1
|
Zhuang Y, Quan W, Wang X, Cheng Y, Jiao Y. Comprehensive Review of EGCG Modification: Esterification Methods and Their Impacts on Biological Activities. Foods 2024; 13:1232. [PMID: 38672904 PMCID: PMC11048832 DOI: 10.3390/foods13081232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Epigallocatechin gallate (EGCG), the key constituent of tea polyphenols, presents challenges in terms of its lipid solubility, stability, and bioavailability because of its polyhydroxy structure. Consequently, structural modifications are imperative to enhance its efficacy. This paper comprehensively reviews the esterification techniques applied to EGCG over the past two decades and their impacts on bioactivities. Both chemical and enzymatic esterification methods involve catalysts, solvents, and hydrophobic groups as critical factors. Although the chemical method is cost-efficient, it poses challenges in purification; on the other hand, the enzymatic approach offers improved selectivity and simplified purification processes. The biological functions of EGCG are inevitably influenced by the structural changes incurred through esterification. The antioxidant capacity of EGCG derivatives can be compromised under certain conditions by reducing hydroxyl groups, while enhancing lipid solubility and stability can strengthen their antiviral, antibacterial, and anticancer properties. Additionally, esterification broadens the utility of EGCG in food applications. This review provides critical insights into developing cost-effective and environmentally sustainable selective esterification methods, as well as emphasizes the elucidation of the bioactive mechanisms of EGCG derivatives to facilitate their widespread adoption in food processing, healthcare products, and pharmaceuticals.
Collapse
Affiliation(s)
- Yingjun Zhuang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China; (Y.Z.); (X.W.); (Y.C.)
| | - Wei Quan
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China;
| | - Xufeng Wang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China; (Y.Z.); (X.W.); (Y.C.)
| | - Yunhui Cheng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China; (Y.Z.); (X.W.); (Y.C.)
| | - Ye Jiao
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China; (Y.Z.); (X.W.); (Y.C.)
| |
Collapse
|
2
|
Włodarczyk M, Ciebiera M, Nowicka G, Łoziński T, Ali M, Al-Hendy A. Epigallocatechin Gallate for the Treatment of Benign and Malignant Gynecological Diseases-Focus on Epigenetic Mechanisms. Nutrients 2024; 16:559. [PMID: 38398883 PMCID: PMC10893337 DOI: 10.3390/nu16040559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
The most common malignant gynecologic diseases are cervical, uterine, ovarian, vaginal, and vulvar cancer. Among them, ovarian cancer causes more deaths than any other cancer of the female reproductive system. A great number of women suffer from endometriosis, uterine fibroids (UFs), adenomyosis, dysmenorrhea, and polycystic ovary syndrome (PCOS), which are widespread benign health problems causing troublesome and painful symptoms and significantly impairing the quality of life of affected women, and they are some of the main causes of infertility. In addition to the available surgical and pharmacological options, the effects of supporting standard treatment with naturally occurring compounds, mainly polyphenols, are being studied. Catechins are responsible for the majority of potential health benefits attributed to green tea consumption. Epigallocatechin gallate (EGCG) is considered a non-toxic, natural compound with potential anticancer properties. Antioxidant action is its most common function, but attention is also drawn to its participation in cell division inhibition, apoptosis stimulation and epigenetic regulation. In this narrative review, we describe the role of EGCG consumption in preventing the development of benign reproductive disorders such as UF, endometriosis, and PCOS, as well as malignant gynecologic conditions. We discuss possible epigenetic mechanisms that may be related to the action of EGCG.
Collapse
Affiliation(s)
- Marta Włodarczyk
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Michał Ciebiera
- Second Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 00-189 Warsaw, Poland;
- Warsaw Institute of Women’s Health, 00-189 Warsaw, Poland
- Development and Research Center of Non-Invasive Therapies, Pro-Familia Hospital, 35-302 Rzeszów, Poland
| | - Grażyna Nowicka
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Tomasz Łoziński
- Department of Obstetrics and Gynecology, Pro-Familia Hospital, 35-302 Rzeszow, Poland;
- Department of Gynecology and Obstetrics, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland
| | - Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (M.A.); (A.A.-H.)
