1
|
Guo J, Yang X, Yang J, Du F, Liu S. Electroacupuncture Promotes the Proliferation and Differentiation of Enteric Neural Precursor Cells via the PTEN/PI3K/Akt/mTOR Signaling Pathway in Diabetic Mice. Neurogastroenterol Motil 2025; 37:e70040. [PMID: 40190044 DOI: 10.1111/nmo.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 02/15/2025] [Accepted: 03/11/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND Enteric neuronal loss significantly contributes to gastrointestinal (GI) motility disorders. Electroacupuncture (EA) can promote the regeneration of lost enteric neurons in diabetic mice, but its mechanisms are not fully understood. Nestin+/Ngfr+ cells can function as enteric neural precursor cells (ENPCs) to proliferate and differentiate into enteric neurons in adult mice. However, EA's effects on ENPCs remain unknown. The study aimed to investigate whether EA reversed enteric neuronal loss via regulation of ENPCs and its molecular basis. MATERIALS AND METHODS The study utilized conventional C57BL/6J mice and ENPC-tracing transgenic mice. Streptozotocin-induced type 1 diabetic mouse, PI3K inhibitor, and PTEN inhibitor models were used. GI motility was evaluated by defecation frequency, fecal water content, and whole gut transit test. The alterations of enteric neurons, ENPCs, and PTEN/PI3K/Akt/mTOR signaling were detected by Western blot and immunofluorescence. RESULTS EA increased defecation frequency and fecal water content, reduced whole gut transit time, and increased the number of enteric neurons. Notably, EA inhibited ENPC apoptosis and facilitated ENPC proliferation and differentiation with a preferential into ChAT enteric neurons. Additionally, PTEN was decreased and PI3K/Akt/mTOR signaling was activated with EA. However, LY294002 (PI3K inhibitor) inhibited EA's effects on ENPCs, while BpV(HOpic) (PTEN inhibitor) partially rescued these inhibitory effects. CONCLUSIONS EA alleviates diabetic enteric neuropathy by regulating ENPC dynamics through the PTEN/PI3K/Akt/mTOR signaling pathway. Notably, EA-mediated anti-apoptotic and pro-proliferative effects on ENPCs, and their preferential cholinergic differentiation establish EA as a multimodal therapy that bridges neuromodulation with precursor cell biology, offering an alternative strategy for GI motility disorders.
Collapse
Affiliation(s)
- Jinlu Guo
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Yang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingze Yang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Du
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shi Liu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Zhang W, Li R, Lu D, Wang X, Wang Q, Feng X, Qi S, Zhang X. Phospholipids and peroxisomes in ferroptosis: the therapeutic target of acupuncture regulating vascular cognitive impairment and dementia. Front Aging Neurosci 2025; 17:1512980. [PMID: 40365351 PMCID: PMC12070441 DOI: 10.3389/fnagi.2025.1512980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/26/2025] [Indexed: 05/15/2025] Open
Abstract
Ferroptosis, since its conceptualization in 2012, has witnessed an exponential growth in research interest over recent years. It is regulated by various cellular metabolic pathways during chronic cerebral ischemia and hypoxia, including reactive oxygen species (ROS) generation, iron accumulation, abnormalities in glutathione metabolism, and disruptions in lipid and glucose metabolism. With the deepening and widespread research, ferroptosis has emerged as a critical pathway in the pathogenesis of vascular cognitive impairment and dementia (VCID). This unique cell death pathway caused by iron-dependent phospholipid peroxidation is strongly related to VICD. We examine the impact of phospholipid composition on neuronal susceptibility to ferroptosis, with a particular focus on the critical role of polyunsaturated fatty acids (PUFAs) in this process. Intriguingly, peroxisomes, as key regulators of lipid metabolism and oxidative stress, influence the susceptibility of neuronal cells to ferroptosis through the synthesis of plasmalogens and other lipid species. In this Review, we provide a critical analysis of the current molecular mechanisms and regulatory networks of acupuncture for ferroptosis, the potential functions of acupuncture in peroxisomal functions and phospholipid metabolism, and its neuroprotective effects in VCID, together with a potential for therapeutic targeting. As such, this highlights the theoretical basis for the application of acupuncture in VCID through multi-target regulation of ferroptosis. This review underscores the potential of acupuncture as a non-pharmacological therapeutic approach in VCID, offering new insights into its role in modulating ferroptosis and associated metabolic pathways for neuroprotection.
Collapse
Affiliation(s)
- Wenyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruiyu Li
- Beijing University of Chinese Medicine Shenzhen Hospital (Longgang), Shenzhen, China
| | - Donglei Lu
- Sports Training Academy of Tianjin University of Sport, Tianjin, China
| | - Xinliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qiuxuan Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuyang Feng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Sai Qi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuezhu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
3
|
Wang H, Guo J, Zhang Y, Fu Z, Yao Y. Closed-loop rehabilitation of upper-limb dyskinesia after stroke: from natural motion to neuronal microfluidics. J Neuroeng Rehabil 2025; 22:87. [PMID: 40253334 PMCID: PMC12008995 DOI: 10.1186/s12984-025-01617-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/27/2025] [Indexed: 04/21/2025] Open
Abstract
This review proposes an innovative closed-loop rehabilitation strategy that integrates multiple subdomains of stroke science to address the global challenge of upper-limb dyskinesia post-stroke. Despite advancements in neural remodeling and rehabilitation research, the compartmentalization of subdomains has limited the effectiveness of current rehabilitation strategies. Our approach unites key areas-including the post-stroke brain, upper-limb rehabilitation robotics, motion sensing, metrics, neural microfluidics, and neuroelectronics-into a cohesive framework designed to enhance upper-limb motion rehabilitation outcomes. By leveraging cutting-edge technologies such as lightweight rehabilitation robotics, advanced motion sensing, and neural microfluidic models, this strategy enables real-time monitoring, adaptive interventions, and personalized rehabilitation plans. Furthermore, we explore the potential of closed-loop systems to drive neural plasticity and functional recovery, offering a transformative perspective on stroke rehabilitation. Finally, we discuss future directions, emphasizing the integration of emerging technologies and interdisciplinary collaboration to advance the field. This review highlights the promise of closed-loop strategies in achieving unprecedented integration of subdomains and improving post-stroke upper-limb rehabilitation outcomes.
Collapse
Affiliation(s)
- Honggang Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, China
| | - Junlong Guo
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, China
| | - Yangqi Zhang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, China
| | - Ze Fu
- Institute of Biological and Medical Technology, Harbin Institute of Technology (Weihai), Weihai, 264200, China
| | - Yufeng Yao
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
4
|
Huang Z, Li F, Zheng X, Zheng J, Dong Y, Ding Z, Gou H, Yao M, Liu J. Catalpol promotes hippocampal neurogenesis and synaptogenesis in rats after multiple cerebral infarctions by mitochondrial regulation: involvement of the Shh signaling pathway. Front Pharmacol 2024; 15:1461279. [PMID: 39749196 PMCID: PMC11693731 DOI: 10.3389/fphar.2024.1461279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/04/2024] [Indexed: 01/04/2025] Open
Abstract
Introduction Ischemic stroke greatly threatens human life and health. Neuro-restoration is considered to be the critical points in reestablishing neurological function and improving the quality of life of patients. Catalpol is the main active ingredient of the Chinese herbal medicine Dihuang, which has the beneficial efficacy in traditional remedy, is closely related to the mitochondrial morphology and function. In the present study, we investigated whether catalpol has a neurorestorative effect after multiple cerebral infarctions and its underlying mechanisms. Methods In this study, male 8-week-old Sprague-Dawley (SD) rats were grouped according to neurological deficit scores to minimize differences between groups the second day: sham group, model group, Ginkgo biloba P.E (EGb) (Ginaton:18 mg/kg) group, model + CAT 30 mg/kg group (CAT 30), model + CAT 60 mg/kg group (CAT 60), and model + CAT 120 mg/kg group (CAT 120). From the first day to the fourteenth day after MCI, rats were given the corresponding doses of drugs by gastric administration every day(1 mL/100g), and from day 7 to day 14, all rats were injected with Brdu solution (50 mg/kg) i.p. Neuro-Function was assessed by the neurologic deficit scores. Then we observed measurement of brain atrophy and fluorescent Nissl staining. The expression of BrdU+/DCX+ cells and the BDNF concentrations were tested to observe the neuro-restoration effect. Transmission electron microscope (TEM) and Western blot (WB) were used to observed synaptogenesis. we observed the restoration of mitochondrial function by detecting the intracortical calcium and T-AOC content. Finally, we examined the protein and mRNA expression of shh signaling pathway through q-PCR and WB. Results Catalpol alleviated neurological deficits, reduced the degree of brain atrophy, as well as minimize pathological damage in the hippocampus and cortex. In addition, catalpol also promoted hippocampal neurogenesis and synaptogenesis by improving the mitochondrial structure and promoting mitochondrial function, as evidenced by the up-regulation of positive expression of both Recombinant Doublecortin (DCX) and 5-Bromodeoxyuridinc (BrdU), the enhancement of the Total antioxidant capacity (T-AOC), and the increase in the expression of synapse-associated proteins, Synaptophysin (SYP) and post-synaptic density-95 (PSD-95). Finally, we observed that catalpol up-regulated the expression of Sonic hedgehog (Shh) and Glioma-associated homologue-1 (GLI-1), factors related to the Shh signaling pathway. Discussion In conclusion, catalpol may regulate mitochondria through activation of the Shh signaling pathway and exert its role in promoting hippocampal neurogenesis and synaptogenesis.
Collapse
Affiliation(s)
- Zishan Huang
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
- Institute of Chinese Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Feng Li
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
| | - Xiaoyu Zheng
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
| | - Jiarui Zheng
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
- Heilongjiang Academy of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yilei Dong
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
| | - Zhao Ding
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
| | - Huanyu Gou
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
| | - Mingjiang Yao
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
| | - Jianxun Liu
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
- Institute of Chinese Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
5
|
Jiang H, Zhang C, Lin M, Yin Y, Deng S, Liu W, Zhuo B, Tian G, Du Y, Meng Z. Deciphering the mechanistic impact of acupuncture on the neurovascular unit in acute ischemic stroke: Insights from basic research in a narrative review. Ageing Res Rev 2024; 101:102536. [PMID: 39384155 DOI: 10.1016/j.arr.2024.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
Ischemic stroke(IS), a severe acute cerebrovascular disease, not only imposes a heavy economic burden on society but also presents numerous challenges in treatment. During the acute phase, while thrombolysis and thrombectomy serve as primary treatments, these approaches are restricted by a narrow therapeutic window. During rehabilitation, commonly used neuroprotective agents struggle with their low drug delivery efficiency and inadequate preclinical testing, and the long-term pharmacological and toxicity effects of nanomedicines remain undefined. Meanwhile, acupuncture as a therapeutic approach is widely acknowledged for its effectiveness in treating IS and has been recommended by the World Health Organization (WHO) as an alternative and complementary therapy, even though its exact mechanisms remain unclear. This review aims to summarize the known mechanisms of acupuncture and electroacupuncture (EA) in the treatment of IS. Research shows that acupuncture treatment mainly protects the neurovascular unit through five mechanisms: 1) reducing neuronal apoptosis and promoting neuronal repair and proliferation; 2) maintaining the integrity of the blood-brain barrier (BBB); 3) inhibiting the overactivation and polarization imbalance of microglia; 4) regulating the movement of vascular smooth muscle (VSM) cells; 5) promoting the proliferation of oligodendrocyte precursors. Through an in-depth analysis, this review reveals the multi-level, multi-dimensional impact of acupuncture treatment on the neurovascular unit (NVU) following IS, providing stronger evidence and a theoretical basis for its clinical application.
