1
|
Xiao C, Wu H, Long J, You F, Li X. Olink Profiling of Intestinal Tissue Identifies Novel Biomarkers For Colorectal Cancer. J Proteome Res 2025; 24:599-611. [PMID: 39757570 PMCID: PMC11812010 DOI: 10.1021/acs.jproteome.4c00728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/09/2024] [Accepted: 12/25/2024] [Indexed: 01/07/2025]
Abstract
Comprehensive protein profiling in intestinal tissues provides detailed information about the pathogenesis of colorectal cancer (CRC). This study quantified the expression levels of 92 oncology-related proteins in tumors, paired para-carcinoma tissues, and remote normal tissues from a cohort of 52 CRC patients utilizing the Olink technology. The proteomic profile of normal tissues closely resembled that of para-carcinoma tissues while distinctly differing from that of tumors. Among the 68 differentially expressed proteins (DEPs) identified between the tumor and normal tissues, WISP-1, ESM-1, and TFPI-2 showed the most pronounced alterations and exhibited relatively strong correlations. These markers also presented the highest AUC values for distinguishing between tissue types. Bioinformatic analysis of the DEPs revealed that the plasma membrane and the PI3K-AKT signaling pathway were among the most enriched GO terms and KEGG pathways. Furthermore, although TFPI-2 is typically recognized as a tumor suppressor, both Olink and enzyme linked immunosorbent assay (ELISA) analyses have demonstrated that its expression is significantly elevated in tumors compared with paired normal tissues. To the best of our knowledge, this is the first study to profile the proteome of intestinal tissue using the Olink technology. This work offers valuable insights into potential biomarkers and therapeutic targets for CRC, complementing the Olink profiling of circulating proteins.
Collapse
Affiliation(s)
- Chong Xiao
- TCM
Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese
Medicine, Chengdu 610075, Sichuan, China
- Oncology
Teaching and Research Department, Chengdu
University of Traditional Chinese Medicine, Chengdu 610075, Sichuan, China
| | - Hao Wu
- TCM
Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese
Medicine, Chengdu 610075, Sichuan, China
| | - Jing Long
- TCM
Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese
Medicine, Chengdu 610075, Sichuan, China
| | - Fengming You
- TCM
Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese
Medicine, Chengdu 610075, Sichuan, China
- Institute
of Oncology, Chengdu University of Traditional
Chinese Medicine, Chengdu 610075, Sichuan, China
| | - Xueke Li
- TCM
Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese
Medicine, Chengdu 610075, Sichuan, China
- Oncology
Teaching and Research Department, Chengdu
University of Traditional Chinese Medicine, Chengdu 610075, Sichuan, China
| |
Collapse
|
2
|
Shao G, Liu Y, Lu L, Wang L, Ji G, Xu H. Therapeutic potential of traditional Chinese medicine in the prevention and treatment of digestive inflammatory cancer transformation: Portulaca oleracea L. as a promising drug. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:117999. [PMID: 38447616 DOI: 10.1016/j.jep.2024.117999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine (TCM) has been used for centuries to treat various types of inflammation and tumors of the digestive system. Portulaca oleracea L. (POL), has been used in TCM for thousands of years. The chemical composition of POL is variable and includes flavonoids, alkaloids, terpenoids and organic acids and other classes of natural compounds. Many of these compounds exhibit powerful anti-inflammatory and anti-cancer-transforming effects in the digestive system. AIM OF STUDY In this review, we focus on the potential therapeutic role of POL in NASH, gastritis and colitis and their associated cancers, with a focus on the pharmacological properties and potential mechanisms of action of the main natural active compounds in POL. METHODS The information and data on Portulaca oleracea L. and its main active ingredients were collated from various resources like ethnobotanical textbooks and literature databases such as CNKI, VIP (Chinese literature), PubMed, Science Direct, Elsevier and Google Scholar (English literatures), Wiley, Springer, Tailor and Francis, Scopus, Inflibnet. RESULTS Kaempferol, luteolin, myricetin, quercetin, genistein, EPA, DHA, and melatonin were found to improve NASH and NASH-HCC, while kaempferol, apigenin, luteolin, and quercetin played a therapeutic role in gastritis and gastric cancer. Apigenin, luteolin, myricetin, quercetin, genistein, lupeol, vitamin C and melatonin were found to have therapeutic effects in the treatment of colitis and its associated cancers. The discovery of the beneficial effects of these natural active compounds in POL supports the idea that POL could be a promising novel candidate for the treatment and prevention of inflammation-related cancers of the digestive system. CONCLUSION The discovery of the beneficial effects of these natural active compounds in POL supports the idea that POL could be a promising novel candidate for the treatment and prevention of inflammation-related cancers of the digestive system. However, clinical data describing the mode of action of the naturally active compounds of POL are still lacking. In addition, pharmacokinetic data for POL compounds, such as changes in drug dose and absorption rates, cannot be extrapolated from animal models and need to be measured in patients in clinical trials. On the one hand, a systematic meta-analysis of the existing publications on TCM containing POL still needs to be carried out. On the other hand, studies on the hepatic and renal toxicity of POL are also needed. Additionally, well-designed preclinical and clinical studies to validate the therapeutic effects of TCM need to be performed, thus hopefully providing a basis for the validation of the clinical benefits of POL.
Collapse
Affiliation(s)
- Gaoxuan Shao
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, China
| | - Ying Liu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, China
| | - Lu Lu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, China
| | - Lei Wang
- Department of Hepatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, China.
| | - Hanchen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, China.
| |
Collapse
|
3
|
Akanyibah FA, Zhu Y, Wan A, Ocansey DKW, Xia Y, Fang AN, Mao F. Effects of DNA methylation and its application in inflammatory bowel disease (Review). Int J Mol Med 2024; 53:55. [PMID: 38695222 DOI: 10.3892/ijmm.2024.5379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Inflammatory bowel disease (IBD) is marked by persistent inflammation, and its development and progression are linked to environmental, genetic, immune system and gut microbial factors. DNA methylation (DNAm), as one of the protein modifications, is a crucial epigenetic process used by cells to control gene transcription. DNAm is one of the most common areas that has drawn increasing attention recently, with studies revealing that the interleukin (IL)‑23/IL‑12, wingless‑related integration site, IL‑6‑associated signal transducer and activator of transcription 3, suppressor of cytokine signaling 3 and apoptosis signaling pathways are involved in DNAm and in the pathogenesis of IBD. It has emerged that DNAm‑associated genes are involved in perpetuating the persistent inflammation that characterizes a number of diseases, including IBD, providing a novel therapeutic strategy for exploring their treatment. The present review discusses DNAm‑associated genes in the pathogenesis of IBD and summarizes their application as possible diagnostic, prognostic and therapeutic biomarkers in IBD. This may provide a reference for the particular form of IBD and its related methylation genes, aiding in clinical decision‑making and encouraging therapeutic alternatives.