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (M.A.); (A.A.-H.)
| |
Collapse
|
3
|
Wang C, Bai M, Sun Z, Yao N, Zhang A, Guo S, Asemi Z. Epigallocatechin-3-gallate and cancer: focus on the role of microRNAs. Cancer Cell Int 2023; 23:241. [PMID: 37838685 PMCID: PMC10576883 DOI: 10.1186/s12935-023-03081-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/21/2023] [Indexed: 10/16/2023] Open
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs that affect gene expression. The role of miRNAs in different types of cancers has been published and it was shown that several miRNAs are inappropriately expressed in different cancers. Among the mechanisms that can cause this lack of proper expression are epigenetics, chromosomal changes, polymorphisms or defects in processing proteins. Recent research shows that phytochemicals, including epigallocatechin-3-gallate (EGCG), exert important epigenetic-based anticancer effects such as pro-apoptotic or anti proliferative through miRNA gene silencing. Given that EGCG is able to modulate a variety of cancer-related process i.e., angiogenesis, proliferation, metastasis and apoptosis via targeting various miRNAs such as let-7, miR-16, and miR-210. The discovery of new miRNAs and the differences observed in their expression when exposed to EGCG provides evidence that targeting these miRNAs may be beneficial as a form of treatment. In this review, we aim to provide an overview, based on current knowledge, on how phytochemicals, including epigallocatechin-3-gallate, can be considered as potential miRNAs modulator to improve efficacy of current cancer treatments.
Collapse
Affiliation(s)
- Chunguang Wang
- The First Affiliated Hospital of Hebei North University, Zhang Jiakou, 075000, Hebei, China
| | - Meiling Bai
- Basic Medical College of Hebei North University, Zhang Jiakou, 075000, Hebei, China.
| | - Zhiguang Sun
- The First Affiliated Hospital of Hebei North University, Zhang Jiakou, 075000, Hebei, China
| | - Nan Yao
- The First Affiliated Hospital of Hebei North University, Zhang Jiakou, 075000, Hebei, China
| | - Aiting Zhang
- The First Affiliated Hospital of Hebei North University, Zhang Jiakou, 075000, Hebei, China
| | - Shengyu Guo
- The First Affiliated Hospital of Hebei North University, Zhang Jiakou, 075000, Hebei, China
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
4
|
Kciuk M, Alam M, Ali N, Rashid S, Głowacka P, Sundaraj R, Celik I, Yahya EB, Dubey A, Zerroug E, Kontek R. Epigallocatechin-3-Gallate Therapeutic Potential in Cancer: Mechanism of Action and Clinical Implications. Molecules 2023; 28:5246. [PMID: 37446908 PMCID: PMC10343677 DOI: 10.3390/molecules28135246] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Cellular signaling pathways involved in the maintenance of the equilibrium between cell proliferation and apoptosis have emerged as rational targets that can be exploited in the prevention and treatment of cancer. Epigallocatechin-3-gallate (EGCG) is the most abundant phenolic compound found in green tea. It has been shown to regulate multiple crucial cellular signaling pathways, including those mediated by EGFR, JAK-STAT, MAPKs, NF-κB, PI3K-AKT-mTOR, and others. Deregulation of the abovementioned pathways is involved in the pathophysiology of cancer. It has been demonstrated that EGCG may exert anti-proliferative, anti-inflammatory, and apoptosis-inducing effects or induce epigenetic changes. Furthermore, preclinical and clinical studies suggest that EGCG may be used in the treatment of numerous disorders, including cancer. This review aims to summarize the existing knowledge regarding the biological properties of EGCG, especially in the context of cancer treatment and prophylaxis.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (M.K.); (R.K.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Pola Głowacka
- Department of Medical Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 90-001 Lodz, Poland;
- Doctoral School of Medical University of Lodz, Hallera 1 Square, 90-700 Lodz, Poland
| | - Rajamanikandan Sundaraj
- Department of Biochemistry, Centre for Drug Discovery, Karpagam Academy of Higher Education, Coimbatore 641021, India;
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38280, Turkey;
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Amit Dubey
- Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida 201310, India;
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Chennai 600077, India
| | - Enfale Zerroug
- LMCE Laboratory, Group of Computational and Pharmaceutical Chemistry, University of Biskra, Biskra 07000, Algeria;
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (M.K.); (R.K.)