Collapse
Affiliation(s)
- Hailun Jiang
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Chao Zhang
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Mengxuan Lin
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yu Yin
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shizhe Deng
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Wei Liu
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Bifang Zhuo
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Guang Tian
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yuzheng Du
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Zhihong Meng
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
6
|
Jiang S, Pei L, Chen L, Sun J, Song Y. Mechanisms of Electroacupuncture in Alleviating Visceral Hypersensitivity in Post-Infectious Irritable Bowel Syndrome Mice: The Role of GDNF Signaling Pathway and Gut Microbiota. Microb Physiol 2024; 34:255-263. [PMID: 39396501 DOI: 10.1159/000541888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
INTRODUCTION Post-infectious irritable bowel syndrome (PI-IBS) is a functional bowel disease that develops following an acute gastrointestinal infection. Electroacupuncture (EA) can regulate the gut microbiota and alleviate visceral hypersensitivity. Glial cell-derived neurotrophic factor (GDNF) is a potential factor in visceral hypersensitivity reactions. The aim of this study was to explore whether EA could alleviate visceral hypersensitivity in PI-IBS by regulating gut microbiota through GDNF signaling. METHODS 2,4,6-trinitrobenzene sulfonic acid was used to induce visceral hypersensitivity in PI-IBS mice. Intestinal visceral sensitivity was assessed by using the abdominal withdrawal reflex (colorectal distention). 16S ribosomal RNA sequencing profiles the gut microbiome community. RESULTS GDNF can exacerbate the imbalances of the gut microbiota and increase visceral hypersensitivity compared with the model group. Whereas EA treatment increases the richness and diversity of the gut microbiota, decreases differences among species and alleviates visceral sensitivity. CONCLUSION EA can alleviate visceral hypersensitivity in PI-IBS by regulating the gut microbiota via GDNF signaling, providing new insights for mechanistic research on EA in PI-IBS treatment.
Collapse
Affiliation(s)
- Shiyuan Jiang
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China,
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China,
- Acupuncture and Massage College, Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing, China,
| | - Lixia Pei
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lu Chen
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianhua Sun
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yafang Song
- Acupuncture and Massage College, Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
7
|
Shen YJ, Liao HH, Livneh H, Lin MC, Lu MC, Li SC, Tsai TY. Complementary acupuncture treatment and reduced risk of sudden sensorineural hearing loss in nasopharyngeal carcinoma patients: a retrospective, nested case-control study. J Cancer Surviv 2024:10.1007/s11764-024-01552-z. [PMID: 38833080 DOI: 10.1007/s11764-024-01552-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/09/2024] [Indexed: 06/06/2024]
Abstract
PURPOSE Hearing loss is a frequently observed comorbidity in patients with nasopharyngeal carcinoma (NPC). Accumulating evidence demonstrated that acupuncture can safely manage cancer and its treatment-related symptoms, but its effect in minimizing the likelihood of experiencing sudden sensorineural hearing loss (SSHL) has not been established. So this work aimed to determine the risk of SSHL among NPC persons with or without acupuncture use. METHODS One population-level, nested case-control design within a cohort study is employed. Relevant information on persons aged 20-80 years who were afflicted with NPC between 2000 and 2010 was extracted from a nationwide health claims database. From them, we identified the cases who had the first SSHL diagnosis occurring after NPC, and all of them were randomly matched to two controls without SSHL. Conditional logistic regression was employed to calculate odds ratios (OR) and its respective 95% confidence intervals (CI) for incident SSHL in relation to acupuncture treatment. RESULTS Eight hundred eleven SSHL cases were randomly matched to 1452 controls. Those receiving conventional care plus acupuncture use had a reduced adjusted OR of 0.39 (95% CI, 0.25-0.60) for SSHL. We further discovered that the longer usage of acupuncture remarkably correlated with reduction of SSHL risk in a dose-dependent manner. CONCLUSIONS Delineation of the benefit from integration of acupuncture into conventional care may be a reference in instituting more appropriate care for NPC subjects. IMPLICATIONS FOR CANCER SURVIVORS Patients living with NPC may benefit from a timely integration of acupuncture into routine care to lessen SSHL risk.
Collapse
Affiliation(s)
- Yu-Jen Shen
- Department of Chinese Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- Department of Chinese Medicine, Chi Mei Medical Center, Liouying, Tainan, Taiwan
| | - Hou-Hsun Liao
- Department of Chinese Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Hanoch Livneh
- Rehabilitation Counseling Program, Portland State University, Portland, USA
| | - Miao-Chiu Lin
- Department of Nursing, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Ming-Chi Lu
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Szu-Chin Li
- School of Medicine, Tzu Chi University, Hualien, Taiwan.
- Division of Hematology and Oncology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan.
| | - Tzung-Yi Tsai
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien, Taiwan.
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Department of Medical Research, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan.
| |
Collapse
|
8
|
Zhu W, Jia Q, Ferreira AC, Jiang H, Zhang J, Li B, Zhang M, Zhuo B, Lyu Y, Chen J, Li L, Tian G, Deng S, Meng Z, Shi X. Acupuncture for ischemic stroke: where are we now? ACUPUNCTURE AND HERBAL MEDICINE 2024; 4:36-55. [DOI: 10.1097/hm9.0000000000000094] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2025]
Abstract
Acupuncture is an effective treatment for ischemic stroke (IS) and plays a key role in neurological rehabilitation after IS. Acupuncture can improve the clinical symptoms of various complications after IS, including motor dysfunction, swallowing disorders, speech disorders, cognitive impairment, depression, insomnia, and fatigue. However, the mechanisms underlying the effects of acupuncture in IS remain unclear. Available evidence suggests that acupuncture may exert neuroprotective effects through neuroplasticity (neurogenesis and synaptogenesis), angiogenesis, cell proliferation and apoptosis, and regulation of oxidative stress, inflammation, and immunity. Further studies should be conducted to improve the high-quality evidence-based system of acupuncture intervention for IS, by focusing on the clinical and basic research design, increasing the sample size, standardizing and quantifying the standards of acupuncture operations, using multidisciplinary techniques and methods to systematically explore the key targets of acupuncture intervention for IS, and reveal the efficacy and mechanism of acupuncture in the treatment of IS.
Collapse
Affiliation(s)
- Weiming Zhu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qingqing Jia
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | | | - Hailun Jiang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jieying Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Boxuan Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Menglong Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Bifang Zhuo
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yuanhao Lyu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Junjie Chen
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Li Li
- First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Guang Tian
- First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shizhe Deng
- First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhihong Meng
- First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xuemin Shi
- First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
9
|
Cheng CJ, Yu HB. Global trends and development of acupuncture for stroke: A review and bibliometric analysis. Medicine (Baltimore) 2024; 103:e36984. [PMID: 38241541 PMCID: PMC10798747 DOI: 10.1097/md.0000000000036984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/22/2023] [Indexed: 01/21/2024] Open
Abstract
The objective of this review is to elaborate on the status, hotspots, and trends of researches on acupuncture for stroke over the past 26 years. Publications about acupuncture for stroke were downloaded from the Web of Science Core Collection, and these papers were published up to December 31, 2022. A bibliometric analysis of acupuncture for stroke was conducted by CiteSpace (6.2.R4) and VOSviewer (1.6.17). In this study, VOSviewer was used for visual analysis of countries, institutions, authors, journals, keywords, and co-cited references. CiteSpace was used to draw a keyword burst map and a co-cited reference burst map. A total of 534 papers were obtained from the Web of Science Core Collection. The number of papers per year showed a rapid upward trend. The most productive country and institution in this field were China (452) and the Fujian University of Traditional Chinese Medicine (43), respectively. Tao Jing had the highest number of articles (34), and EZ Longa was the most popular author (129 co-citations). Neural Regeneration Research (51) was the most productive journal, and Stroke (1346) was the most co-cited journal. An paper written by EZ Longa was the most influential reference, with the highest citation count. The hotspots and frontiers of this area of research were focused on the mechanisms of acupuncture, especially its neural regenerative or neuroprotective effects. This study used CiteSpace and VOSviewer for bibliometric analysis to provide researchers with information on the research status, hotspots, and trends in acupuncture for stroke research over the past 26 years.
Collapse
Affiliation(s)
- Chang-Jiang Cheng
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Hai-Bo Yu
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
10
|
Wu L, Tan Z, Su L, Dong F, Xu G, Zhang F. Transcutaneous electrical acupoint stimulation alleviates cerebral ischemic injury through the TLR4/MyD88/NF-κ B pathway. Front Cell Neurosci 2024; 17:1343842. [PMID: 38273974 PMCID: PMC10808520 DOI: 10.3389/fncel.2023.1343842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
This study was to explore whether transcutaneous electrical acupoint stimulation (TEAS) treatment could mediate inflammation, apoptosis, and pyroptosis of neuronal cells and microglia activation through the TLR4/MyD88/NF-κB pathway in the early stage of ischemic stroke. TEAS treatment at Baihui (GV20) and Hegu (LI4) acupoints of the affected limb was administered at 24, 48, and 72 h following middle cerebral artery occlusion/reperfusion (MCAO/R), with lasting for 30 min each time. Neurological impairment scores were assessed 2 h and 72 h after ischemia/reperfusion (I/R). TTC staining was used to evaluate the volume of brain infarction. The histopathologic changes of hippocampus were detected by H&E staining. WB analysis was performed to assess the levels of TLR4, MyD88, p-NF-κB p65/NF-κB p65, and inflammation, apoptosis, pyroptosis-related proteins. TLR4 expression was measured using immunohistochemistry. The expression of inflammation-related proteins was also measured using ELISA. Immunofluorescence was used to detect the expression level of Iba1. Our findings demonstrated that TEAS intervention after I/R improved neurological function, reduced the volume of brain infarction, and mitigated pathological damage. Moreover, TEAS reduced the levels of TLR4, MyD88, p-NF-κB p65/NF-κB p65, TNF-α, IL-6, Bax, NLRP3, cleaved caspase-1/pro caspase-1, IL-1β, IL-18, GSDMD, and Iba1 while enhancing Bcl-2 expression. Moreover, the protective effects of TEAS could be counteracted by lipopolysaccharide (LPS, a TLR4 agonist). In conclusion, TEAS can reduce cerebral damage and suppress inflammation, cell death, and microglia activation after ischemic stroke via inhibiting the TLR4/MyD88/NF-κB pathway.
Collapse
Affiliation(s)
- Linyu Wu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Zixuan Tan
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Lei Su
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Guangyu Xu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| |
Collapse
|
11
|
Fan S, Wang X, Gao N, Wei S. Electroacupuncture Pretreatment Attenuates Learning Memory Impairment Induced by Repeated Propofol Exposure and Modulates Hippocampal Synaptic Plasticity in Rats. J Inflamm Res 2023; 16:4559-4573. [PMID: 37868829 PMCID: PMC10588748 DOI: 10.2147/jir.s427925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023] Open
Abstract
Background Recurrent propofol anesthesia in the peak of neurodevelopment may lead to learning-memory decline. This study aimed to examine the efficacy of electroacupuncture pretreatment in ameliorating the aforementioned learning memory deficits and to explore its underlying mechanisms in a rat model of repeated propofol exposure. Methods 10-day-old Sprague Dawley rats were randomly assigned to five groups: the control, fat emulsion, propofol, electroacupuncture pretreatment and electroacupuncture pretreatment combined with propofol groups. The electroacupuncture pretreatment involved three consecutive daily sessions, while propofol was received intraperitoneally once daily for five days. Following the modeling period, the rats' learning-memory performance was assessed using the New Novel Arm Y-maze, New Object Recognition, and Morris Water Maze. The Nissl staining method was used to observe the development of hippocampal neurons, while Golgi staining was employed to observe hippocampal synaptic development. Results The electroacupuncture pretreatment significantly attenuated the learning and memory impairment induced by recurring propofol exposure in rats. Additionally, it facilitated the development of hippocampal neurons and synaptic plasticity in the hippocampus. Immunofluorescence and Western Blot analyses were conducted to detect the expression of proteins related to apoptosis, learning memory, and synaptic plasticity. In the propofol group, the pro-apoptotic factors Caspase-3 and Bax was up-regulated, while the anti-apoptotic factor Bcl-2 was down-regulated, as compared to the blank group. Additionally, the phosphorylated cAMP-response element binding protein (pCREB), brain-derived neurotrophic factor (BDNF), synaptophysin, and growth associated protein-43 (GAP-43) was significantly decreased. In contrast, the electroacupuncture pretreatment combined with propofol group exhibited decreased the Caspase-3 and Bax and increased the Bcl-2, as compared to the propofol group, meanwhile, the pCREB, BDNF, Synaptophysin and GAP-43 was increased. Conclusion Our findings indicate that electroacupuncture pretreatment can alleviate the learning and memory impairment induced by recurring propofol exposure in rats. This is achieved by enhancing hippocampal synaptic plasticity, activating the pCREB/BDNF pathway and inhibiting neuronal apoptosis.
