deactivating. Notably, the R259H substitution decreased activity by 457-fold. This substitution disrupts the cation-π stacking interaction between Arg-259 and Trp-227, which is indispensable for proper assembly of the substrate-binding loops in caspase-6. Sequence conservation analysis at the homologous position across the caspase family suggests a role for this cation-π stacking in the catalytic function of caspases generally. These data suggest that caspase-6 deactivating mutations may contribute to multifactorial carcinogenic transformations.
Collapse
Affiliation(s)
- Kevin B Dagbay
- Department of Chemistry, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | - Maureen E Hill
- Department of Chemistry, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | - Elizabeth Barrett
- Department of Chemistry, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | - Jeanne A Hardy
- Department of Chemistry, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| |
Collapse
|
4
|
Roberts DL, O'Dwyer ST, Stern PL, Renehan AG. Global gene expression in pseudomyxoma peritonei, with parallel development of two immortalized cell lines. Oncotarget 2016; 6:10786-800. [PMID: 25929336 PMCID: PMC4484419 DOI: 10.18632/oncotarget.3198] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 01/24/2015] [Indexed: 01/02/2023] Open
Abstract
Pseudomyxoma peritonei (PMP) is a rare tumor of appendiceal origin. Treatment is major cytoreductive surgery but morbidity is high. PMP is considered chemo-resistant; its molecular biology is understudied; and presently, there is no platform for pre-clinical drug testing. Here, we performed exon array analysis from laser micro-dissected PMP tissue and normal colonic epithelia. The array analysis identified 27 up-regulated and 34 down-regulated genes: candidate up-regulated genes included SLC16A4, DSC3, Aldolase B, EPHX4, and ARHGAP24; candidate down-regulated genes were MS4A12, TMIGD1 and Caspase-5. We confirmed differential expression of the candidate genes and their protein products using in-situ hybridization and immuno-histochemistry. In parallel, we established two primary PMP cell lines, N14A and N15A, and immortalized with an SV40 T-antigen lentiviral vector. We cross-checked for expression of the candidate genes (from the array analyses) using qPCR in the cell lines and demonstrated that the gene profiles were distinct from those of colorectal tumor libraries and commonly used colon cell lines. N14A and N15A were responsiveness to mitomycin and oxaliplatin. This study characterizes global gene expression in PMP, and the parallel development of the first immortalized PMP cell lines; fit for pre-clinical testing and PMP oncogene discovery.
Collapse
Affiliation(s)
- Darren L Roberts
- Immunology Group, Paterson Institute for Cancer Research, The University of Manchester, Manchester, M20 4BX, UK.,Institute of Cancer Sciences, The University of Manchester, Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
| | - Sarah T O'Dwyer
- Peritoneal Tumour Service, Department of Surgery, The Christie NHS Foundation Trust, Manchester, M20 4BX, UK
| | - Peter L Stern
- Immunology Group, Paterson Institute for Cancer Research, The University of Manchester, Manchester, M20 4BX, UK
| | - Andrew G Renehan
- Immunology Group, Paterson Institute for Cancer Research, The University of Manchester, Manchester, M20 4BX, UK.,Institute of Cancer Sciences, The University of Manchester, Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Manchester M20 4BX, UK.,Peritoneal Tumour Service, Department of Surgery, The Christie NHS Foundation Trust, Manchester, M20 4BX, UK
| |
Collapse
|
5
|
Swarts DRA, Claessen SMH, Jonkers YMH, van Suylen RJ, Dingemans AMC, de Herder WW, de Krijger RR, Smit EF, Thunnissen FBJM, Seldenrijk CA, Vink A, Perren A, Ramaekers FCS, Speel EJM. Deletions of 11q22.3-q25 are associated with atypical lung carcinoids and poor clinical outcome. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1129-37. [PMID: 21763262 PMCID: PMC3157200 DOI: 10.1016/j.ajpath.2011.05.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 04/13/2011] [Accepted: 05/06/2011] [Indexed: 01/21/2023]