| |
Collapse
|
5
|
Ali M, Ciebiera M, Vafaei S, Alkhrait S, Chen HY, Chiang YF, Huang KC, Feduniw S, Hsia SM, Al-Hendy A. Progesterone Signaling and Uterine Fibroid Pathogenesis; Molecular Mechanisms and Potential Therapeutics. Cells 2023; 12:cells12081117. [PMID: 37190026 DOI: 10.3390/cells12081117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Uterine fibroids (UFs) are the most important benign neoplastic threat to women's health worldwide, with a prevalence of up to 80% in premenopausal women, and can cause heavy menstrual bleeding, pain, and infertility. Progesterone signaling plays a crucial role in the development and growth of UFs. Progesterone promotes the proliferation of UF cells by activating several signaling pathways genetically and epigenetically. In this review article, we reviewed the literature covering progesterone signaling in UF pathogenesis and further discussed the therapeutic potential of compounds that modulate progesterone signaling against UFs, including selective progesterone receptor modulator (SPRM) drugs and natural compounds. Further studies are needed to confirm the safety of SPRMs as well as their exact molecular mechanisms. The consumption of natural compounds as a potential anti-UFs treatment seems promising, since these compounds can be used on a long-term basis-especially for women pursuing concurrent pregnancy, unlike SPRMs. However, further clinical trials are needed to confirm their effectiveness.
Collapse
Affiliation(s)
- Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Michał Ciebiera
- Second Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, 00-189 Warsaw, Poland
| | - Somayeh Vafaei
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | - Samar Alkhrait
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | - Hsin-Yuan Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Fen Chiang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Ko-Chieh Huang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Stepan Feduniw
- Department of Gynecology, University of Zurich, 8091 Zurich, Switzerland
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
6
|
Parish M, Massoud G, Hazimeh D, Segars J, Islam MS. Green Tea in Reproductive Cancers: Could Treatment Be as Simple? Cancers (Basel) 2023; 15:cancers15030862. [PMID: 36765820 PMCID: PMC9913717 DOI: 10.3390/cancers15030862] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Green tea originates from the tea plant Camellia sinensis and is one of the most widely consumed beverages worldwide. Green tea polyphenols, commonly known as catechins, are the major bioactive ingredients and account for green tea's unique health benefits. Epigallocatechin-3-gallate (EGCG), is the most potent catechin derivative and has been widely studied for its pro- and anti-oxidative effects. This review summarizes the chemical and chemopreventive properties of green tea in the context of female reproductive cancers. A comprehensive search of PubMed and Google Scholar up to December 2022 was conducted. All original and review articles related to green tea or EGCG, and gynecological cancers published in English were included. The findings of several in vitro, in vivo, and epidemiological studies examining the effect of green tea on reproductive cancers, including ovarian, cervical, endometrial, and vulvar cancers, are presented. Studies have shown that this compound targets specific receptors and intracellular signaling pathways involved in cancer pathogenesis. The potential benefits of using green tea in the treatment of reproductive cancers, alone or in conjunction with chemotherapeutic agents, are examined, shedding light on new therapeutic strategies for the management of female reproductive cancers.
Collapse
Affiliation(s)
| | | | | | - James Segars
- Correspondence: (J.S.); or (M.S.I.); Tel.: +1-410-614-2000 (J.S. & M.S.I.)
| | - Md Soriful Islam
- Correspondence: (J.S.); or (M.S.I.); Tel.: +1-410-614-2000 (J.S. & M.S.I.)
| |
Collapse
|
7
|
Antioxidative, Anti-Inflammatory, Anti-Obesogenic, and Antidiabetic Properties of Tea Polyphenols-The Positive Impact of Regular Tea Consumption as an Element of Prophylaxis and Pharmacotherapy Support in Endometrial Cancer. Int J Mol Sci 2022; 23:ijms23126703. [PMID: 35743146 PMCID: PMC9224362 DOI: 10.3390/ijms23126703] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
Endometrial cancer (EC) is second only to cervical carcinoma among the most commonly diagnosed malignant tumours of the female reproductive system. The available literature provides evidence for the involvement of 32 genes in the hereditary incidence of EC. The physiological markers of EC and coexisting diet-dependent maladies include antioxidative system disorders but also progressing inflammation; hence, the main forms of prophylaxis and pharmacotherapy ought to include a diet rich in substances aiding the organism’s response to this type of disorder, with a particular focus on ones suitable for lifelong consumption. Tea polyphenols satisfy those requirements due to their proven antioxidative, anti-inflammatory, anti-obesogenic, and antidiabetic properties. Practitioners ought to consider promoting tea consumption among individuals genetically predisposed for EC, particularly given its low cost, accessibility, confirmed health benefits, and above all, suitability for long-term consumption regardless of the patient’s age. The aim of this paper is to analyse the potential usability of tea as an element of prophylaxis and pharmacotherapy support in EC patients. The analysis is based on information available from worldwide literature published in the last 15 years.