Collapse
Affiliation(s)
- Francis Atim Akanyibah
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu 222006, P.R. China
| | - Yi Zhu
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, Jiangsu 212300, P.R. China
| | - Aijun Wan
- Zhenjiang College, Zhenjiang, Jiangsu 212028, P.R. China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yuxuan Xia
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - An-Ning Fang
- Basic Medical School, Anhui Medical College, Hefei, Anhui 230061, P.R. China
| | - Fei Mao
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu 222006, P.R. China
| |
Collapse
|
4
|
Guo M, Xia Z, Hong Y, Ji H, Li F, Liu W, Li S, Xin H, Tan K, Lian Z. The TFPI2-PPARγ axis induces M2 polarization and inhibits fibroblast activation to promote recovery from post-myocardial infarction in diabetic mice. J Inflamm (Lond) 2023; 20:35. [PMID: 37915070 PMCID: PMC10621166 DOI: 10.1186/s12950-023-00357-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/15/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Diabetes mellitus is one of the causes of poor ventricular remodelling and poor cardiac recovery after myocardial infarction (MI). We previously reported that tissue factor pathway inhibitor-2 (TFPI2) was downregulated in response to hyperglycaemia and that it played a pivotal role in extracellular matrix (ECM) degradation and cell migration. Nonetheless, the function and mechanism of TFPI2 in post-MI remodelling under diabetic conditions remain unclear. Therefore, in the present study, we investigated the role of TFPI2 in post-MI effects in a diabetic mouse model. RESULTS TFPI2 expression was markedly decreased in the infarcted myocardium of diabetic MI mice compared with that in non-diabetic mice. TFPI2 knockdown in the MI mouse model promoted fibroblast activation and migration as well as matrix metalloproteinase (MMP) expression, leading to disproportionate fibrosis remodelling and poor cardiac recovery. TFPI2 silencing promoted pro-inflammatory M1 macrophage polarization, which is consistent with the results of TFPI2 downregulation and M1 polarization under diabetic conditions. In contrast, TFPI2 overexpression in diabetic MI mice protected against adverse cardiac remodelling and functional deterioration. TFPI2 overexpression also inhibited MMP2 and MMP9 expression and attenuated fibroblast activation and migration, as well as excessive collagen production, in the infarcted myocardium of diabetic mice. TFPI2 promoted an earlier phenotype transition of pro-inflammatory M1 macrophages to reparative M2 macrophages via activation of peroxisome proliferator-activated receptor gamma. CONCLUSIONS This study highlights TFPI2 as a promising therapeutic target for early resolution of post-MI inflammation and disproportionate ECM remodelling under diabetic conditions.
Collapse
Affiliation(s)
- Mengqi Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Zongyi Xia
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Yefeng Hong
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Hongwei Ji
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Fuhai Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Wenheng Liu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Shaohua Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Hui Xin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Kai Tan
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong, China.
| | - Zhexun Lian
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong, China.
| |
Collapse
|
5
|
Ghorbaninejad M, Asadzadeh-Aghdaei H, Baharvand H, Meyfour A. Intestinal organoids: A versatile platform for modeling gastrointestinal diseases and monitoring epigenetic alterations. Life Sci 2023; 319:121506. [PMID: 36858311 DOI: 10.1016/j.lfs.2023.121506] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 03/03/2023]
Abstract
Considering the significant limitations of conventional 2D cell cultures and tissue in vitro models, creating intestinal organoids has burgeoned as an ideal option to recapitulate the heterogeneity of the native intestinal epithelium. Intestinal organoids can be developed from either tissue-resident adult stem cells (ADSs) or pluripotent stem cells (PSCs) in both forms induced PSCs and embryonic stem cells. Here, we review current advances in the development of intestinal organoids that have led to a better recapitulation of the complexity, physiology, morphology, function, and microenvironment of the intestine. We discuss current applications of intestinal organoids with an emphasis on disease modeling. In particular, we point out recent studies on SARS-CoV-2 infection in human intestinal organoids. We also discuss the less explored application of intestinal organoids in epigenetics by highlighting the role of epigenetic modifications in intestinal development, homeostasis, and diseases, and subsequently the power of organoids in mirroring the regulatory role of epigenetic mechanisms in these conditions and introducing novel predictive/diagnostic biomarkers. Finally, we propose 3D organoid models to evaluate the effects of novel epigenetic drugs (epi-drugs) on the treatment of GI diseases where epigenetic mechanisms play a key role in disease development and progression, particularly in colorectal cancer treatment and epigenetically acquired drug resistance.