Collapse
Affiliation(s)
- Shunqin Fan
- Department of Anesthesiology, International Zhuang Medical Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning, People’s Republic of China
| | - Xijun Wang
- Department of Anesthesiology, International Zhuang Medical Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning, People’s Republic of China
| | - Ning Gao
- Department of Anesthesiology, International Zhuang Medical Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning, People’s Republic of China
| | - Songli Wei
- Department of Anesthesiology, International Zhuang Medical Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning, People’s Republic of China
| |
Collapse
|
12
|
Zhang Y, Lou H, Lu J, Tang X, Pang T, Lei S, Cong D, Wang Y, Sun L. Scalp acupuncture alleviates cerebral ischemic stroke-induced motor dysfunction in rats via regulating endoplasmic reticulum stress and ER-phagy. Sci Rep 2023; 13:10119. [PMID: 37344501 DOI: 10.1038/s41598-023-36147-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 05/30/2023] [Indexed: 06/23/2023] Open
Abstract
Cerebral ischemic stroke is a high-risk disease and imposes heavy burdens on patients in china. Acupuncture has been used for thousands of years to treat motor dysfunction, cognitive disorder and language barrier caused by cerebral ischemic stroke. Acupoint lines, vertex middle line and anterior oblique line of vertex temple, are always employed to treat cerebral ischemic stroke. However, the mechanism of the two acupoint lines in relieving cerebral ischemic stroke needs further exploration. In the present study, scalp acupuncture treatment alleviated the motor dysfunction, brain damage, and cell death induced by middle cerebral artery occlusion (MCAO) in rats. Proteomics analysis and ultrastructure observation indicated that endoplasmic reticulum and lysosomes might involve in the mechanism of the scalp acupuncture treatment in suppressing MCAO-triggered neural deficits. Effect of the scalp acupuncture treatment on ER stress was then investigated and found that the activation of ER stress mediators, including PERK, IRE1, and ATF6, was downregulated after the scalp acupuncture treatment. Co-localisation analysis of KDEL and CD63 showed that the engulfment of ER fragments by lysosomes was accelerated by the scalp acupuncture treatment. Moreover, expression of pro-apoptotic protein CHOP, phosphorylated-JNK, cleaved capases-3 and -9 also decreased after the scalp acupuncture. In conclusion, the present study showed that scalp acupuncture of vertex middle line and anterior oblique line of vertex temple may alleviate cerebral ischemic stroke by inhibiting ER stress-accelerated apoptosis.
Collapse
Affiliation(s)
- Yuxin Zhang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun, Jilin, People's Republic of China
| | - Huijuan Lou
- Massage Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Jing Lu
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun, Jilin, People's Republic of China
| | - Xiaolei Tang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun, Jilin, People's Republic of China
| | - Tingting Pang
- Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Siyuan Lei
- Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Deyu Cong
- Massage Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Yufeng Wang
- Massage Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China.
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China.
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun, Jilin, People's Republic of China.
| |
Collapse
|
13
|
Zhang X, Wan M, Min X, Chu G, Luo Y, Han Z, Li W, Xu R, Luo J, Li W, Yang Y, Ma Y, Jiao L, Wang T. Circular RNA as biomarkers for acute ischemic stroke: A systematic review and meta-analysis. CNS Neurosci Ther 2023. [PMID: 37186176 DOI: 10.1111/cns.14220] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Rapid diagnosis of acute ischemic stroke (AIS) patients is still challenging, and reliable biomarkers are needed. Noncoding RNAs are important for many physiological activities, among which circular RNAs (circRNAs) have been proven to be more tissue-specific and conservative. Many recent studies found the potential of circRNAs as biomarkers for many diseases, including cardiovascular diseases, cancers, and ischemic stroke. This systemic review and meta-analysis aimed to identify circRNAs as potential biomarkers for AIS. METHODS This study has been prospectively registered in PROSPERO (Registration No. 11 CRD42021288033). Published literature comparing circRNA expression profiles between AIS and non-AIS in human and animal models were retrieved from the articles published by January 2023 in major databases. We descriptively summarized the included studies, conducted meta-analysis under a random effects model, and did bioinformatics analysis including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. RESULTS Totally 23 studies were included, reporting 18 distinctive upregulated and 20 distinctive downregulated circRNAs. Diagnostic meta-analysis indicated discriminative ability of the circRNAs. Furthermore, circRNA HECTD1, circRNA DLGAP4, circRNA CDC14A, circRNA SCMH1, and circRNA TLK1 were reported with the same regulation trend in more than one study (animal studies included). GO and KEGG enrichment analyses indicated that the target genes of these five circRNAs were enriched in regulating cell proliferation, apoptosis, and oxidative stress. CONCLUSIONS This study demonstrates that circRNAs (circRNA HECTD1, circRNA DLGAP4, circRNA CDC14A, circRNA SCMH1, and circRNA TLK1) generally are promising as potential biomarkers for AIS. However, due to the limited number of studies, diagnostic value of individual circRNA could not be validated. More in vitro and in vivo functional studies are needed.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Mengyao Wan
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoli Min
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Guanglei Chu
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yumin Luo
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ziping Han
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, China
| | - Ran Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Jichang Luo
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Wenjing Li
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Yutong Yang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Yan Ma
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
- Department of Interventional Neuroradiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tao Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| |
Collapse
|
14
|
Mu JD, Ma LX, Zhang Z, Qian X, Zhang QY, Ma LH, Sun TY. The factors affecting neurogenesis after stroke and the role of acupuncture. Front Neurol 2023; 14:1082625. [PMID: 36741282 PMCID: PMC9895425 DOI: 10.3389/fneur.2023.1082625] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/03/2023] [Indexed: 01/22/2023] Open
Abstract
Stroke induces a state of neuroplasticity in the central nervous system, which can lead to neurogenesis phenomena such as axonal growth and synapse formation, thus affecting stroke outcomes. The brain has a limited ability to repair ischemic damage and requires a favorable microenvironment. Acupuncture is considered a feasible and effective neural regulation strategy to improve functional recovery following stroke via the benign modulation of neuroplasticity. Therefore, we summarized the current research progress on the key factors and signaling pathways affecting neurogenesis, and we also briefly reviewed the research progress of acupuncture to improve functional recovery after stroke by promoting neurogenesis. This study aims to provide new therapeutic perspectives and strategies for the recovery of motor function after stroke based on neurogenesis.
Collapse
Affiliation(s)
- Jie-Dan Mu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Liang-Xiao Ma
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China,The Key Unit of State Administration of Traditional Chines Medicine, Evaluation of Characteristic Acupuncture Therapy, Beijing, China,*Correspondence: Liang-Xiao Ma ✉
| | - Zhou Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Xu Qian
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Qin-Yong Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Ling-Hui Ma
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Tian-Yi Sun
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
15
|
Huo BB, Zheng MX, Hua XY, Wu JJ, Xing XX, Ma J, Fang M, Xu JG. Effect of aging on the cerebral metabolic mechanism of electroacupuncture treatment in rats with traumatic brain injury. Front Neurosci 2023; 17:1081515. [PMID: 37113153 PMCID: PMC10128857 DOI: 10.3389/fnins.2023.1081515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Objective Aging has great influence on the clinical treatment effect of cerebrovascular diseases, and evidence suggests that the effect may be associated with age-related brain plasticity. Electroacupuncture is an effective alternative treatment for traumatic brain injury (TBI). In the present study, we aimed to explore the effect of aging on the cerebral metabolic mechanism of electroacupuncture to provide new evidence for developing age-specific rehabilitation strategies. Methods Both aged (18 months) and young (8 weeks) rats with TBI were analyzed. Thirty-two aged rats were randomly divided into four groups: aged model, aged electroacupuncture, aged sham electroacupuncture, and aged control group. Similarly, 32 young rats were also divided into four groups: young model, young electroacupuncture, young sham electroacupuncture, and young control group. Electroacupuncture was applied to "Bai hui" (GV20) and "Qu chi" (LI11) for 8 weeks. CatWalk gait analysis was then performed at 3 days pre- and post-TBI, and at 1, 2, 4, and 8 weeks after intervention to observe motor function recovery. Positron emission computed tomography (PET/CT) was performed at 3 days pre- and post-TBI, and at 2, 4, and 8 weeks after intervention to detect cerebral metabolism. Results Gait analysis showed that electroacupuncture improved the forepaw mean intensity in aged rats after 8 weeks of intervention, but after 4 weeks of intervention in young rats. PET/CT revealed increased metabolism in the left (the injured ipsilateral hemisphere) sensorimotor brain areas of aged rats during the electroacupuncture intervention, and increased metabolism in the right (contralateral to injury hemisphere) sensorimotor brain areas of young rats. Results This study demonstrated that aged rats required a longer electroacupuncture intervention duration to improve motor function than that of young rats. The influence of aging on the cerebral metabolism of electroacupuncture treatment was mainly focused on a particular hemisphere.
Collapse
Affiliation(s)
- Bei-Bei Huo
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mou-Xiong Zheng
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- Department of Traumatology and Orthopedics, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- Department of Traumatology and Orthopedics, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Jia Wu
- Department of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiang-Xin Xing
- Department of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Ma
- Department of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Fang
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- *Correspondence: Jian-Guang Xu,
| |
Collapse
|
16
|
Zhang P, Wang Y, Xing X, Li H, Wang X, Zhang H, Wang X, Li X, Li Y, Wang Q. Electroacupuncture Treats Myocardial Infarction by Influencing the Regulation of Substance P in the Neurovascular to Modulate PGI2/TXA2 Metabolic Homeostasis via PI3K/AKT Pathway: A Bioinformatics-Based Multiomics and Experimental Study. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5367753. [PMID: 36238480 PMCID: PMC9553354 DOI: 10.1155/2022/5367753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 12/03/2022]
Abstract
Acute myocardial infarction (AMI) is the most severe form of coronary heart disease caused by ischemia and hypoxia. The study is aimed at investigating the role of neuropeptides and the mechanism of electroacupuncture (EA) in acute myocardial infarction (AMI) treatment. Compared with the normal population, a significant increase in substance P (SP) was observed in the serum of patients with AMI. PGI2 expression was increased in the SP-treated AMI mouse model, and TXA2 expression was decreased. And PI3K pathway-related genes, including Pik3ca, Akt, and Mtor, were upregulated in myocardial tissue of SP-treated AMI patients. Human cardiomyocyte cell lines (HCM) treated with SP increased mRNA and protein expression of PI3K pathway-related genes (Pik3ca, Pik3cb, Akt, and Mtor). Compared to MI control and EA-treated MI rat models, Myd88, MTOR, Akt1, Sp, and Irak1 were differentially expressed, consistent with in vivo and in vitro studies. EA treatment significantly enriched PI3K/AKT signaling pathway genes within MI-associated differentially expressed genes (DEGs) according to Kyoto Encyclopedia of Genes and Genomes (KEGG). Furthermore, it was confirmed by molecular docking analysis that PIK3CA, AKT1, and mTOR form stable dockings with neuropeptide SP. PI3K/AKT pathway activity may be affected directly or indirectly by EA via SP, which corrects the PGI2/TXA2 metabolic imbalance in AMI. MI treatment is now better understood as a result of this finding.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China
| | - Yanyan Wang
- Taian Traffic Hospital, Taian, 271000, China
| | - Xiaomin Xing
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China
| | - Hu Li
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China
| | - Xiaojing Wang
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China
| | - Hanlin Zhang
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China
| | - Xin Wang
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China
| | - Xiubin Li
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China
| | - Yanju Li
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China
| | - Qian Wang
- Postdoctoral Workstation, Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
| |
Collapse
|
17
|
Gao J, Liu J, Yao M, Zhang W, Yang B, Wang G. Panax notoginseng Saponins Stimulates Neurogenesis and Neurological Restoration After Microsphere-Induced Cerebral Embolism in Rats Partially Via mTOR Signaling. Front Pharmacol 2022; 13:889404. [PMID: 35770087 PMCID: PMC9236302 DOI: 10.3389/fphar.2022.889404] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022] Open
Abstract
P. Notoginseng Saponins (PNS), the main active component of herbal medicine Panax notoginseng, has been widely used to treat cerebrovascular diseases. It has been acknowledged that PNS exerted protection on nerve injuries induced by ischemic stroke, however, the long-term impacts of PNS on the restoration of neurological defects and neuroregeneration after stroke have not been thoroughly studied and the underlying molecular mechanism of stimulating neurogenesis is difficult to precisely clarify, much more in-depth researches are badly needed. In the present study, cerebral ischemia injury was induced by microsphere embolism (ME) in rats. After 14 days, PNS administration relieved cerebral ischemia injury as evidenced by alleviating neurological deficits and reducing hippocampal pathological damage. What’s more, PNS stimulated hippocampal neurogenesis by promoting cell proliferation, migration and differentiation activity and modulated synaptic plasticity. Increased number of BrdU/Nestin, BrdU/DCX and NeuroD1-positive cells and upregulated synapse-related GAP43, SYP, and PSD95 expression were observed in the hippocampus. We hypothesized that upregulation of brain-derived neurotrophic factor (BDNF) expression and activation of Akt/mTOR/p70S6K signaling after ME could partially underlie the neuroprotective effects of PNS against cerebral ischemia injury. Our findings offer some new viewpoints into the beneficial roles of PNS against ischemic stroke.