Collapse
|
8
|
Alam M, Ali S, Ashraf GM, Bilgrami AL, Yadav DK, Hassan MI. Epigallocatechin 3-gallate: From green tea to cancer therapeutics. Food Chem 2022; 379:132135. [PMID: 35063850 DOI: 10.1016/j.foodchem.2022.132135] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/22/2021] [Accepted: 01/09/2022] [Indexed: 12/13/2022]
Abstract
Epigallocatechin 3-gallate (EGCG) possesses various biological functions, including anti-cancer and anti-inflammatory properties. EGCG is an abundant polyphenolic component originating from green tea extract that has exhibited versatile bioactivities in combating several cancers. This review highlights the pharmacological features of EGCG and its therapeutic implications in cancer and other metabolic diseases. It modulates numerous signaling pathways, regulating cells' undesired survival and proliferation, thus imparting strong tumor chemopreventive and therapeutic effects. EGCG initiates cell death through the intrinsic pathway and causes inhibition of EGFR, STAT3, and ERK pathways in several cancers. EGCG alters and inhibits ERK1/2, NF-κB, and Akt-mediated signaling, altering the Bcl-2 family proteins ratio and activating caspases in tumor cells. This review focuses on anti-cancer, anti-oxidant, anti-inflammatory, anti-angiogenesis, and apoptotic effects of EGCG. We further highlighted the potential of EGCG in different types of cancer, emphasizing clinical trials formulations that further improve our understanding of the therapeutic management of cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anwar L Bilgrami
- Deanship of Scientific Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsu-gu, Incheon City 21924, South Korea.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
9
|
Protective Effects of Epigallocatechin Gallate (EGCG) on Endometrial, Breast, and Ovarian Cancers. Biomolecules 2020; 10:biom10111481. [PMID: 33113766 PMCID: PMC7694163 DOI: 10.3390/biom10111481] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023] Open
Abstract
Green tea and its major bioactive component, (-)-epigallocatechin gallate (EGCG), possess diverse biological properties, particularly antiproliferation, antimetastasis, and apoptosis induction. Many studies have widely investigated the anticancer and synergistic effects of EGCG due to the side effects of conventional cytotoxic agents. This review summarizes recent knowledge of underlying mechanisms of EGCG on protective roles for endometrial, breast, and ovarian cancers based on both in vitro and in vivo animal studies. EGCG has the ability to regulate many pathways, including the activation of nuclear factor erythroid 2-related factor 2 (Nrf2), inhibition of nuclear factor-κB (NF-κB), and protection against epithelial-mesenchymal transition (EMT). EGCG has also been found to interact with DNA methyltransferases (DNMTs) and histone deacetylases (HDACs), which affect epigenetic modifications. Finally, the action of EGCG may exert a suppressive effect on gynecological cancers and have beneficial effects on auxiliary therapies for known drugs. Thus, future clinical intervention studies with EGCG will be necessary to more and clear evidence for the benefit to these cancers.
Collapse
|
10
|
Potential Therapeutic Targets of Epigallocatechin Gallate (EGCG), the Most Abundant Catechin in Green Tea, and Its Role in the Therapy of Various Types of Cancer. Molecules 2020; 25:molecules25143146. [PMID: 32660101 PMCID: PMC7397003 DOI: 10.3390/molecules25143146] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023] Open
Abstract
Epigallocatechin-3-gallate (EGCG), an active compound of green tea and its role in diseases cure and prevention has been proven. Its role in diseases management can be attributed to its antioxidant and anti-inflammatory properties. The anti-cancer role of this green tea compound has been confirmed in various types of cancer and is still being under explored. EGCG has been proven to possess a chemopreventive effect through inhibition of carcinogenesis process such as initiation, promotion, and progression. In addition, this catechin has proven its role in cancer management through modulating various cell signaling pathways such as regulating proliferation, apoptosis, angiogenesis and killing of various types of cancer cells. The additive or synergistic effect of epigallocatechin with chemopreventive agents has been verified as it reduces the toxicities and enhances the anti-cancerous effects. Despite its effectiveness and safety, the implications of EGCG in cancer prevention is certainly still discussed due to a poor bioavailability. Several studies have shown the ability to overcome poor bioavailability through nanotechnology-based strategies such as encapsulation, liposome, micelles, nanoparticles and various other formulation. In this review, we encapsulate therapeutic implication of EGCG in cancer management and the mechanisms of action are discussed with an emphasis on human clinical trials.