Collapse
Affiliation(s)
- Mahsa Ghorbaninejad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh-Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Baharvand
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
6
|
Wang H, Cai Y, Jin M, Huang CQ, Ning C, Niu S, Fan L, Li B, Zhang M, Lu Z, Dong X, Luo Z, Zhong R, Li H, Zhu Y, Miao X, Yang X, Chang J, Li N, Tian J. Identification of specific susceptibility loci for the early-onset colorectal cancer. Genome Med 2023; 15:13. [PMID: 36869385 PMCID: PMC9983269 DOI: 10.1186/s13073-023-01163-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 02/15/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND The incidence of early-onset colorectal cancer (EOCRC; patients < 50 years old) has been rising rapidly, whereas the EOCRC genetic susceptibility remains incompletely investigated. Here, we aimed to systematically identify specific susceptible genetic variants for EOCRC. METHODS Two parallel GWASs were conducted in 17,789 CRC cases (including 1490 EOCRC cases) and 19,951 healthy controls. A polygenic risk score (PRS) model was built based on identified EOCRC-specific susceptibility variants by using the UK Biobank cohort. We also interpreted the potential biological mechanisms of the prioritized risk variant. RESULTS We identified 49 independent susceptibility loci that were significantly associated with the susceptibility to EOCRC and the diagnosed age of CRC (both P < 5.0×10-4), replicating 3 previous CRC GWAS loci. There are 88 assigned susceptibility genes involved in chromatin assembly and DNA replication pathways, mainly associating with precancerous polyps. Additionally, we assessed the genetic effect of the identified variants by developing a PRS model. Compared to the individuals in the low genetic risk group, the individuals in the high genetic risk group have increased EOCRC risk, and these results were replicated in the UKB cohort with a 1.63-fold risk (95% CI: 1.32-2.02, P = 7.67×10-6). The addition of the identified EOCRC risk loci significantly increased the prediction accuracy of the PRS model, compared to the PRS model derived from the previous GWAS-identified loci. Mechanistically, we also elucidated that rs12794623 may contribute to the early stage of CRC carcinogenesis via allele-specific regulating the expression of POLA2. CONCLUSIONS These findings will broaden the understanding of the etiology of EOCRC and may facilitate the early screening and individualized prevention.
Collapse
Affiliation(s)
- Haoxue Wang
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan, 430071, China
| | - Yimin Cai
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan, 430071, China
| | - Meng Jin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chao Qun Huang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Caibo Ning
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Siyuan Niu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linyun Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zequn Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuesi Dong
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Chinese Academy of Medical Sciences Key Laboratory for National Cancer Big Data Analysis and Implement, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zilin Luo
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Chinese Academy of Medical Sciences Key Laboratory for National Cancer Big Data Analysis and Implement, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rong Zhong
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Li
- Department of Urology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan, 430071, China
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan, 430071, China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaojun Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China.
| | - Jiang Chang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ni Li
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. .,Chinese Academy of Medical Sciences Key Laboratory for National Cancer Big Data Analysis and Implement, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
7
|
Hurkmans EGE, Brand ACAM, Verdonschot JAJ, te Loo DMWM, Coenen MJH. Pharmacogenetics of chemotherapy treatment response and -toxicities in patients with osteosarcoma: a systematic review. BMC Cancer 2022; 22:1326. [PMID: 36536332 PMCID: PMC9761983 DOI: 10.1186/s12885-022-10434-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Osteosarcoma is the most common bone tumor in children and adolescents. Despite multiagent chemotherapy, only 71% of patients survives and these survivors often experience long-term toxicities. The main objective of this systematic review is to provide an overview of the discovery of novel associations of germline polymorphisms with treatment response and/or chemotherapy-induced toxicities in osteosarcoma. METHODS: MEDLINE and Embase were systematically searched (2010-July 2022). Genetic association studies were included if they assessed > 10 germline genetic variants in > 5 genes in relevant drug pathways or if they used a genotyping array or other large-scale genetic analysis. Quality was assessed using adjusted STrengthening the REporting of Genetic Association studies (STREGA)-guidelines. To find additional evidence for the identified associations, literature was searched to identify replication studies. RESULTS After screening 1999 articles, twenty articles met our inclusion criteria. These range from studies focusing on genes in relevant pharmacokinetic pathways to whole genome sequencing. Eleven articles reported on doxorubicin-induced cardiomyopathy. For seven genetic variants in CELF4, GPR35, HAS3, RARG, SLC22A17, SLC22A7 and SLC28A3, replication studies were performed, however without consistent results. Ototoxicity was investigated in one study. Five small studies reported on mucosistis or bone marrow, nephro- and/or hepatotoxicity. Six studies included analysis for treatment efficacy. Genetic variants in ABCC3, ABCC5, FasL, GLDC, GSTP1 were replicated in studies using heterogeneous efficacy outcomes. CONCLUSIONS Despite that results are promising, the majority of associations were poorly reproducible due to small patient cohorts. For the future, hypothesis-generating studies in large patient cohorts will be necessary, especially for cisplatin-induced ototoxicity as these are largely lacking. In order to form large patient cohorts, national and international collaboration will be essential.
Collapse
Affiliation(s)
- Evelien G. E. Hurkmans
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Annouk C. A. M. Brand
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Job A. J. Verdonschot
- grid.412966.e0000 0004 0480 1382Department of Clinical Genetics and Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - D. Maroeska W. M. te Loo
- grid.10417.330000 0004 0444 9382Department of Pediatrics, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Marieke J. H. Coenen
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands ,grid.5645.2000000040459992XDepartment of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
8
|
Inflammatory auto-immune diseases of the intestine and their management by natural bioactive compounds. Biomed Pharmacother 2022; 151:113158. [PMID: 35644116 DOI: 10.1016/j.biopha.2022.113158] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/08/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022] Open
Abstract
Autoimmune diseases are caused by the overactivity of the immune system towards self-constituents. Risk factors of autoimmune diseases are multiple and include genetic, epigenetic, environmental, and psychological. Autoimmune chronic inflammatory bowel diseases, including celiac and inflammatory diseases (Crohn's disease and ulcerative colitis), constitute a significant health problem worldwide. Besides the complexity of the symptoms of these diseases, their treatments have only been palliative. Numerous investigations showed that natural phytochemicals could be promising strategies to fight against these autoimmune diseases. In this respect, plant-derived natural compounds such as flavonoids, phenolic acids, and terpenoids exhibited significant effects against three autoimmune diseases affecting the intestine, particularly bowel diseases. This review focuses on the role of natural compounds obtained from medicinal plants in modulating inflammatory auto-immune diseases of the intestine. It covers the most recent literature related to the effect of these natural compounds in the treatment and prevention of auto-immune diseases of the intestine.