Collapse
Affiliation(s)
- Jiale Gao
- Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianxun Liu
- Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Jianxun Liu,
| | - Mingjiang Yao
- Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Zhang
- Department of Pathology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Yang
- Department of Pathology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guangrui Wang
- Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
18
|
Visualization and Analysis of the Mapping Knowledge Domain of Acupuncture and Central Nervous System Cell Apoptosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1751702. [PMID: 35463084 PMCID: PMC9023158 DOI: 10.1155/2022/1751702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/02/2022] [Indexed: 11/17/2022]
Abstract
Chinese acupuncture therapy has demonstrated good clinical effects on neurological diseases and is widely used internationally. In the past 20 years, an increasing number of researchers around the world have devoted themselves to the study of the effect and mechanism of acupuncture for the treatment of central nervous system cell apoptosis. To discover the current research status of acupuncture-induced antiapoptosis in the central nervous system, we used the method of scientometric research and data visualization software to visually analyse 155 articles. The findings are as follows. First, the antiapoptosis effects of acupuncture in the central nervous system have received increasing attention overseas and domestically. China and the United States have leading positions in this research field. Second, 5 stable and high-yielding research teams have been formed in the field of acupuncture-induced antiapoptosis. The main research directions of these teams are electroacupuncture (EA) pretreatment for the central nervous system cell apoptosis, acupuncture for antineuronal apoptosis in vascular dementia, EA regulation of related signalling pathways, EA regulation of nerve cell apoptosis and autophagy after stroke, and EA regulation of the MAPK signalling pathway. Researchers on teams with more extensive cooperation have more research results and better research continuity. Third, there are diversified research hotspots. The original research hotspots are still receiving attention, and new hotspots have emerged in recent years.
Collapse
|
19
|
Tuo QZ, Zhang ST, Lei P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med Res Rev 2021; 42:259-305. [PMID: 33957000 DOI: 10.1002/med.21817] [Citation(s) in RCA: 381] [Impact Index Per Article: 95.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 03/31/2021] [Accepted: 04/23/2021] [Indexed: 02/05/2023]
Abstract
Ischemic stroke caused by arterial occlusion is the most common type of stroke, which is among the most frequent causes of disability and death worldwide. Current treatment approaches involve achieving rapid reperfusion either pharmacologically or surgically, both of which are time-sensitive; moreover, blood flow recanalization often causes ischemia/reperfusion injury. However, even though neuroprotective intervention is urgently needed in the event of stroke, the exact mechanisms of neuronal death during ischemic stroke are still unclear, and consequently, the capacity for drug development has remained limited. Multiple cell death pathways are implicated in the pathogenesis of ischemic stroke. Here, we have reviewed these potential neuronal death pathways, including intrinsic and extrinsic apoptosis, necroptosis, autophagy, ferroptosis, parthanatos, phagoptosis, and pyroptosis. We have also reviewed the latest results of pharmacological studies on ischemic stroke and summarized emerging drug targets with a focus on clinical trials. These observations may help to further understand the pathological events in ischemic stroke and bridge the gap between basic and translational research to reveal novel neuroprotective interventions.
Collapse
Affiliation(s)
- Qing-Zhang Tuo
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Shu-Ting Zhang
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
20
|
Xu K, Zhang Y. Down-regulation of NAA10 mediates the neuroprotection induced by sevoflurane preconditioning via regulating ERK1/2 phosphorylation. Neurosci Lett 2021; 755:135897. [PMID: 33872734 DOI: 10.1016/j.neulet.2021.135897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/24/2021] [Accepted: 04/09/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE In the present study, the regulation mechanism of NAA10 (N-Alpha-Acetyltransferase 10) in sevoflurane preconditioning induced neuroprotective effect was explored. METHODS Firstly, si-NAA10 or negative control (NC) were constructed for cell transfection and injected into intracerebroventricular of rats. Oxygen-glucose deprivation/reperfusion (OGD/R) model in vitro and middle cerebral artery occlusion (MCAO) model in vivo were established to simulate cerebral I/R injury. QRT-PCR analysis and western blotting assay were performed to assess the expression of NAA10. TTC staining, neurological evaluation and cell counting kit-8 (CCK-8) were performed to evaluate the effect of NAA10 on sevoflurane induced neuroprotection. TUNEL assay and flow cytometry were used to detect the apoptosis in vivo and in vitro. RESULTS It showed that sevoflurane preconditioning increased the expression of NAA10 in MCAO rats. TTC staining, TUNEL assay and neurological evaluation results suggested that si-NAA10 attenuated the neuroprotective effect of sevoflurane preconditioning against MCAO. CCK-8 assay, flow cytometry, qRT-PCR and western blot results showed that NAA10 mediated sevoflurane preconditioning-induced neuroprotection in vitro. Furthermore, western blot results showed that down-regulation of NAA10 could reverse the attenuation of ERK1/2 phosphorylation induced by sevoflurane preconditioning in vivo or in vitro. CONCLUSION Down-regulation of NAA10 regulated ERK1/2 phosphorylation mediating sevoflurane preconditioning induced neuroprotective effects. The results revealed the regulatory mechanism of NAA10 in the neuroprotective effect of sevoflurane preconditioning.
Collapse
Affiliation(s)
- Kuibin Xu
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, China
| | - Ying Zhang
- Department of Anesthesiology, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, China.
| |
Collapse
|
21
|
Liu L, Zhang Q, Li M, Wang N, Li C, Song D, Shen X, Luo L, Fan Y, Xie H, Wu Y. Early Post-Stroke Electroacupuncture Promotes Motor Function Recovery in Post-Ischemic Rats by Increasing the Blood and Brain Irisin. Neuropsychiatr Dis Treat 2021; 17:695-702. [PMID: 33688192 PMCID: PMC7935344 DOI: 10.2147/ndt.s290148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Recent studies have shown that irisin, a novel peptide hormone derived from muscles, could be used as a potential therapeutic drug against ischemic stroke. Moreover, electroacupuncture (EA) is widely used in the treatment of ischemic stroke. Yet, whether irisin is involved in the EA neuroprotection remains unclear. The following study investigated the association between serum and peri-lesional cortex irisin and EA-induced post-stroke motor recovery in rats. METHODS The middle cerebral artery occlusion (MCAO) method was used to induce ischemic stroke in rats. Rats were randomly divided into two groups: a middle cerebral artery occlusion (MCAO) group (MCAO rats without treatment) and an electroacupuncture (EA) group (MCAO rats treated with EA). On the 3rd day post-stroke, infarct volume, behavioral deficits, surviving neurons, irisin protein expression in peri-infarction cortex, muscle tissue, and serum were evaluated to identify the neuroprotective of EA in acute ischemic stroke. RESULTS Compared with the MCAO group, the EA group showed better behavioral performance, a smaller cerebral infarct volume, more surviving neurons, and a significant increase in irisin expression in the peri-infarction cortex and serum (p<0.05). However, no difference in irisin expression in the muscle tissue was found between the MCAO group and the EA group (p>0.05). CONCLUSION EA promotes motor function recovery, reduces the volume of cerebral infarction, and alleviates neuronal death following ischemic stroke by enhancing the expression of irisin in both the blood and peri-lesional cortex.
Collapse
Affiliation(s)
- Li Liu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Qun Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Mingyue Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Nianhong Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Ce Li
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Di Song
- Department of Rehabilitation Medicine, The Affiliated Sixth People's Hospital of Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Xueyan Shen
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Lu Luo
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yunhui Fan
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Hongyu Xie
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
22
|
Cao BQ, Tan F, Zhan J, Lai PH. Mechanism underlying treatment of ischemic stroke using acupuncture: transmission and regulation. Neural Regen Res 2021; 16:944-954. [PMID: 33229734 PMCID: PMC8178780 DOI: 10.4103/1673-5374.297061] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The inflammatory response after cerebral ischemia/reperfusion is an important cause of neurological damage and repair. After cerebral ischemia/reperfusion, microglia are activated, and a large number of circulating inflammatory cells infiltrate the affected area. This leads to the secretion of inflammatory mediators and an inflammatory cascade that eventually causes secondary brain damage, including neuron necrosis, blood-brain barrier destruction, cerebral edema, and an oxidative stress response. Activation of inflammatory signaling pathways plays a key role in the pathological process of ischemic stroke. Increasing evidence suggests that acupuncture can reduce the inflammatory response after cerebral ischemia/reperfusion and promote repair of the injured nervous system. Acupuncture can not only inhibit the activation and infiltration of inflammatory cells, but can also regulate the expression of inflammation-related cytokines, balance the effects of pro-inflammatory and anti-inflammatory factors, and interfere with inflammatory signaling pathways. Therefore, it is important to study the transmission and regulatory mechanism of inflammatory signaling pathways after acupuncture treatment for cerebral ischemia/reperfusion injury to provide a theoretical basis for clinical treatment of this type of injury using acupuncture. Our review summarizes the overall conditions of inflammatory cells, mediators, and pathways after cerebral ischemia/reperfusion, and discusses the possible synergistic intervention of acupuncture in the inflammatory signaling pathway network to provide a foundation to explore the multiple molecular mechanisms by which acupuncture promotes nerve function restoration.
Collapse
Affiliation(s)
- Bing-Qian Cao
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong Province, China
| | - Feng Tan
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong Province, China
| | - Jie Zhan
- Department of Rehabilitation, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Peng-Hui Lai
- Department of Rehabilitation, Nan'ao People's Hospital Dapeng New District, Shenzhen, Guangdong Province, China
| |
Collapse
|
23
|
Zhang D, Jin W, Liu H, Liang T, Peng Y, Zhang J, Zhang Y. ENT1 inhibition attenuates apoptosis by activation of cAMP/pCREB/Bcl2 pathway after MCAO in rats. Exp Neurol 2020; 331:113362. [PMID: 32445645 DOI: 10.1016/j.expneurol.2020.113362] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND PURPOSE The present study was designed to investigate the potential role and the mechanism of equilibrative nucleoside transporter 1 (ENT1) on neuronal apoptosis and neurological deficits after middle cerebral artery occlusion (MCAO) in rats. METHODS One hundred and thirty-four male Sprague-Dawley rats were subjected to two hours of MCAO followed by reperfusion. The time course of the expression level of ENT1 and phosphorylation of CREB were detected by western blot and immunofluorescence staining. Another set of animals were administrated with NBTI, the ENT1 inhibitor, by daily intraperitoneal injection starting at 0.5 h post-MCAO, infarction volume and neurological deficits were measured both at 24 h and 72 h post MCAO. We further explored the neuroprotection machenism by using H89, cAMP dependent protein kinase inhibitor, the expression of Bcl-2, Bax, phosphorylated CREB and Cleaved caspase-3 were quantified by Western blot, neuronal apoptosis were analyed by TUNEL staining. RESULTS The endogenous expression of ENT1 were significantly increased and peaked at 12 h after MCAO. High-dose of NBTI (15 mg/kg) reduced brain infarction volume and improved neurologic deficits both at 24 h and 72 h post MCAO. Moreover, NBTI significantly increased the level of CREB phosphorylation and extracellular adenosine concentration, and decreased the neuronal apoptosis 24 h after MCAO. NBTI treatment reduced the expression of Bax and cleaved caspase-3, while up-regulated Bcl-2 compared with vehicle group. These effects were abolished by H89 pretreatment. CONCLUSIONS ENT1 inhibition prevented neuronal apoptosis and improves neurological deficits through cAMP/PKA/CREB/Bcl-2 signaling pathway after MCAO in rats. ENT1 might be an effective target in the treatment strategy for ischemic stroke.