Collapse
|
11
|
Park C, Lee J, Kong B, Park J, Song H, Choi K, Guon T, Lee Y. The effects of bisphenol A, benzyl butyl phthalate, and di(2-ethylhexyl) phthalate on estrogen receptor alpha in estrogen receptor-positive cells under hypoxia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:774-781. [PMID: 30851587 DOI: 10.1016/j.envpol.2019.02.069] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/12/2019] [Accepted: 02/21/2019] [Indexed: 06/09/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are widely used in various consumer goods. Consequently, humans are constantly exposed to EDCs, which is associated with a variety of endocrine-related diseases. In this study, we demonstrated the effects of bisphenol A (BPA), benzyl butyl phthalate (BBP), and di(2-ethylhexyl) phthalate (DEHP) on estrogen receptor alpha (ERα) expression under normoxia and hypoxia. First, we confirmed the effects of EDCs on ER activity using OECD Test Guideline 455. Compared to the 100% activity induced by 1 nM 17-β-estradiol (positive control), BPA and BBP exhibited 50% ERα activation at concentrations of 1.31 μM and 4.8 μM, respectively. In contrast, and consistent with previous reports, DEHP did not activate ERα. ERα is activated and degraded by hypoxia in breast cancer cells. BPA, BBP, and DEHP enhanced ERα-mediated transcriptional activity under hypoxia. All three EDCs decreased ERα protein levels under hypoxia in MCF-7 cells. The transcriptional activity of hypoxia-inducible factor-1 was decreased and secretion of vascular endothelial growth factor (VEGF) was increased by BPA and BBP under hypoxia in MCF-7 cells, but not by DEHP. All three EDCs decreased the ERα protein expression level in Ishikawa human endometrial adenocarcinoma cells, and DEHP caused a weak decrease in VEGF secretion under hypoxia. These results demonstrate down-regulation of ERα by EDCs may influence the pathological state associated with hypoxia.
Collapse
Affiliation(s)
- Choa Park
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, 05006, Republic of Korea
| | - Jeonggeun Lee
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, 05006, Republic of Korea
| | - Byounguk Kong
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, 05006, Republic of Korea
| | - Joonwoo Park
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, 05006, Republic of Korea
| | - Heewon Song
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, 05006, Republic of Korea
| | - KeunOh Choi
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, 05006, Republic of Korea
| | - Taeeun Guon
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, 05006, Republic of Korea
| | - YoungJoo Lee
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, 05006, Republic of Korea.
| |
Collapse
|
12
|
In Silico Investigation of the Anti-Tumor Mechanisms of Epigallocatechin-3-Gallate. Molecules 2019; 24:molecules24071445. [PMID: 30979098 PMCID: PMC6480119 DOI: 10.3390/molecules24071445] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/06/2019] [Accepted: 04/09/2019] [Indexed: 12/15/2022] Open
Abstract
The EGCG, an important component of polyphenol in green tea, is well known due to its numerous health benefits. We employed the reverse docking method for the identification of the putative targets of EGCG in the anti-tumor target protein database and these targets were further uploaded to public databases in order to understand the underlying pharmacological mechanisms and search for novel EGCG-associated targets. Similarly, the pharmacological linkage between tumor-related proteins and EGCG was manually constructed in order to provide greater insight into the molecular mechanisms through a systematic integration with applicable bioinformatics. The results indicated that the anti-tumor mechanisms of EGCG may involve 12 signaling transduction pathways and 33 vital target proteins. Moreover, we also discovered four novel putative target proteins of EGCG, including IKBKB, KRAS, WEE1 and NTRK1, which are significantly related to tumorigenesis. In conclusion, this work may provide a useful perspective that will improve our understanding of the pharmacological mechanism of EGCG and identify novel potential therapeutic targets.