Collapse
|
9
|
Lee CC, Kuo YC, Hu JM, Chang PK, Sun CA, Yang T, Li CW, Chen CY, Lin FH, Hsu CH, Chou YC. MTNR1B polymorphisms with CDKN2A and MGMT methylation status are associated with poor prognosis of colorectal cancer in Taiwan. World J Gastroenterol 2021; 27:5737-5752. [PMID: 34629798 PMCID: PMC8473598 DOI: 10.3748/wjg.v27.i34.5737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/30/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Identifying novel colorectal cancer (CRC) prognostic biomarkers is crucial to helping clinicians make appropriate therapy decisions. Melatonin plays a major role in managing the circadian rhythm and exerts oncostatic effects on different kinds of tumours.
AIM To explore the relationship between MTNR1B single-nucleotide polymorphism (SNPs) combined with gene hypermethylation and CRC prognosis.
METHODS A total of 94 CRC tumour tissues were investigated. Genotyping for the four MTNR1B SNPs (rs1387153, rs2166706, rs10830963, and rs1447352) was performed using multiplex polymerase chain reaction. The relationships between the MTNR1B SNPs and CRC 5-year overall survival (OS) was assessed by calculating hazard ratios with 95%CIs.
RESULTS All SNPs (rs1387153, rs2166706, rs10830963, and rs1447352) were correlated with decreased 5-year OS. In stratified analysis, rs1387153, rs10830963, and rs1447352 risk genotype combined with CDKN2A and MGMT methylation status were associated with 5-year OS. A strong cumulative effect of the four polymorphisms on CRC prognosis was observed. Four haplotypes of MTNR1B SNPs were also associated with the 5-year OS. MTNR1B SNPs combined with CDKN2A and MGMT gene methylation status could be used to predict shorter CRC survival.
CONCLUSION The novel genetic biomarkers combined with epigenetic biomarkers may be predictive tool for CRC prognosis and thus could be used to individualise treatment for patients with CRC.
Collapse
Affiliation(s)
- Chia-Cheng Lee
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Medical Informatics Office, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Yu-Cheng Kuo
- School of Public Health, National Defense Medical Center, Taipei 114, Taiwan
| | - Je-Ming Hu
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Pi-Kai Chang
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Chien-An Sun
- Department of Public Health, College of Medicine, Fu-Jen Catholic University, New Taipei City 24205, Taiwan
- Big Data Research Center, College of Medicine, Fu-Jen Catholic University, New Taipei City 24205, Taiwan
| | - Tsan Yang
- Department of Health Business Administration, Meiho University, Pingtung 91202, Taiwan
| | - Chuan-Wang Li
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 114, Taiwan
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 237, Taiwan
| | - Chao-Yang Chen
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Fu-Huang Lin
- School of Public Health, National Defense Medical Center, Taipei 114, Taiwan
| | - Chih-Hsiung Hsu
- School of Public Health, National Defense Medical Center, Taipei 114, Taiwan
| | - Yu-Ching Chou
- School of Public Health, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
10
|
Meijer AJM, Diepstraten FA, Langer T, Broer L, Domingo IK, Clemens E, Uitterlinden AG, de Vries ACH, van Grotel M, Vermeij WP, Ozinga RA, Binder H, Byrne J, van Dulmen-den Broeder E, Garrè ML, Grabow D, Kaatsch P, Kaiser M, Kenborg L, Winther JF, Rechnitzer C, Hasle H, Kepak T, Kepakova K, Tissing WJE, van der Kooi ALF, Kremer LCM, Kruseova J, Pluijm SMF, Kuehni CE, van der Pal HJH, Parfitt R, Spix C, Tillmanns A, Deuster D, Matulat P, Calaminus G, Hoetink AE, Elsner S, Gebauer J, Haupt R, Lackner H, Blattmann C, Neggers SJCMM, Rassekh SR, Wright GEB, Brooks B, Nagtegaal AP, Drögemöller BI, Ross CJD, Bhavsar AP, Am Zehnhoff-Dinnesen AG, Carleton BC, Zolk O, van den Heuvel-Eibrink MM. TCERG1L allelic variation is associated with cisplatin-induced hearing loss in childhood cancer, a PanCareLIFE study. NPJ Precis Oncol 2021; 5:64. [PMID: 34262104 PMCID: PMC8280110 DOI: 10.1038/s41698-021-00178-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/16/2021] [Indexed: 12/24/2022] Open
Abstract
In children with cancer, the heterogeneity in ototoxicity occurrence after similar treatment suggests a role for genetic susceptibility. Using a genome-wide association study (GWAS) approach, we identified a genetic variant in TCERG1L (rs893507) to be associated with hearing loss in 390 non-cranial irradiated, cisplatin-treated children with cancer. These results were replicated in two independent, similarly treated cohorts (n = 192 and 188, respectively) (combined cohort: P = 5.3 × 10-10, OR 3.11, 95% CI 2.2-4.5). Modulating TCERG1L expression in cultured human cells revealed significantly altered cellular responses to cisplatin-induced cytokine secretion and toxicity. These results contribute to insights into the genetic and pathophysiological basis of cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- A J M Meijer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| | - F A Diepstraten
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - T Langer
- Department of Pediatric Oncology and Hematology, University Hospital for Children and Adolescents, Lübeck, Germany
| | - L Broer
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - I K Domingo
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - E Clemens
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - A G Uitterlinden
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - A C H de Vries
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - M van Grotel
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - W P Vermeij
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - R A Ozinga
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - H Binder
- German Childhood Cancer Registry, Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - J Byrne
- Boyne Research Institute, Drogheda, Ireland
| | - E van Dulmen-den Broeder
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- VU Medical Center, Amsterdam, The Netherlands
| | - M L Garrè
- Department of Neurooncology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - D Grabow
- German Childhood Cancer Registry, Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - P Kaatsch
- German Childhood Cancer Registry, Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - M Kaiser
- German Childhood Cancer Registry, Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - L Kenborg
- Childhood Cancer Research Group, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - J F Winther
- Childhood Cancer Research Group, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University and University Hospital, Aarhus, Denmark
| | - C Rechnitzer
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - H Hasle
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
| | - T Kepak
- University Hospital Brno, Brno, Czech Republic
- International Clinical Research Center (FNUSA-ICRC), Brno, Czech Republic
| | - K Kepakova
- University Hospital Brno, Brno, Czech Republic
- International Clinical Research Center (FNUSA-ICRC), Brno, Czech Republic
| | - W J E Tissing
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - A L F van der Kooi