Collapse
Affiliation(s)
- Dongyun Zhang
- Department of rehabilitation medicine, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Department of neurology, Affiliated Hospital, Zunyi medical University, Zunyi, China
| | - Weidong Jin
- Department of Laboratory Medicine, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Hongliang Liu
- Department of rehabilitation medicine, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Tao Liang
- Department of neurology, Affiliated Hospital, Zunyi medical University, Zunyi, China
| | - Yan Peng
- Department of neurology, Affiliated Hospital, Zunyi medical University, Zunyi, China
| | - Jun Zhang
- Department of neurology, Affiliated Hospital, Zunyi medical University, Zunyi, China.
| | - Yang Zhang
- Department of Laboratory Medicine, Chongqing University Cancer Hospital, Chongqing, China.
| |
Collapse
|
24
|
Effect of Acupuncture on Oxidative Stress Induced by Cerebral Ischemia-Reperfusion Injury. Antioxidants (Basel) 2020; 9:antiox9030248. [PMID: 32204376 PMCID: PMC7139408 DOI: 10.3390/antiox9030248] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
In this article, we review how acupuncture regulates oxidative stress to prevent ischemia–reperfusion injury. We electronically searched databases, including PubMed, Clinical Key and the Cochrane Library, from their inception to November 2019 by using the following medical subject headings and keywords: acupuncture, ischemia-reperfusion injury, oxidative stress, reactive oxygen species, and antioxidants. We concluded that acupuncture is effective in treating oxidation after ischemia-reperfusion injury. In addition to increasing the activity of antioxidant enzymes and downregulating the generation of reactive oxygen species (ROS), acupuncture also repairs the DNA, lipids, and proteins attacked by ROS and mediates downstream of the ROS pathway to apoptosis.
Collapse
|
25
|
Kamarudin SN, Iezhitsa I, Tripathy M, Alyautdin R, Ismail NM. Neuroprotective effect of poly(lactic-co-glycolic acid) nanoparticle-bound brain-derived neurotrophic factor in a permanent middle cerebral artery occlusion model of ischemia in rats. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Shen WS, Li CF, Zhou ZS, Zhai NN, Pan LP. MicroRNA-204 silencing relieves pain of cervical spondylotic radiculopathy by targeting GDNF. Gene Ther 2019; 27:254-265. [PMID: 31819204 DOI: 10.1038/s41434-019-0114-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 11/04/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022]
Abstract
Cervical spondylosis may cause chronic neck pain, radiculopathy and/or myelopathy, and consequently results in severe brain damage. Glial cell line-derived neurotrophic factor (GDNF) is a potent neurotrophic factor for motoneurons. Accumulating microRNAs (miRNAs) have highlighted as critical regulators of GDNF signaling in the mediation of neuroinflammation and neuropathic pain. Hence, we performed this study to investigate the potential role of miR-204 in the neuropathic pain of cervical spondylotic radiculopathy (CSR) by targeting GDNF. A rat model of spinal cord compression (SCC) was established to stimulate a pathologic lesion. RT-qPCR and western blot assays characterized the downregulation of GDNF and the upregulation of miR-204 in spinal cord tissues of rats under the conditions of SCC. Moreover, miR-204 could directly target GDNF, as evidenced by dual-luciferase reporter gene assay. In order to elucidate the roles of miR-204 and GDNF in SCC-induced neuropathic pain, miR-204 sponge, GDNF, or shRNA against GDNF was introduced to the rats, followed by measurements for SCC-induced neuroinflammation and neuropathic pain. GDNF upregulation or miR-204 silencing was identified to reduce the spontaneous pain score, gait scores and cell apoptosis. Furthermore, GDNF upregulation or miR-204 silencing resulted in elevated amplitude of sensory-evoked potentials (SEPs), number of motoneurons, release of pro-inflammatory factors, TNF-α, and IL-1β in addition to an increase in the anti-inflammatory factor BDNF. Taken together, upregulation of GDNF induced by miR-204 silencing confers protection against SCC-induced pain in rat models, suggesting a potential therapeutic target for CSR treatment.
Collapse
Affiliation(s)
- Wen-Sheng Shen
- Department of Anesthesiology, Shaoxing Paojiang Hospital, Shaoxing, 312000, PR China.
| | - Cun-Feng Li
- Department of Anesthesiology, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing, 312000, PR China
| | - Zhi-Shui Zhou
- Department of Anesthesiology, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing, 312000, PR China
| | - Nan-Nan Zhai
- Department of Anesthesiology, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing, 312000, PR China
| | - Lu-Ping Pan
- Department of Anesthesiology, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing, 312000, PR China
| |
Collapse
|
27
|
Shen GH, Song Y, Yao Y, Sun QF, Jing B, Wu J, Li SY, Liu SQ, Li HC, Yuan C, Liu GY, Li JB, Liu XY, Wang HY. Downregulation of DLGAP1-Antisense RNA 1 Alleviates Vascular Endothelial Cell Injury Via Activation of the Phosphoinositide 3-kinase/Akt Pathway Results from an Acute Limb Ischemia Rat Model. Eur J Vasc Endovasc Surg 2019; 59:98-107. [PMID: 31744785 DOI: 10.1016/j.ejvs.2019.06.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE This study aimed to investigate the effect of long non-coding RNA (lncRNA) DLGAP1 antisense RNA 1 (DLGAP1-AS1) on vascular endothelial cell (VEC) injury via the phosphoinositide 3-kinase (PI3K)/Akt pathway in rat models of acute lower limb ischaemia-reperfusion (I/R). METHODS Differentially expressed lncRNAs related to I/R were screened using the gene expression omnibus database. Acute lower limb I/R models were induced in male Wistar rats, in which the regulatory mechanisms of DLGAP1-AS1 silencing were analysed after the treatment of small interfering RNA (siRNA) against DLGAP1-AS1 or an inhibitor of the PI3K/Akt pathway. The relationship between DLGAP1-AS1 and the PI3K/Akt pathway was analysed. The levels of tumour necrosis factor (TNF)-α and vascular cell adhesion molecule-1 (VCAM-1), as well as malondialdehyde (MDA) concentration and creatine kinase (CK) activity, were measured. The number of circulating endothelial cells (CECs) and apoptosis of VECs were identified. RESULTS Microarray based analysis indicated that DLGAP1-AS1 was highly expressed in I/R, which was further confirmed by detection of expression in rat models of acute lower limb I/R. Notably, the treatment of siRNA against DLGAP1-AS1 led to the activation of the PI3K/Akt pathway. In response to siRNA against DLGAP1-AS1, the levels of TNF-α and VCAM-1 were decreased, and MDA concentration and CK activity was downregulated. Reduced CEC numbers and suppressed VEC apoptosis were also observed. CONCLUSION DLGAP1-AS1 silencing could further suppress the oxidative stress, exert an anti-apoptosis effect, and reduce inflammatory reaction, whereby VEC injury is alleviated by activation of the PI3K/Akt pathway in rats with acute lower limb I/R.
Collapse
Affiliation(s)
- Guang-Hui Shen
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Ye Song
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Ye Yao
- Department of Cardiac Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Qing-Feng Sun
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Bao Jing
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Jia Wu
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Shi-Yong Li
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Si-Qi Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Hao-Cheng Li
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Chao Yuan
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Gao-Yan Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Jing-Bo Li
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Xin-Yu Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Hai-Yang Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China.
| |
Collapse
|
28
|
Sun J, Ashley J, Kellawan JM. Can Acupuncture Treatment of Hypertension Improve Brain Health? A Mini Review. Front Aging Neurosci 2019; 11:240. [PMID: 31572163 PMCID: PMC6753179 DOI: 10.3389/fnagi.2019.00240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/19/2019] [Indexed: 12/29/2022] Open
Abstract
With age, cerebrovascular and neurodegenerative diseases (e.g., dementia and Alzheimer’s) are some of the leading causes of death in the United States. Related to these outcomes is the increased prevalence of hypertension, which independently increases the development of cerebrovascular and neurodegenerative diseases. While a direct mechanistic link between hypertension and poor brain health is unknown, many hypothesize that the etiology stems from poor blood pressure (BP) and cerebrovascular regulation. This dysfunction fosters hypoperfusion of the brain, causing stress to the tissue through a nutrient mismatch, subtly damaging the brain over many years. Current Western medical treatment relies on pharmacological treatment (mainly beta-blockers, angiotensin-converting enzyme inhibitors, or a combination of the two). However, Western treatments have not been successful in mitigating brain health outcomes and are burdened with unwanted side effects and non-adherence issues. Alternatively, traditional East Asia medicine has used acupuncture as a treatment for hypertension and may offer a promising approach in response to the limitations of conventional therapy. While detailed clinical and mechanistic experimental evidence is lacking, acupuncture has been observed to reduce BP and improve endothelial function in hypertensive adults. Further, acupuncture has been shown to have specific cerebrovascular effects, increasing cerebrovascular reactivity in healthy adults, highlighting possible neuroprotective properties. Therefore, our review is aimed at evaluating acupuncture as a treatment for hypertension and the potential impact on brain health. We will interrogate the current literature as well as discuss the proposed neural and vascular mechanisms by which acupuncture acts.
Collapse
Affiliation(s)
- Jongjoo Sun
- Human Circulation Research Laboratory, Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
| | - John Ashley
- Human Circulation Research Laboratory, Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
| | - J Mikhail Kellawan
- Human Circulation Research Laboratory, Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
29
|
Signal Transduction Pathways of Acupuncture for Treating Some Nervous System Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2909632. [PMID: 31379957 PMCID: PMC6657648 DOI: 10.1155/2019/2909632] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/23/2019] [Indexed: 12/14/2022]
Abstract
In this article, we review signal transduction pathways through which acupuncture treats nervous system diseases. We electronically searched the databases, including PubMed, MEDLINE, clinical Key, the Cochrane Library, and the China National Knowledge Infrastructure from their inception to December 2018 using the following MeSH headings and keywords alone or in varied combination: acupuncture, molecular, signal transduction, genetic, cerebral ischemic injury, cerebral hemorrhagic injury, stroke, epilepsy, seizure, depression, Alzheimer's disease, dementia, vascular dementia, and Parkinson's disease. Acupuncture treats nervous system diseases by increasing the brain-derived neurotrophic factor level and involves multiple signal pathways, including p38 MAPKs, Raf/MAPK/ERK 1/2, TLR4/ERK, PI3K/AKT, AC/cAMP/PKA, ASK1-JNK/p38, and downstream CREB, JNK, m-TOR, NF-κB, and Bcl-2/Bax balance. Acupuncture affects synaptic plasticity, causes an increase in neurotrophic factors, and results in neuroprotection, cell proliferation, antiapoptosis, antioxidant activity, anti-inflammation, and maintenance of the blood-brain barrier.
Collapse
|
30
|
Timing of Acupuncture during LTP-Like Plasticity Induced by Paired-Associative Stimulation. Behav Neurol 2019; 2019:9278270. [PMID: 31093303 PMCID: PMC6476134 DOI: 10.1155/2019/9278270] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/02/2018] [Accepted: 12/05/2018] [Indexed: 01/24/2023] Open
Abstract
The aim of this study was to investigate the time-dependent effects of acupuncture on the excitability and long-term potentiation- (LTP-) like plasticity induced by paired-associative stimulation (PAS) over the primary motor cortex (M1). The present examination is the first to report the influence of acupuncture on the motor-evoked potential (MEP) throughout the treatment process, including baseline (before acupuncture), the needle in situ, and the needle removal. Subsequently, the LTP-like plasticity induced by paired-associative stimulation (PAS) was explored, which consisted of 200 pairs of electrical stimulation of the ulnar nerve at the first dorsal interosseous (FDI), followed by transcranial magnetic stimulation (TMS) over the bilateral M1. TMS-MEP amplitudes over the bilateral M1 in resting conditions were measured throughout the whole treatment process. Finally, we confirmed the behavioral measurements. Significant changes were found in both the contralateral and ipsilateral acupuncture sizes as compared to the baseline values. Our results indicated that acupuncture modulated the excitability of M1, and the synaptic plasticity was time-dependent. We concluded that acupuncture should be combined with rehabilitation techniques to improve the motor function in stroke patients. Therefore, we put forward the combined application of the acupuncture timing and rehabilitation for higher therapeutic effectiveness. This trial was registered in the Chinese Clinical Trial Registry (registration no. ChiCTR-IPR-1900020515).