Collapse
|
13
|
Kozak J, Wdowiak P, Maciejewski R, Torres A. A guide for endometrial cancer cell lines functional assays using the measurements of electronic impedance. Cytotechnology 2017; 70:339-350. [PMID: 28988392 PMCID: PMC5809663 DOI: 10.1007/s10616-017-0149-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 09/22/2017] [Indexed: 12/29/2022] Open
Abstract
Endometrial cancer cell lines are critical tools to investigate the molecular mechanism of tumorigenesis using the end point cell-based assay such as proliferation, cytotoxicity, apoptosis, anoikis or migration and invasion. The proper assay optimization and performance is essential for physiologically relevant results interpretation. In this study we use label-free real-time cell analysis platform (xCELLigence) to optimize growing conditions for proliferation and migration experiments of two types of endometrial cancer cell lines HEC-1-B, HEC-1-A, KLE, and Ishikawa. Profiling of cell lines by cell index measurement in proliferation and migration experiments was performed. Our experimental approach allowed us to monitor particular stage of the cell growth, to see the relation between seeding density and dynamic cell growth as well as to choose the optimal serum concentration as chemoattractant in migration experiment. The highest rate of proliferation was shown for Ishikawa cells. The rapid pace of cellular migration was observed in case of KLE and HEC-1-B cells as compared to weak migratory activity of Ishikawa cells. The cell index that reflects the cell status characterized real-time cytological profile of each analyzed cell line. These cell profiles were crucial for better planning the classical end-point assays used in further research.
Collapse
Affiliation(s)
- Joanna Kozak
- Laboratory of Biostructure, Department of Normal Anatomy, Medical University of Lublin, 20-090, Lublin, Poland.
| | - Paulina Wdowiak
- Laboratory of Biostructure, Department of Normal Anatomy, Medical University of Lublin, 20-090, Lublin, Poland
| | - Ryszard Maciejewski
- Laboratory of Biostructure, Department of Normal Anatomy, Medical University of Lublin, 20-090, Lublin, Poland
| | - Anna Torres
- Laboratory of Biostructure, Department of Normal Anatomy, Medical University of Lublin, 20-090, Lublin, Poland
| |
Collapse
|
14
|
Granja A, Pinheiro M, Reis S. Epigallocatechin Gallate Nanodelivery Systems for Cancer Therapy. Nutrients 2016; 8:nu8050307. [PMID: 27213442 PMCID: PMC4882719 DOI: 10.3390/nu8050307] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 12/31/2022] Open
Abstract
Cancer is one of the leading causes of morbidity and mortality all over the world. Conventional treatments, such as chemotherapy, are generally expensive, highly toxic and lack efficiency. Cancer chemoprevention using phytochemicals is emerging as a promising approach for the treatment of early carcinogenic processes. (−)-Epigallocatechin-3-gallate (EGCG) is the major bioactive constituent in green tea with numerous health benefits including anti-cancer activity, which has been intensively studied. Besides its potential for chemoprevention, EGCG has also been shown to synergize with common anti-cancer agents, which makes it a suitable adjuvant in chemotherapy. However, limitations in terms of stability and bioavailability have hampered its application in clinical settings. Nanotechnology may have an important role in improving the pharmacokinetic and pharmacodynamics of EGCG. Indeed, several studies have already reported the use of nanoparticles as delivery vehicles of EGCG for cancer therapy. The aim of this article is to discuss the EGCG molecule and its associated health benefits, particularly its anti-cancer activity and provide an overview of the studies that have employed nanotechnology strategies to enhance EGCG’s properties and potentiate its anti-tumoral activity.