Abstract
Carcinoids are slow-growing neuroendocrine tumors that, in the lung, can be subclassified as typical (TC) or atypical (AC). To identify genetic alterations that improve the prediction of prognosis, we investigated 34 carcinoid tumors of the lung (18 TCs, 15 ACs, and 1 unclassified) by using array comparative genomic hybridization (array CGH) on 3700 genomic bacterial artificial chromosome arrays (resolution ≤1 Mb). When comparing ACs with TCs, the data revealed: i) a significant difference in the average number of chromosome arms altered (9.6 versus 4.2, respectively; P = 0.036), with one subgroup of five ACs having more than 15 chromosome arms altered; ii) chromosomal changes in 30% of ACs or more with additions at 9q (≥1 Mb) and losses at 1p, 2q, 10q, and 11q; and iii) 11q deletions in 8 of 15 ACs versus 1 of 18 TCs (P = 0.004), which was confirmed via fluorescence in situ hybridization. The four critical regions of interest in 45% ACs or more comprised 11q14.1, 11q22.1-q22.3, 11q22.3-q23.2, and 11q24.2-q25, all telomeric of MEN1 at 11q13. Results were correlated with patient clinical data and long-term follow-up. Thus, there is a strong association of 11q22.3-q25 loss with poorer prognosis, alone or in combination with absence of 9q34.11 alterations (P = 0.0022 and P = 0.00026, respectively).
Collapse
Affiliation(s)
- Dorian R A Swarts
- Department of Molecular Cell Biology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Dong LM, Brennan P, Karami S, Hung RJ, Menashe I, Berndt SI, Yeager M, Chanock S, Zaridze D, Matveev V, Janout V, Kollarova H, Bencko V, Schwartz K, Davis F, Navratilova M, Szeszenia-Dabrowska N, Mates D, Colt JS, Holcatova I, Boffetta P, Rothman N, Chow WH, Rosenberg PS, Moore LE. An analysis of growth, differentiation and apoptosis genes with risk of renal cancer. PLoS One 2009; 4:e4895. [PMID: 19603096 PMCID: PMC2656573 DOI: 10.1371/journal.pone.0004895] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 02/19/2009] [Indexed: 11/23/2022] Open
Abstract
We conducted a case-control study of renal cancer (987 cases and 1298 controls) in Central and Eastern Europe and analyzed genomic DNA for 319 tagging single-nucleotide polymorphisms (SNPs) in 21 genes involved in cellular growth, differentiation and apoptosis using an Illumina Oligo Pool All (OPA). A haplotype-based method (sliding window analysis of consecutive SNPs) was used to identify chromosome regions of interest that remained significant at a false discovery rate of 10%. Subsequently, risk estimates were generated for regions with a high level of signal and individual SNPs by unconditional logistic regression adjusting for age, gender and study center. Three regions containing genes associated with renal cancer were identified: caspase 1/5/4/12(CASP 1/5/4/12), epidermal growth factor receptor (EGFR), and insulin-like growth factor binding protein-3 (IGFBP3). We observed that individuals with CASP1/5/4/12 haplotype (spanning area upstream of CASP1 through exon 2 of CASP5) GGGCTCAGT were at higher risk of renal cancer compared to individuals with the most common haplotype (OR:1.40, 95% CI:1.10–1.78, p-value = 0.007). Analysis of EGFR revealed three strong signals within intron 1, particularly a region centered around rs759158 with a global p = 0.006 (GGG: OR:1.26, 95% CI:1.04–1.53 and ATG: OR:1.55, 95% CI:1.14–2.11). A region in IGFBP3 was also associated with increased risk (global p = 0.04). In addition, the number of statistically significant (p-value<0.05) SNP associations observed within these three genes was higher than would be expected by chance on a gene level. To our knowledge, this is the first study to evaluate these genes in relation to renal cancer and there is need to replicate and extend our findings. The specific regions associated with risk may have particular relevance for gene function and/or carcinogenesis. In conclusion, our evaluation has identified common genetic variants in CASP1, CASP5, EGFR, and IGFBP3 that could be associated with renal cancer risk.
Collapse
Affiliation(s)
- Linda M Dong
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|