Collapse
|
31
|
Connectivity map identifies luteolin as a treatment option of ischemic stroke by inhibiting MMP9 and activation of the PI3K/Akt signaling pathway. Exp Mol Med 2019; 51:1-11. [PMID: 30911000 PMCID: PMC6434019 DOI: 10.1038/s12276-019-0229-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/25/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022] Open
Abstract
This study aimed to explore potential new drugs in the treatment of ischemic stroke by Connectivity Map (CMap) and to determine the role of luteolin on ischemic stroke according to its effects on matrix metalloproteinase-9 (MMP9) and PI3K/Akt signaling pathway. Based on published gene expression data, differentially expressed genes were obtained by microarray analysis. Potential compounds for ischemic stroke therapy were obtained by CMap analysis. Cytoscape and gene set enrichment analysis (GSEA) were used to discover signaling pathways connected to ischemic stroke. Cell apoptosis and viability were, respectively, evaluated by flow cytometry and an MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assay. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis were used to test the expression of MMP9 and the PI3K/Akt signaling pathway-related proteins in human brain microvascular endothelial cells (HBMECs) and tissues. Additionally, the infarct volume after middle cerebral artery occlusion (MCAO) was determined by a TTC (2,3,5-triphenyltetrazolium chloride) assay. The microarray and CMap analyses identified luteolin as a promising compound for future therapies for ischemic stroke. Cytoscape and GSEA showed that the PI3K/Akt signaling pathway was crucial in ischemic stroke. Cell experiments revealed that luteolin enhanced cell viability and downregulated apoptosis via inhibiting MMP9 and activating the PI3K/Akt signaling pathway. Experiments performed in vivo also demonstrated that luteolin reduced the infarct volume. These results suggest that luteolin has potential in the treatment of ischemic stroke through inhibiting MMP9 and activating PI3K/Akt signaling pathway.
Collapse
|
32
|
Xie G, Song C, Lin X, Yang M, Fan X, Liu W, Tao J, Chen L, Huang J. Electroacupuncture Regulates Hippocampal Synaptic Plasticity via Inhibiting Janus-Activated Kinase 2/Signal Transducer and Activator of Transcription 3 Signaling in Cerebral Ischemic Rats. J Stroke Cerebrovasc Dis 2019; 28:792-799. [DOI: 10.1016/j.jstrokecerebrovasdis.2018.11.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/18/2018] [Accepted: 11/22/2018] [Indexed: 01/16/2023] Open
|
33
|
Xing Y, Zhang M, Li WB, Dong F, Zhang F. Mechanisms Involved in the Neuroprotection of Electroacupuncture Therapy for Ischemic Stroke. Front Neurosci 2018; 12:929. [PMID: 30618558 PMCID: PMC6297779 DOI: 10.3389/fnins.2018.00929] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022] Open
Abstract
Stroke is one of the main causes of death all over the world. As the combination of acupuncture and electric stimulation, electroacupuncutre is a safe and effective therapy, which is commonly applied in ischemic stroke therapy in both experimental studies and clinical settings. The review was performed via searching for related articles in the databases of OVID, PUBMED, and ISI Web of Science from their respective inceptions to May 2018. In this review, we summarized the mechanism of EA for ischemic stroke via a series of factors, consisting of apoptosis related-factors, inflammatory factors, autophagy-related factors, growth factors, transcriptional factors, cannabinoid CB1 receptors, and other factors. In summary, EA stimulation may effectively alleviate ischemic brain injury via a series of signal pathways and various other factors.
Collapse
Affiliation(s)
- Ying Xing
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Min Zhang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Wen-Bin Li
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China.,Hebei Provincial Orthopedic Biomechanics Key Laboratory, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
34
|
Xiao LY, Wang XR, Yang Y, Yang JW, Cao Y, Ma SM, Li TR, Liu CZ. Applications of Acupuncture Therapy in Modulating Plasticity of Central Nervous System. Neuromodulation 2018; 21:762-776. [PMID: 29111577 DOI: 10.1111/ner.12724] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Acupuncture is widely applied for treatment of various neurological disorders. This manuscript will review the preclinical evidence of acupuncture in mediating neural plasticity, the mechanisms involved. MATERIALS AND METHODS We searched acupuncture, plasticity, and other potential related words at the following sites: PubMed, EMBASE, Cochrane Library, Chinese National Knowledge Infrastructure (CNKI), and VIP information data base. The following keywords were used: acupuncture, electroacupuncture, plasticity, neural plasticity, neuroplasticity, neurogenesis, neuroblast, stem cell, progenitor cell, BrdU, synapse, synapse structure, synaptogenesis, axon, axon regeneration, synaptic plasticity, LTP, LTD, neurotrophin, neurotrophic factor, BDNF, GDNF, VEGF, bFGF, EGF, NT-3, NT-4, NT-5, p75NTR, neurotransmitter, acetylcholine, norepinephrine, noradrenaline, dopamine, monamine. We assessed the effects of acupuncture on plasticity under pathological conditions in this review. RESULTS Relevant references were reviewed and presented to reflect the effects of acupuncture on neural plasticity. The acquired literatures mainly focused on neurogenesis, alterations of synapses, neurotrophins (NTs), and neurotranimitters. Acupuncture methods mentioned in this article include manual acupuncture and electroacupuncture. CONCLUSIONS The cumulative evidences demonstrated that acupuncture could induce neural plasticity in rodents exposed to cerebral ischemia. Neural plasticity mediated by acupuncture in other neural disorders, such as Alzheimer's disease, Parkinson's disease, and depression, were also investigated and there is evidence of positive role of acupuncture induced plasticity in these disorders as well. Mediation of neural plasticity by acupuncture is likely associated with its modulation on NTs and neurotransmitters. The exact mechanisms underlying acupuncture's effects on neural plasticity remain to be elucidated. Neural plasticity may be the potential bridge between acupuncture and the treatment of various neurological diseases.
Collapse
Affiliation(s)
- Ling-Yong Xiao
- Beijing University of Chinese Medicine, Beijing, China
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, China
| | - Xue-Rui Wang
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, China
| | - Ye Yang
- Beijing University of Chinese Medicine, Beijing, China
| | - Jing-Wen Yang
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, China
| | - Yan Cao
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, China
| | - Si-Ming Ma
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, China
| | - Tian-Ran Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Cun-Zhi Liu
- Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
35
|
Xing Y, Wang MM, Feng YS, Dong F, Zhang F. Possible Involvement of PTEN Signaling Pathway in the Anti-apoptotic Effect of Electroacupuncture Following Ischemic Stroke in Rats. Cell Mol Neurobiol 2018; 38:1453-1463. [PMID: 30136167 PMCID: PMC11469873 DOI: 10.1007/s10571-018-0615-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/20/2018] [Indexed: 12/16/2022]
Abstract
As a traditional therapeutic method, electroacupuncture (EA) has been adopted as an alternative therapy for stroke recovery. Here, we aimed to evaluate whether EA therapy at points of Quchi (LI11) and Zusanli (ST36) alleviated neuronal apoptosis by PTEN signaling pathway after ischemic stroke. A total of 72 male Sprague-Dawley rats were randomized into three groups, including sham group, MCAO group, and EA group. EA was initiated after 24 h of reperfusion for 3 consecutive days. At 72 h following ischemia/reperfusion, neurological deficits, infarct volumes, and TUNEL staining were evaluated and the PTEN pathway-related proteins together with apoptosis-related proteins were detected. The results indicated that EA treatment significantly decreased cerebral infarct volume, neurological deficits and alleviated proportion of apoptotic cells in cerebral ischemic rats. Furthermore, EA significantly up-regulated the phosphorylation levels of PDK1, Akt(Thr308), GSK-3β, and down-regulated the phosphorylation levels of PTEN, Akt(Ser473) in the peri-infarct cortex. EA treatment significantly reduced the up-regulation of caspase-3, cleaved-caspase-3, Bim, and reversed the reduction of Bcl-2 induced by the ischemic stroke. These findings suggest that EA treatment at points of Quchi (LI11)- and Zusanli (ST36)-induced neuroprotection might involve inhibition of apoptosis via PTEN pathway.
Collapse
Affiliation(s)
- Ying Xing
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, People's Republic of China
| | - Man-Man Wang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, People's Republic of China
| | - Ya-Shuo Feng
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, People's Republic of China
| | - Fang Dong
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, People's Republic of China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China.
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, People's Republic of China.
| |
Collapse
|
36
|
Cai W, Shen WD. Anti-Apoptotic Mechanisms of Acupuncture in Neurological Diseases: A Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:515-535. [PMID: 29595076 DOI: 10.1142/s0192415x1850026x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Apoptosis, known as programmed cell death, plays a significant role in the pathogenesis of neurological diseases. Most of these diseases can be obviously alleviated by means of acupuncture treatment. Current research studies have shown that the efficacy of acupuncture to these medical conditions is closely associated with the anti-apoptotic potentials. Mainly based on the acupuncture's anti-apoptotic efficacy in prevalent neurological disorders, including cerebral ischemia-reperfusion injury, Alzheimer's disease, depression or stress related-modes, spinal cord injuries, etc., this review comes to a conclusion that the anti-apoptotic effect of acupuncture treatment for neurological diseases, evidently reflected through Bcl-2, Bax or caspase expression change, results from regulating mitochondrial or autophagic dysfunction as well as reducing oxidative stress and inflammation. The possible mechanisms of acupuncture's anti-apoptotic effect are associated with a series of downstream signaling pathways and the up-regulated expression of neurotrophic factors. It is of great importance to illuminate the exact mechanisms of acupuncture treatment for neurological dysfunctions.
Collapse
Affiliation(s)
- Wa Cai
- 1 Department of Acupuncture, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Wei-Dong Shen
- 1 Department of Acupuncture, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| |
Collapse
|
37
|
Combination of Constraint-Induced Movement Therapy with Electroacupuncture Improves Functional Recovery following Neonatal Hypoxic-Ischemic Brain Injury in Rats. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8638294. [PMID: 29568769 PMCID: PMC5820667 DOI: 10.1155/2018/8638294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/09/2018] [Indexed: 12/16/2022]
Abstract
Aim Neonatal hypoxic-ischemia (HI) due to insufficient oxygen supply and blood flow during the prenatal and postnatal periods can cause cerebral palsy, a serious developmental condition. The purpose of this study was to investigate the efficacy of combining constraint-induced movement therapy (CIMT) and electroacupuncture to treat rat neonatal HI brain injury. Methods The left common carotid arteries of postnatal day 7 rats were ligated to induce HI brain injury, and the neonates were kept in a hypoxia chamber containing 8% oxygen for 2 hrs. Electroacupuncture at Baihui (GV 20) and Zusanli (ST 36) was performed concurrently with CIMT 3 weeks after HI induction for 4 weeks. Results Motor asymmetry after HI was significantly improved in the CIMT and electroacupuncture combination group, but HI lesion size was not improved. The combination of CIMT and electroacupuncture after HI injury increases NeuN and decreases GFAP levels in the cerebral cortex, suggesting that this combination treatment inversely regulates neurons and astrocytes. In addition, the combination treatment group reduced the level of cleaved caspase-3, a crucial mediator of apoptosis, in the cortex. Conclusions Our findings indicate that a combination of CIMT and electroacupuncture is an effective method to treat hemiplegia due to neonatal HI brain injury.
Collapse
|
38
|
Abstract
Acupuncture is potentially beneficial for post-stroke rehabilitation and is considered a promising preventive strategy for stroke. Electroacupuncture pretreatment or treatment after ischemic stroke by using appropriate electroacupuncture parameters generates neuroprotective and neuroregenerative effects that increase cerebral blood flow, regulate oxidative stress, attenuate glutamate excitotoxicity, maintain blood-brain barrier integrity, inhibit apoptosis, increase growth factor production, and induce cerebral ischemic tolerance.