Collapse
Affiliation(s)
- Andreia Granja
- UCIBIO/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Marina Pinheiro
- UCIBIO/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Salette Reis
- UCIBIO/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
15
|
Kiyama R, Wada-Kiyama Y. Estrogenic endocrine disruptors: Molecular mechanisms of action. ENVIRONMENT INTERNATIONAL 2015; 83:11-40. [PMID: 26073844 DOI: 10.1016/j.envint.2015.05.012] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 05/20/2023]
Abstract
A comprehensive summary of more than 450 estrogenic chemicals including estrogenic endocrine disruptors is provided here to understand the complex and profound impact of estrogen action. First, estrogenic chemicals are categorized by structure as well as their applications, usage and effects. Second, estrogenic signaling is examined by the molecular mechanism based on the receptors, signaling pathways, crosstalk/bypassing and autocrine/paracrine/homeostatic networks involved in the signaling. Third, evaluation of estrogen action is discussed by focusing on the technologies and protocols of the assays for assessing estrogenicity. Understanding the molecular mechanisms of estrogen action is important to assess the action of endocrine disruptors and will be used for risk management based on pathway-based toxicity testing.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Yuko Wada-Kiyama
- Department of Physiology, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| |
Collapse
|
16
|
Ulianich L, Insabato L. Endoplasmic reticulum stress in endometrial cancer. Front Med (Lausanne) 2014; 1:55. [PMID: 25593927 PMCID: PMC4291890 DOI: 10.3389/fmed.2014.00055] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/02/2014] [Indexed: 01/05/2023] Open
Abstract
Endometrial cancer (EC) is a common gynecologic malignancy often diagnosed at early stage. In spite of a huge advance in our understanding of EC biology, therapeutic modalities do not have significantly changed over the past 40 years. A restricted number of genes have been reported to be mutated in EC, mediating cell proliferation and invasiveness. However, besides these alterations, few other groups and ourselves recently identified the activation of the unfolded protein response (UPR) and GRP78 increase following endoplasmic reticulum (ER) stress as mechanisms favoring growth and invasion of EC cells. Here, a concise update on currently available data in the field is presented, analyzing the crosstalk between the UPR and the main signaling pathways regulating EC cell proliferation and survival. It is evident that this is a rapidly expanding and promising issue. However, more data are very likely to yield a better understanding on the mechanisms through which EC cells can survive the low oxygen and glucose tumor microenvironment. In this perspective, the UPR and, particularly, GRP78 might constitute a novel target for the treatment of EC in combination with traditional adjuvant therapy.
Collapse
Affiliation(s)
- Luca Ulianich
- Istituto per l'Endocrinologia e l'Oncologia "Gaetano Salvatore", Consiglio Nazionale delle Ricerche , Naples , Italy
| | - Luigi Insabato
- Section of Anatomical Pathology, Department of Advanced Biomedical Sciences, University Federico II of Naples , Naples , Italy
| |
Collapse
|
17
|
Shen X, Zhang Y, Feng Y, Zhang L, Li J, Xie YA, Luo X. Epigallocatechin-3-gallate inhibits cell growth, induces apoptosis and causes S phase arrest in hepatocellular carcinoma by suppressing the AKT pathway. Int J Oncol 2014; 44:791-6. [PMID: 24402647 DOI: 10.3892/ijo.2014.2251] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 12/17/2013] [Indexed: 11/06/2022] Open
Abstract
Epigallocatechin-3-gallate (EGCG) has been shown to inhibit the growth and induce apoptosis of certain cancer cells. The aim of this study was to determine the role of EGCG in hepatocellular carcinoma (HCC) and the underlying mechanism(s) thereof. MTT assay was used to determine the cell growth inhibition by EGCG. Apoptosis induced by EGCG was investigated by both AO/EB staining and flow cytometry. The cell cycle distribution was analyzed by flow cytometry. The mRNA levels of the AKT pathway were analyzed by quantitative PCR. The expression of AKT and its phosphorylation at Ser473 were detected by western blotting. The IC50 of EGCG at 48 h for HepG2, SMMC7721 and SK-hep1 cells were 74.7, 59.6 and 61.3 µg/ml, respectively. Significantly higher proportion of SMMC7721 cells entered the S phase upon treatment with EGCG for 48 h compared with control cells. EGCG decreased the mRNA levels of PI3K, AKT and NF-κB. The protein levels of AKT decreased and its phosphorylation at Ser473 was downregulated with EGCG treatment. EGCG inhibited growth by affecting the cell cycle and induced apoptosis in different HCC cells by downregulating PI3K/AKT activity. The results suggest the potential of EGCG as an anticancer agent in the prevention or treatment of HCC.
Collapse
Affiliation(s)
- Xiaoyun Shen
- Research Department, Affiliated Tumour Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Yong Zhang
- Research Department, Affiliated Tumour Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Yan Feng
- Research Department, Affiliated Tumour Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Litu Zhang
- Research Department, Affiliated Tumour Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Jilin Li
- Research Department, Affiliated Tumour Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Yu-An Xie
- Research Department, Affiliated Tumour Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Xiaoling Luo
- Research Department, Affiliated Tumour Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| |
Collapse
|
18
|
PATEL S. Green Tea as a Nutraceutical: The Latest Developments. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2013. [DOI: 10.3136/fstr.19.923] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|