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Obstetrics and Gynecology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - L C M Kremer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Oncology, Academic Medical Center Amsterdam, Amsterdam, The Netherlands
| | - J Kruseova
- Department of Children Hemato-Oncology, Motol University Hospital Prague, Prague, Czech Republic
| | - S M F Pluijm
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - C E Kuehni
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Pediatric Hematology and Oncology, University Children's Hospital Bern, University of Bern, Bern, Switzerland
| | - H J H van der Pal
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Oncology, Academic Medical Center Amsterdam, Amsterdam, The Netherlands
| | - R Parfitt
- Department of Phoniatrics and Pedaudiology, University Hospital Münster, Westphalian Wilhelm University, Münster, Germany
| | - C Spix
- German Childhood Cancer Registry, Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - A Tillmanns
- Department of Phoniatrics and Pedaudiology, University Hospital Münster, Westphalian Wilhelm University, Münster, Germany
| | - D Deuster
- Department of Phoniatrics and Pedaudiology, University Hospital Münster, Westphalian Wilhelm University, Münster, Germany
| | - P Matulat
- Department of Phoniatrics and Pedaudiology, University Hospital Münster, Westphalian Wilhelm University, Münster, Germany
| | - G Calaminus
- Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - A E Hoetink
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Utrecht, Utrecht, The Netherlands
| | - S Elsner
- Institute of Social Medicine and Epidemiology, University of Lübeck, Lübeck, Germany
| | - J Gebauer
- Department of Internal Medicine, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - R Haupt
- Epidemiology and Biostatistics Unit and DOPO Clinic, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - H Lackner
- Department of Pediatric and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - C Blattmann
- Department of Pediatric Oncology/Hematology/Immunology, Stuttgart Cancer Center, Olgahospital, Stuttgart, Germany
| | - S J C M M Neggers
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - S R Rassekh
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Division of Translational Therapeutics, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - G E B Wright
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Division of Translational Therapeutics, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - B Brooks
- Audiology and Speech Pathology Department, BC Children's Hospital, Vancouver, BC, Canada
| | - A P Nagtegaal
- Departement of Otorhinolaryngology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - B I Drögemöller
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, British Columbia, Canada
| | - C J D Ross
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, British Columbia, Canada
| | - A P Bhavsar
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - A G Am Zehnhoff-Dinnesen
- Department of Phoniatrics and Pedaudiology, University Hospital Münster, Westphalian Wilhelm University, Münster, Germany
| | - B C Carleton
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, British Columbia, Canada
| | - O Zolk
- Institute of Clinical Pharmacology, Brandenburg Medical School, Rüdersdorf, Germany
| | - M M van den Heuvel-Eibrink
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
11
|
Kobayashi H, Imanaka S. Toward an understanding of tissue factor pathway inhibitor-2 as a novel serodiagnostic marker for clear cell carcinoma of the ovary. J Obstet Gynaecol Res 2021; 47:2978-2989. [PMID: 34184357 DOI: 10.1111/jog.14916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 12/19/2022]
Abstract
AIMS Tissue factor pathway inhibitor (TFPI)-2 has recently emerged as a serodiagnostic marker for patients with epithelial ovarian cancer (EOC), especially clear cell carcinoma (CCC). This review discusses the biological properties of TFPI-2 and why serum levels are elevated in CCC patients. METHODS A comprehensive literature search was conducted in PubMed up until March, 2021. RESULTS TFPI-2 is a Kunitz-type protease inhibitor and negatively regulates the enzymatic activities, such as plasmin. TFPI-2 has been characterized as a tumor suppressor gene and was frequently downregulated through promoter hypermethylation in various human cancers. In contrast, TFPI-2 was overexpressed only in CCC. TFPI-2 may be involved in the pathophysiology of CCC, possibly through regulation of coagulation system, stabilization of extracellular matrix (ECM), and induction of intracellular signal transduction. TFPI-2 suppresses tissue factor-induced hypercoagulation in a hypoxic environment. TFPI-2, secreted by CCC cells, platelets, and adjacent vascular endothelial cells, may suppress tumor growth and invasion through ECM remodeling. Nuclear TFPI-2 may suppress matrix metalloproteinase production via transcription factors and modulate caspase-mediated cell apoptosis. CCC cells may upregulate the TFPI-2 expression to adapt to survival in the demanding environment. TFPI-2 is secreted by CCC cells and enters the systemic circulation, resulting in elevated blood levels. DISCUSSION Serum TFPI-2 reflects the overexpression of TFPI-2 in CCC tissues and is a potential serodiagnostic marker. Further research is needed to explore the expression, clinical significance, biological function, and potential mechanism of TFPI-2 in CCC.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara, Japan.,Ms. Clinic MayOne, Kashihara, Nara, Japan
| | - Shogo Imanaka
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara, Japan.,Ms. Clinic MayOne, Kashihara, Nara, Japan
| |
Collapse
|
12
|
Yi JM. DNA Methylation Change Profiling of Colorectal Disease: Screening towards Clinical Use. Life (Basel) 2021; 11:life11050412. [PMID: 33946400 PMCID: PMC8147151 DOI: 10.3390/life11050412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
Colon cancer remains one of the leading causes of cancer-related deaths worldwide. Transformation of colon epithelial cells into invasive adenocarcinomas has been well known to be due to the accumulation of multiple genetic and epigenetic changes. In the past decade, the etiology of inflammatory bowel disease (IBD) which is characterized by chronic inflammation of the intestinal mucosa, was only partially explained by genetic studies providing susceptibility loci, but recently epigenetic studies have provided critical evidences affecting IBD pathogenesis. Over the past decade, A deep understanding of epigenetics along with technological advances have led to identifying numerous genes that are regulated by promoter DNA hypermethylation in colorectal diseases. Recent advances in our understanding of the role of DNA methylation in colorectal diseases could improve a multitude of powerful DNA methylation-based biomarkers, particularly for use as diagnosis, prognosis, and prediction for therapeutic approaches. This review focuses on the emerging potential for translational research of epigenetic alterations into clinical utility as molecular biomarkers. Moreover, this review discusses recent progress regarding the identification of unknown hypermethylated genes in colon cancers and IBD, as well as their possible role in clinical practice, which will have important clinical significance, particularly in the era of the personalized medicine.