Collapse
Affiliation(s)
- Qwang-Yuen Chang
- Department of Family Medicine, Lin Shin Hospital, Taichung, Taiwan, China
| | - Yi-Wen Lin
- Research Center for Chinese Medicine and Acupuncture; Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, Taiwan, China
| | - Ching-Liang Hsieh
- Research Center for Chinese Medicine and Acupuncture; Graduate Institute of Acupuncture Science, College of Chinese Medicine; Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University; Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan, China
| |
Collapse
|
39
|
Mechanisms of Acupuncture Therapy in Ischemic Stroke Rehabilitation: A Literature Review of Basic Studies. Int J Mol Sci 2017; 18:ijms18112270. [PMID: 29143805 PMCID: PMC5713240 DOI: 10.3390/ijms18112270] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/08/2017] [Accepted: 10/24/2017] [Indexed: 12/20/2022] Open
Abstract
Acupuncture is recommended by the World Health Organization (WHO) as an alternative and complementary strategy for stroke treatment and for improving stroke care. Clinical trial and meta-analysis findings have demonstrated the efficacy of acupuncture in improving balance function, reducing spasticity, and increasing muscle strength and general well-being post-stroke. The mechanisms underlying the beneficial effects of acupuncture in stroke rehabilitation remain unclear. The aim of this study was to conduct a literature review, summarize the current known mechanisms in ischemic stroke rehabilitation through acupuncture and electroacupuncture (EA) therapy, and to detail the frequently used acupoints implicated in these effects. The evidence in this review indicates that five major different mechanisms are involved in the beneficial effects of acupuncture/EA on ischemic stroke rehabilitation: (1) Promotion of neurogenesis and cell proliferation in the central nervous system (CNS); (2) Regulation of cerebral blood flow in the ischemic area; (3) Anti-apoptosis in the ischemic area; (4) Regulation of neurochemicals; and, (5) Improvement of impaired long-term potentiation (LTP) and memory after stroke. The most frequently used acupoints in basic studies include Baihui (GV20), Zusanli (ST36), Quchi (LI11), Shuigou (GV26), Dazhui (GV14), and Hegu (LI4). Our findings show that acupuncture exerts a beneficial effect on ischemic stroke through modulation of different mechanisms originating in the CNS.
Collapse
|
40
|
Wu J, Lin B, Liu W, Huang J, Shang G, Lin Y, Wang L, Chen L, Tao J. Roles of electro-acupuncture in glucose metabolism as assessed by 18F-FDG/PET imaging and AMPKα phosphorylation in rats with ischemic stroke. Int J Mol Med 2017; 40:875-882. [PMID: 28713979 DOI: 10.3892/ijmm.2017.3057] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 06/27/2017] [Indexed: 11/06/2022] Open
Abstract
Targeted energy metabolism balance contributes to neural survival during ischemic stroke. Herein, we tested the hypothesis that electro‑acupuncture (EA) can enhance cerebral glucose metabolism assessed by 18F‑fluorodeoxyglucose/positron emission tomography (18F‑FDG/PET) imaging to prevent propagation of tissue damage and improve neurological outcome in rats subjected to ischemia and reperfusion injury. Rats underwent middle cerebral artery occlusion (MCAO) and received EA treatment at the LI11 and ST36 acupoints or non‑acupoint treatment once a day for 7 days. After EA treatment, a significant reduction in the infarct volume was determined by T2‑weighted imaging, accompanied by the functional recovery in CatWalk and Rota-rod performance. Moreover, EA promoted higher glucose metabolism in the caudate putamen (CPu), motor cortex (MCTX), somatosensory cortex (SCTX) regions as assessed by animal 18F‑FDG/PET imaging, suggesting that three‑brain regional neural activity was enhanced by EA. In addition, the AMP‑activated protein kinase α (AMPKα) in the CPu, MCTX and SCTX regions was phosphorylated at threonine 172 (Thr172) after ischemic injury; however, phosphorylation of AMPK was further increased by EA. These results indicate that EA could promote AMPKα phosphorylation of the CPu, MCTX and SCTX regions to enhance neural activity and motor functional recovery after ischemic stroke.
Collapse
Affiliation(s)
- Jingsong Wu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Bingbing Lin
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian 350001, P.R. China
| | - Weilin Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jia Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Guanhao Shang
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian 350001, P.R. China
| | - Yunjiao Lin
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian 350001, P.R. China
| | - Lulu Wang
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian 350001, P.R. China
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
41
|
Huang S, Huang D, Zhao J, Chen L. Electroacupuncture promotes axonal regeneration in rats with focal cerebral ischemia through the downregulation of Nogo-A/NgR/RhoA/ROCK signaling. Exp Ther Med 2017; 14:905-912. [PMID: 28810542 PMCID: PMC5526169 DOI: 10.3892/etm.2017.4621] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 01/06/2017] [Indexed: 12/30/2022] Open
Abstract
The purpose of the present study was to evaluate the effect of electroacupuncture (EA) on the axonal regeneration environment following cerebral ischemia injury and to investigate whether it was associated with Nogo-A/Nogo receptor (NgR)/RhoA/Rho-associated protein kinase (ROCK) signaling. Using a rat model of focal cerebral ischemia, the effects of EA at the Quchi (LI11) and Zusanli (ST36) acupoints on axonal growth inhibitory protein and axonal growth factors were assessed and the underlying molecular mechanisms were investigated. It was found that EA at the Quchi and Zusanli acupoints significantly improved neurological deficit scores following ischemia (P<0.05), and reduced the cerebral infarct volume. Moreover, it was demonstrated that crucial signaling molecules in the Nogo-A signaling pathway were regulated by EA. These results suggest that EA provides a less inhibitory environment for axonal regeneration following cerebral ischemia through inhibition of Nogo-A/NgR/RhoA/ROCK signaling.
Collapse
Affiliation(s)
- Saie Huang
- Department of Neurological Rehabilitation, Fujian University of Traditional Chinese Medicine Subsidiary Rehabilitation Hospital, Fuzhou, Fujian 350003, P.R. China
| | - Danxia Huang
- Department of Clinical Medicine, Quanzhou Medical College, Quzhou, Fujian 362000, P.R. China
| | - Jiapei Zhao
- Fujian Provincial Rehabilitation Industrial Institution, Department of Rehabilitation Medicine, College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Lidian Chen
- Department of Neurological Rehabilitation, Fujian University of Traditional Chinese Medicine Subsidiary Rehabilitation Hospital, Fuzhou, Fujian 350003, P.R. China
| |
Collapse
|
42
|
Mechanisms of Acupuncture Therapy for Cerebral Ischemia: an Evidence-Based Review of Clinical and Animal Studies on Cerebral Ischemia. J Neuroimmune Pharmacol 2017; 12:575-592. [DOI: 10.1007/s11481-017-9747-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 04/13/2017] [Indexed: 12/20/2022]
|
43
|
Ma R, Yuan B, Du J, Wang L, Ma L, Liu S, Shu Q, Sun H. Electroacupuncture alleviates nerve injury after cerebra ischemia in rats through inhibiting cell apoptosis and changing the balance of MMP-9/TIMP-1 expression. Neurosci Lett 2016; 633:158-164. [PMID: 27664868 DOI: 10.1016/j.neulet.2016.09.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/22/2016] [Accepted: 09/20/2016] [Indexed: 11/29/2022]
Abstract
Accumulating evidence demonstrates that acupuncture and electroacupuncture (EA) can exert a neuroprotective role for cerebral ischemia, but their precise mechanism remains largely unknown. Therefore, in this study, the effects of EA stimulation on cerebral ischemia reperfusion and its neuroprotective mechanisms were investigated. A rat model of middle cerebral artery occlusion (MCAO) was developed, and EA stimulation (2Hz, 1mA) at Baihui and Siguan acupoints was applied 30min after MCAO and then once daily for 7 consecutive days. The results indicated that EA stimulation significantly reduced the cerebral infarct area and neurological deficit scores, decreased the number of apoptotic cells, up-regulated Bcl-2 protein expression, and down-regulated Bax protein expression. EA stimulation resulted in a significant increase of proliferative cells in the cerebral tissues. Additionally, EA stimulation significantly down-regulated the expression levels of matrix metalloproteinase -9 (MMP-9) mRNA and protein, and simultaneously up-regulated the expression levels of tissue inhibitor of metalloproteinases-1 (TIMP-1) mRNA and protein, which resulted in an imbalance of MMP-9/TIMP-1expression, although it did not significantly change MMP-2 and TIMP-2 expression. These findings indicate that EA stimulation at Baihui and Siguan acupoints exerts a neuroprotective role against cerebral ischemia-reperfusion injury, which is probably associated with the inhibition of apoptosis and altering the balance of MMP-9/TIMP-1 expression.
Collapse
Affiliation(s)
- Ranran Ma
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, Shanxi Province, China; Department of Neurology, Ninth Hospital of Xi'an, Xi'an 710054, Shanxi Province, China
| | - Bobo Yuan
- Department of Neurology, Ninth Hospital of Xi'an, Xi'an 710054, Shanxi Province, China
| | - Junhui Du
- Department of Ophthalmology, Ninth Hospital of Xi'an, Xi'an 710054, Shanxi Province, China
| | - Lina Wang
- Department of Neurology, Ninth Hospital of Xi'an, Xi'an 710054, Shanxi Province, China
| | - Louyan Ma
- Department of Geratology Two, Ninth Hospital of Xi'an, Xi'an 710054, Shanxi Province, China
| | - Songfang Liu
- Department of Endocrinology, Ninth Hospital of Xi'an, Xi'an 710054, Shanxi Province, China
| | - Qing Shu
- Department of Pharmacy, Ninth Hospital of Xi'an, Xi'an 710054, Shanxi Province, China
| | - Hongzhi Sun
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, Shanxi Province, China.
| |
Collapse
|
44
|
Liu AJ, Li JH, Li HQ, Fu DL, Lu L, Bian ZX, Zheng GQ. Electroacupuncture for Acute Ischemic Stroke: A Meta-Analysis of Randomized Controlled Trials. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 43:1541-66. [PMID: 26621442 DOI: 10.1142/s0192415x15500883] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Electroacupuncture (EA) is an extension technique of acupuncture based on traditional acupuncture combined with modern electrotherapy. Here, we conducted a systematic review specifically to assess the effectiveness and safety of EA for acute ischemic stroke. Eight databases were searched for randomized-controlled clinical trials (RCTs) of EA for acute ischemic stroke published from inception to June 2013. Ultimately, 67 studies claimed to be RCTs. Eighteen studies with 1411 individuals were selected for the analyses, which got [Formula: see text] “yes” in the domains of Cochrane risk of bias tool. The meta-analysis showed a significant effect of EA for improving Barthel Index ([Formula: see text]), Fugl–Meyer Assessment ([Formula: see text]), National Institutes of Health Stroke Scale ([Formula: see text]) and Revised Scandinavian Stroke Scale ([Formula: see text]) compared with western conventional treatments (WCTs). In an analysis of the total clinical efficacy rate, there was a significant difference between EA and WCTs ([Formula: see text]). Adverse effects were monitored in 6 studies, and were well tolerated in all stroke patients. According to the GRADE approach, the quality of evidence was mostly high or moderate. In conclusion, this systematic review revealed the evidence in support of the use of EA for acute ischemic stroke, although further larger sample-size and rigorously designed RCTs are required.
Collapse
Affiliation(s)
- Ai-Ju Liu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Ji-Huang Li
- Department of Neurology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Hui-Qin Li
- Department of Neurology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Deng-Lei Fu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Lin Lu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Zhao-Xiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Guo-Qing Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| |
Collapse
|
45
|
Liu W, Shang G, Yang S, Huang J, Xue X, Lin Y, Zheng Y, Wang X, Wang L, Lin R, Tao J, Chen L. Electroacupuncture protects against ischemic stroke by reducing autophagosome formation and inhibiting autophagy through the mTORC1-ULK1 complex-Beclin1 pathway. Int J Mol Med 2015; 37:309-18. [PMID: 26647915 PMCID: PMC4716798 DOI: 10.3892/ijmm.2015.2425] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/12/2015] [Indexed: 11/06/2022] Open
Abstract
In a previous study by our group, we demonstrated that electroacupuncture (EA) activates the class I phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. There is considerable evidence that the downstream mammalian target of rapamycin complex 1 (mTORC1) plays an important role in autophagy following ischemic stroke. The aim of the present study was to determine whether EA exerts a neuroprotective effect through mTORC1-mediated autophagy following ischemia/reperfusion injury. Our results revealed that EA at the LI11 and ST36 acupoints attenuated motor dysfunction, improved neurological deficit outcomes and decreased the infarct volumes. The number of autophagosomes, autolysosomes and lysosomes was decreased following treatment with EA. Simultaneously, the levels of the autophagosome membrane maker, microtubule-associated protein 1 light chain 3 beta (LC3B)II/I, Unc-51-like kinase 1 (ULK1), autophagy related gene 13 Atg13) and Beclin1 (ser14) were decreased, whereas mTORC1 expression was increased in the peri-infarct cortex. These results suggest that EA protects against ischemic stroke through the inhibition of autophagosome formation and autophagy, which is mediated through the mTORC1-ULK complex-Beclin1 pathway.