Collapse
Affiliation(s)
- Joo Mi Yi
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan 47392, Korea;
- Innovative Therapeutics Research Institute, College of Medicine, Inje University, Busan 47392, Korea
| |
Collapse
|
13
|
Dong Y, Lei J, Zhang B. Dietary Quercetin Alleviated DSS-induced Colitis in Mice Through Several Possible Pathways by Transcriptome Analysis. Curr Pharm Biotechnol 2021; 21:1666-1673. [PMID: 32651963 DOI: 10.2174/1389201021666200711152726] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/08/2020] [Accepted: 06/11/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The prevalence of inflammatory bowel disease is rapidly increasing around the world. Quercetin is a flavonoid commonly found in vegetables and fruits and has been reported to exert numerous pharmacological activities such as enhancing antioxidant capacity or suppressing inflammation. OBJECTIVE We aimed to explore whether quercetin was effective for IBD and the underlying mechanism of quercetin for the ameliorative effects on the DSS-induced colitis in mice. METHODS Thirty-six mice were randomly assigned to three treatments, including the control group (Ctr), DSS-induced colitis group (DSS) and DSS-induced colitis supplemented with 500 ppm quercetin (DQ500). Colitis was induced by DSS intake, and body weight was recorded every day. After six days administration of DSS, intestinal permeability was measured, and the liver was taken for antioxidant enzyme tests. Colonic tissue was taken for the histopathlogical score and RNA-sequencing analysis. RESULTS In this experiment, dietary quercetin for 500ppm alleviated the DSS-induced colitis, possibly by strengthening intestinal integrity, liver antioxidant capacity. Based on the results of the transcriptome of colon tissue, several key genes were modulated by quercetin. ERK1/2-FKBP pathway and RXR-STAT3 pathway were involved in the development of IBD, furthermore, in the down-regulation of S100a8/9, FBN2 contributed to lowering the risk of colongenesis. CONCLUSION We demonstrated that dietary quercetin alleviated the DSS-induced colitis in mice. This is most likely due to its beneficial effects on intestinal integrity and modulation of several key pathways. Based on our research, quercetin was a promising candidate for IBD and its pharmaceutical effects on both IBD and colongenesis need further research.
Collapse
Affiliation(s)
- Yuanyang Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, China
| | - Jiaqi Lei
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Hashimoto-Hill S, Kelly D, Alenghat T. Epigenomics of intestinal disease. MEDICAL EPIGENETICS 2021:213-230. [DOI: 10.1016/b978-0-12-823928-5.00018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
15
|
Kim TO, Park DI, Han YK, Kang K, Park SG, Park HR, Yi JM. Genome-Wide Analysis of the DNA Methylation Profile Identifies the Fragile Histidine Triad ( FHIT) Gene as a New Promising Biomarker of Crohn's Disease. J Clin Med 2020; 9:jcm9051338. [PMID: 32375395 PMCID: PMC7291297 DOI: 10.3390/jcm9051338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/26/2022] Open
Abstract
Inflammatory bowel disease is known to be associated with a genetic predisposition involving multiple genes; however, there is growing evidence that abnormal interactions with environmental factors, particularly epigenetic factors, can also significantly contribute to the development of inflammatory bowel disease (IBD). Although many genome-wide association studies have been performed to identify the genetic changes underlying the pathogenesis of Crohn’s disease, the role of epigenetic alterations based on molecular complications arising from Crohn’s disease (CD) is poorly understood. We employed an unbiased approach to define DNA methylation alterations in colonoscopy samples from patients with CD using the HumanMethylation450K BeadChip platform. Technical and functional validation was performed by methylation-specific PCR (MSP) and bisulfite sequencing of a validation set of 207 patients with CD samples. Immunohistochemistry (IHC) analysis was performed in the representative sample sets. DNA methylation profile in CD revealed that 135 probes (24 hypermethylated and 111 hypomethylated probes) were differentially methylated. We validated the methylation levels of 19 genes that showed hypermethylation in patients with CD compared with normal controls. We uniquely identified that the fragile histidine triad (FHIT) gene was hypermethylated in a disease-specific manner and its protein level was downregulated in patients with CD. Pathway analysis of the hypermethylated candidates further suggested putative molecular interactions relevant to IBD pathology. Our data provide information on the biological and clinical implications of DNA hypermethylated genes in CD, identifying FHIT methylation as a promising new biomarker for CD. Further study of the role of FHIT in IBD pathogenesis may lead to the development of new therapeutic targets.
Collapse
Affiliation(s)
- Tae-Oh Kim
- Department of Internal Medicine, Inje University, Haeundae Paik Hospital, Busan 48108, Korea;
| | - Dong-Il Park
- Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Korea;
| | - Yu Kyeong Han
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan 47392, Korea; (Y.K.H.); (S.-G.P.)
| | - Keunsoo Kang
- Department of Microbiology, Dankook University, Cheonan 31116, Korea;
| | - Sae-Gwang Park
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan 47392, Korea; (Y.K.H.); (S.-G.P.)
| | - Hae Ryoun Park
- Department of Oral Pathology, School of Dentistry, Pusan National University, Yangsan, Gyeongsangnam do 50612, Korea;
| | - Joo Mi Yi
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan 47392, Korea; (Y.K.H.); (S.-G.P.)