Collapse
Affiliation(s)
- Weilin Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Guanhao Shang
- The Fujian Province Key Laboratory of Motor Functional Rehabilitation, Fuzhou, Fujian 350001, P.R. China
| | - Shanli Yang
- Rehabilitation Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350001, P.R. China
| | - Jia Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xiehua Xue
- Rehabilitation Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350001, P.R. China
| | - Yunjiao Lin
- The Fujian Province Key Laboratory of Motor Functional Rehabilitation, Fuzhou, Fujian 350001, P.R. China
| | - Yi Zheng
- The Fujian Province Key Laboratory of Motor Functional Rehabilitation, Fuzhou, Fujian 350001, P.R. China
| | - Xian Wang
- The Fujian Province Key Laboratory of Motor Functional Rehabilitation, Fuzhou, Fujian 350001, P.R. China
| | - Lulu Wang
- The Fujian Province Key Laboratory of Motor Functional Rehabilitation, Fuzhou, Fujian 350001, P.R. China
| | - Ruhui Lin
- The Fujian Province Key Laboratory of Motor Functional Rehabilitation, Fuzhou, Fujian 350001, P.R. China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
46
|
Electro-acupuncture at LI11 and ST36 acupoints exerts neuroprotective effects via reactive astrocyte proliferation after ischemia and reperfusion injury in rats. Brain Res Bull 2015; 120:14-24. [PMID: 26524137 DOI: 10.1016/j.brainresbull.2015.10.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 10/22/2015] [Accepted: 10/26/2015] [Indexed: 11/23/2022]
Abstract
Reactive astrogliosis is a common phenomenon in central nervous system (CNS) injuries such as ischemic stroke. The present study aimed to deeply investigate the relationships between the neuroprotective effect of electro-acupuncture (EA) and reactive astrocytes following cerebral ischemia. EA treatment at the Quchi (LI11) and Zusanli (ST36) acupoints at Day 3 attenuated neurological deficits and cerebral infarct volume in ischemia and reperfusion (I/R) injured rats. Animal behavior assessments found that the speed of Catwalk gait, equilibrium and coordination of Rotarod test were improved. Furthermore, EA treatment exerted neuroprotective effects via activation of glial fibrillary acidic protein (GFAP), vimentin and nestin positive cells. Simultaneously, an obvious increase in GFAP/vimentin, GFAP/nestin and GFAP/BrdU co-labeling appeared in the peri-infract cortex and striatum, suggesting EA can promote the proliferation of GFAP/vimentin/nestin-positive reactive astrocytes. The expression of cell cycle-associated proteins Cyclin Dl, CDK4 and phospho-Rb were increased in the peri-infract cortex and striatum, indicating proliferated reactive astrocytes-mediated CyclinDl/CDK4 regulation of the transition of the G1-to-S cell cycle phases. In addition, EA enhanced the localized expression of brain-derived neurotrophic factor (BDNF) in the peri-infract cortex and striatum. These results demonstrated that EA treatment at the LI11 and ST36 acupoints on Day 3 exerted neuroprotection via proliferation of GFAP/vimentin/nestin-positive reactive astrocytes and, potentially, secretion of reactive astrocytes-derived BDNF in I/R injured rats.
Collapse
|
47
|
The Effect of Acupuncture on the Motor Function and White Matter Microstructure in Ischemic Stroke Patients. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:164792. [PMID: 26576189 PMCID: PMC4630387 DOI: 10.1155/2015/164792] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/16/2015] [Accepted: 10/04/2015] [Indexed: 01/21/2023]
Abstract
Evidence shows that ischemic stroke can induce brain structural reorganization. Acupuncture is advised as an adjunct to mainstream rehabilitation after stroke. However, the effectiveness of acupuncture is inconsistent among previous studies. Fourteen ischemic patients were collected and divided into two groups: conventional treatment group (CG) and acupuncture treatment group (AG). The results of a Fugl-Meyer Assessment (FMA) and diffusion tensor imaging were collected before and after treatment. The AG exhibited a higher improvement in FMA than the CG. Repeated measures analysis of variance on diffusion data only found a significant main effect for scanning time point in all diffusion indices. In each group, a postpair t-test revealed that diffusion indices values were changed significantly after treatment intervention in the body of the corpus callosum and bilateral corticospinal tracts, the inferior longitudinal fasciculus, the inferior frontooccipital fasciculus, the superior longitudinal fasciculus, the forceps minor, the cingulum gyrus, and the thalamic radiation. However, there was no significant difference in the diffusion indices between the two groups. In conclusion, acupuncture had a better behavioral score than traditional medicine treatment. However, acupuncture did not significantly change WM in the AG compared to the CG as expected within one month after the intervention.
Collapse
|
48
|
Liu F, Jiang YJ, Zhao HJ, Yao LQ, Chen LD. Electroacupuncture ameliorates cognitive impairment and regulates the expression of apoptosis-related genes Bcl-2 and Bax in rats with cerebral ischaemia-reperfusion injury. Acupunct Med 2015; 33:478-84. [PMID: 26376847 DOI: 10.1136/acupmed-2014-010728] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2015] [Indexed: 11/04/2022]
Abstract
BACKGROUND Post-stroke cognitive impairment seriously affects the quality of life and functional rehabilitation of patients with stroke. OBJECTIVE To examine the effects of electroacupuncture (EA) at GV20 and GV24 on cognitive impairment and apoptosis including expression of apoptosis-related genes Bcl-2 and Bax in a rat model of cerebral ischaemia-reperfusion (IR) induced by middle cerebral artery occlusion (MCAO). METHODS Thirty-five Sprague-Dawley rats were allocated to a sham operation control group (SC group, n=10) or underwent surgery and MCAO (n=25). Postoperatively the latter group was randomly subdivided into EA or untreated (IR) groups. Cognitive impairment was assessed using the Morris water maze (MWM). Apoptosis was examined by detection of Bcl-2 and Bax expression in the cerebral cortex. RESULTS The EA group had significantly decreased neurological deficit scores compared to the IR group (p<0.05). In the MWM test, significant differences in escape latency and route were observed between the EA and IR groups (p<0.05). Rats in the EA group performed better in the probe trial than those in the IR group (p<0.05). EA treatment markedly reduced the number of TUNEL-positive cells compared to the IR group (20.13±4.30% vs 38.40±3.38%; p<0.001). Reverse transcription-polymerase chain reaction (RT-PCR) results showed the Bcl-2/Bax ratio was significantly increased in the EA group compared to the IR group (1.61±0.19 vs 0.50±0.05, p<0.01). CONCLUSIONS These findings suggest that EA ameliorates cognitive impairment of rats with IR injury by modulating Bcl-2 and Bax expression.
Collapse
Affiliation(s)
- Fang Liu
- Fujian University of Traditional Chinese Medicine, Fuzhou, P. R. China
| | - Yi-Jing Jiang
- Fujian University of Traditional Chinese Medicine, Fuzhou, P. R. China
| | - Hong-Jia Zhao
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, P. R. China
| | - Li-Qun Yao
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, P. R. China
| | - Li-Dian Chen
- Fujian University of Traditional Chinese Medicine, Fuzhou, P. R. China
| |
Collapse
|
49
|
Lin R, Lin Y, Tao J, Chen B, Yu K, Chen J, Li X, Chen LD. Electroacupuncture ameliorates learning and memory in rats with cerebral ischemia-reperfusion injury by inhibiting oxidative stress and promoting p-CREB expression in the hippocampus. Mol Med Rep 2015; 12:6807-14. [PMID: 26397995 DOI: 10.3892/mmr.2015.4321] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 04/17/2015] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the mechanisms by which electroacupuncture (EA) ameliorates learning and memory in rats with cerebral ischemic‑reperfusion (I/R) injury. Focal cerebral ischemia was induced in adult male Sprague‑Dawley (SD) rats by transient middle cerebral artery occlusion (MCAO). Following MCAO surgery, the rats received EA at the Shenting (DU24) and Baihui (DU20) acupoints. The results of the present study demonstrated that treatment with EA significantly ameliorated neurological deficits and reduced cerebral infarct volume (P<0.05). In addition, EA improved the learning and memory ability of the rats, and markedly activated the cyclic adenosine monophosphate (cAMP) response element‑binding protein (CREB) signaling pathway, resulting in the inhibition of cerebral cell apoptosis in the ischemic penumbra. Furthermore, EA increased the activity of superoxide dismutase and glutathione peroxidase, the protein expression levels of phosphorylated‑CREB and B‑cell lymphoma 2 (Bcl‑2), and the mRNA expression levels of Bcl‑2. Conversely, EA decreased the levels of malondialdehyde and inhibited the expression levels of Bcl2‑associated X protein. The results of the present study suggest that treatment with EA may result in the amelioration of learning and memory ability in rats with cerebral I/R injury.
Collapse
Affiliation(s)
- Ruhui Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Yukun Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Bin Chen
- TCM Rehabilitation Research Center of SATCM, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Kunqiang Yu
- Fujian Key Laboratory of Exercise Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jixiang Chen
- Fujian Key Laboratory of Exercise Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xiaojie Li
- Fujian Rehabilitation Tech Co‑innovation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Li-Dian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
50
|
Neuroprotective effects of electroacupuncture on hypoxic-ischemic encephalopathy in newborn rats are associated with increased expression of GDNF-RET and protein kinase B. Chin J Integr Med 2015; 22:457-66. [PMID: 26033318 DOI: 10.1007/s11655-015-1972-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To explore the neuroprotective effects of electroacupuncture (EA) on hypoxic-ischemic encephalopathy (HIE) and to further investigate the role of glial cell line-derived neurotrophic factor (GDNF) family receptor member RET (rearranged during transfection) and its key downstream phosphatidylinositol 3 kinase (PI-3K)/protein kinase B (Akt) pathway in the process. METHODS A total of 220 seven-day-old SD rats (of either sex, from 22 broods) were randomly divided into two groups, one (30 rats) for sham-surgery group and the other (190 rats) for HIE model group. The HIE model was established using the left common carotid artery ligation method in combination with hypoxic treatment. The successfully established rats were randomly divided into five groups, including control model group, EA group, sham-EA group, antagonist group and antagonist plus electroacupuncture group, with 35 rats in each group. Baihui (GV 20), Dazhui (GV 14), Quchi (LI 11) and Yongquan (KI 1) acupoints were chosen for acupuncture. EA was performed at Baihui and Quchi for 10 min once a day for continuous 1, 3, 7 and 21 days, respectively. The rats were then killed after the operation and injured cerebral cortex was taken for the measurement of neurologic damage by hematoxylin-eosin (HE) staining and the degenerative changes of cortical ultrastructure by transmission electron microscopy. RET mRNA level and Akt protein level were detected by real-time reverse-transcription polymerase chain reaction (RT-PCR) and western blot analysis, respectively. RESULTS EA could ameliorate neurologic damage of the first somatic sensory area (S1Tr) and alleviate the degenerative changes of ultrastructure of cortical neurons in rats subjected to HIE. And the longer acupuncture treatment lasted, the better its therapeutic effect would be. This was accompanied by gradually increased expression of GDNF family receptor RET at the mRNA level and its downstream signaling Akt at the protein level in the ischemic cortex. CONCLUSION EA has neuroprotective effects on HIE and could be a potential therapeutic strategy for HIE in the neonate. Activation of RET/Akt signaling pathway might be involved in this process.
Collapse
|