- Correspondence: ; Tel.: +82-51-890-6734
| |
Collapse
|
16
|
Bagheri H, Mosallaei M, Bagherpour B, Khosravi S, Salehi AR, Salehi R. TFPI2 and NDRG4 gene promoter methylation analysis in peripheral blood mononuclear cells are novel epigenetic noninvasive biomarkers for colorectal cancer diagnosis. J Gene Med 2020; 22:e3189. [PMID: 32196834 DOI: 10.1002/jgm.3189] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND As a result of the growing prevalence of colorectal cancer (CRC), new screening and early detection methods are required. Among the novel biomarkers, DNA methylation has emerged as a high-potential diagnosis/screening molecular marker. The present study aimed to assess non-invasive early diagnosis of CRC by examining promoter methylation of TFPI2 and NDRG4 genes in peripheral blood mononuclear cells (PBMCs). METHODS Fifty CRC patients and 50 normal controls were recruited to the present study. Quantitative methylation of the promoter region of the TFPI2 and NDRG4 genes was analyzed in DNA extracted from PBMCs of all cases and control subjects using a methylation-quantification endonuclease-resistant DNA (MethyQESD) method. RESULTS The sensitivity and specificity of the TFPI2 gene for the diagnosis of CRC was 88% and 92%, respectively, and, for the NDRG4 gene, it was 86% and 92%, respectively. The methylation range for the TFPI2 gene was 43.93% and 11.56% in patients and controls, respectively, and, for the NDRG4 gene, it was 38.8% in CRC patients and 12.23% in healthy controls (p < 0.001). In addition, we observed that a higher percentage of methylation was correlated with the higher stage of CRC. CONCLUSIONS The results of the present study reveal that PBMCs are reliable sources of methylation analysis for CRC screening. Furthermore, the TFPI2 and NDRG4 genes provide sufficiently high sensitivity and specificity to be nominated for use in a novel noninvasive CRC screening method in PBMCs.
Collapse
Affiliation(s)
- Hadi Bagheri
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Meysam Mosallaei
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahram Bagherpour
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Gerfa Namayesh Azmayesh (GENAZMA) Science & Research Institute, Isfahan, Iran
| | - Sharifeh Khosravi
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad Reza Salehi
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rasoul Salehi
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Gerfa Namayesh Azmayesh (GENAZMA) Science & Research Institute, Isfahan, Iran
| |
Collapse
|
17
|
Role of fibrillin-2 in the control of TGF-β activation in tumor angiogenesis and connective tissue disorders. Biochim Biophys Acta Rev Cancer 2020; 1873:188354. [PMID: 32119940 DOI: 10.1016/j.bbcan.2020.188354] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 01/01/2023]
Abstract
Fibrillins constitute a family of large extracellular glycoproteins which multimerize to form microfibrils, an important structure in the extracellular matrix. It has long been assumed that fibrillin-2 was barely present during postnatal life, but it is now clear that fibrillin-2 molecules form the structural core of microfibrils, and are masked by an outer layer of fibrillin-1. Mutations in fibrillins give rise to heritable connective tissue disorders, including Marfan syndrome and congenital contractural arachnodactyly. Fibrillins also play an important role in matrix sequestering of members of the transforming growth factor-β family, and in context of Marfan syndrome excessive TGF-β activation has been observed. TGF-β activation is highly dependent on integrin binding, including integrin αvβ8 and αvβ6, which are upregulated upon TGF-β exposure. TGF-β is also involved in tumor progression, metastasis, epithelial-to-mesenchymal transition and tumor angiogenesis. In several highly vascularized types of cancer such as hepatocellular carcinoma, a positive correlation was found between increased TGF-β plasma concentrations and tumor vascularity. Interestingly, fibrillin-1 has a higher affinity to TGF-β and, therefore, has a higher capacity to sequester TGF-β compared to fibrillin-2. The previously reported downregulation of fibrillin-1 in tumor endothelium affects the fibrillin-1/fibrillin-2 ratio in the microfibrils, exposing the normally hidden fibrillin-2. We postulate that fibrillin-2 exposure in the tumor endothelium directly stimulates tumor angiogenesis by influencing TGF-β sequestering by microfibrils, leading to a locally higher active TGF-β concentration in the tumor microenvironment. From a therapeutic perspective, fibrillin-2 might serve as a potential target for future anti-cancer therapies.
Collapse
|
18
|
Kim TO, Han YK, Yi JM. Hypermethylated promoters of tumor suppressor genes were identified in Crohn's disease patients. Intest Res 2020; 18:297-305. [PMID: 32019290 PMCID: PMC7385571 DOI: 10.5217/ir.2019.00105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/18/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND/AIMS Overwhelming evidence suggests that inflammatory bowel disease (IBD) is caused by a complicated interplay between the multiple genes and abnormal epigenetic regulation in response to environmental factors. It is becoming apparent that epigenetic factors are significantly associated with the development of the disease. DNA methylation remains the most studied epigenetic modification, and hypermethylation of gene promoters is associated with gene silencing. METHODS DNA methylation alterations may contribute to the many complex diseases development by regulating the interplay between external and internal environmental factors and gene transcriptional expression. In this study, we used 15 tumor suppressor genes (TSGs), originally identified in colon cancer, to detect promoter methylation in patients with Crohn's disease (CD). Methylation specific polymerase chain reaction and bisulfite sequencing analyses were performed to assess methylation level of TSGs in CD patients. RESULTS We found 6 TSGs (sFRP1, sFRP2, sFRP5, TFPI2, Sox17, and GATA4) are robustly hypermethylated in CD patient samples. Bisulfite sequencing analysis confirmed the methylation levels of the sFRP1, sFRP2, sFRP5, TFPI2, Sox17, and GATA4 promoters in the representative CD patient samples. CONCLUSIONS In this study, the promoter hypermethylation of the TSGs observed indicates that CD exhibits specific DNA methylation signatures with potential clinical applications for the noninvasive diagnosis of IBD and the prognosis for patients with IBD.
Collapse
Affiliation(s)
- Tae-Oh Kim
- Department of Internal Medicine, Inje University Haeundae Paik Hospital, Busan, Korea
| | - Yu Kyeong Han
- Department of Microbiology and Immunology, Inje University College of Medicine, Busan, Korea
| | - Joo Mi Yi
- Department of Microbiology and Immunology, Inje University College of Medicine, Busan, Korea
| |
Collapse
|
19
|
Hsu CH, Hsiao CW, Sun CA, Wu WC, Yang T, Hu JM, Liao YC, Huang CH, Chen CY, Lin FH, Chou YC. Multiple gene promoter methylation and clinical stage in adjacent normal tissues: Effect on prognosis of colorectal cancer in Taiwan. Sci Rep 2020; 10:145. [PMID: 31924802 PMCID: PMC6954240 DOI: 10.1038/s41598-019-56691-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/16/2019] [Indexed: 12/16/2022] Open
Abstract
This study provide an insight that the panel genes methylation status in different clinical stage tended to reflect a different prognosis even in matched normal tissues, to clinical recommendation. We enrolled 153 colorectal cancer patients from a medical center in Taiwan and used the candidate gene approach to select five genes involved in carcinogenesis pathways. We analyzed the relationship between DNA methylation with different cancer stages and the prognostic outcome. There were significant trends of increasing risk of 5-year time to progression and event-free survival of subjects with raising number of hypermethylation genes both in normal tissue and tumor tissue. The group with two or more genes with aberrant methylation in the advanced cancer stages (Me/advanced) had lower 5-year event-free survival among patients with colorectal cancer in either normal or tumor tissue. The adjusted hazard ratios in the group with two or more genes with aberrant methylation with advanced cancer stages (Me/advanced) were 8.04 (95% CI, 2.80–23.1; P for trend <0.01) and 8.01 (95% CI, 1.92–33.4; P for trend <0.01) in normal and tumor tissue, respectively. DNA methylation status was significantly associated with poor prognosis outcome. This finding in the matched normal tissues of colorectal cancer patients could be an alternative source of prognostic markers to assist clinical decision making.
Collapse
Affiliation(s)
- Chih-Hsiung Hsu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Teaching Office, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Cheng-Wen Hsiao
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chien-An Sun
- Department of Public Health, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan, Republic of China.,Big Data Research Center, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan, Republic of China
| | - Wen-Chih Wu
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Department of Surgery, Suao and Yuanshan branches of Taipei Veterans General Hospital, Yilan County, Taiwan, Republic of China
| | - Tsan Yang
- Department of Health Business Administration, Meiho University, Pingtung County, Taiwan, Republic of China
| | - Je-Ming Hu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Adjunct Instructor, School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Yu-Chan Liao
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chi-Hua Huang
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chao-Yang Chen
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Adjunct Instructor, School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Fu-Huang Lin
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Yu-Ching Chou
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China. .,School of Public Health, National Defense Medical Center, Taipei, Taiwan, Republic of China.
| |
Collapse
|
20
|
Cheng J, Chen Y, Zhao P, Li N, Lu J, Li J, Liu Z, Lv Y, Huang C. Dysregulation of miR-638 in hepatocellular carcinoma and its clinical significance. Oncol Lett 2017; 13:3859-3865. [PMID: 28529597 DOI: 10.3892/ol.2017.5882] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/06/2017] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) have been identified as important post-transcriptional regulators in healthy liver physiology and liver diseases. However, the clinical significance of miR-638 in hepatocellular carcinoma (HCC) remains unclear. The aim of the present study was to investigate the status of miR-638 expression in HCC and to determine its clinical significance. The expression of miR-638 was evaluated in 60 HCC tissues samples and HCC SMMC-7721, HepG2 and Hep3B cell lines using reverse transcription-quantitative polymerase chain reaction. The association between the expression of miR-638 and the clinicopathological characteristics of patients with HCC was analyzed. The proportion of HCC patients with low miR-638 expression was identified as 68.3% (41/60). Furthermore, significantly lower miR-638 expression was identified in HCC tissue samples compared with the healthy control group (P=0.031). miR-638 expression was significantly lower in SMMC-7721 (P=0.021), HepG2 (P=0.005) and Hep3B (P=0.003) cells compared with the healthy human hepatic HL-7702 cell line. In addition, miR-638 expression was correlated with α-fetoprotein levels (P=0.042) and portal vein invasion (P=0.025). The area under curve was identified as 0.71 (95% confidence interval=0.63-0.79; P=0.001). The cut-off value for miR-638 was the median 2-Δ∆Cq=0.125. In conclusion, miR-638 may be involved in the progression of HCC and act as a potential biomarker for the prediction of HCC.
Collapse
Affiliation(s)
- Jiwen Cheng
- Department of Hepatobiliary Surgery, Institute of Advanced Surgical Technology and Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China.,Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yanke Chen
- Department of Genetics and Cell Biology, Environment and Genes Related to Diseases Key Laboratory of Education Ministry, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Pu Zhao
- Department of Neonatology, The Third Affiliated Hospital of the School of Medicine of Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| | - Na Li
- Department of Infectious Diseases, The First Affiliated Hospital of The School of Medicine of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jianwen Lu
- Department of Hepatobiliary Surgery, Institute of Advanced Surgical Technology and Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jianhui Li
- Department of Surgical Oncology, The Third Affiliated Hospital of The School of Medicine of Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| | - Zhengwen Liu
- Department of Infectious Diseases, The First Affiliated Hospital of The School of Medicine of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yi Lv
- Department of Hepatobiliary Surgery, Institute of Advanced Surgical Technology and Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Chen Huang
- Department of Genetics and Cell Biology, Environment and Genes Related to Diseases Key Laboratory of Education Ministry, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
21
|
A Genome-Wide Methylation Approach Identifies a New Hypermethylated Gene Panel in Ulcerative Colitis. Int J Mol Sci 2016; 17:ijms17081291. [PMID: 27517910 PMCID: PMC5000688 DOI: 10.3390/ijms17081291] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/26/2016] [Accepted: 08/03/2016] [Indexed: 12/12/2022] Open
Abstract
The cause of inflammatory bowel disease (IBD) is still unknown, but there is growing evidence that environmental factors such as epigenetic changes can contribute to the disease etiology. The aim of this study was to identify newly hypermethylated genes in ulcerative colitis (UC) using a genome-wide DNA methylation approach. Using an Infinium HumanMethylation450 BeadChip array, we screened the DNA methylation changes in three normal colon controls and eight UC patients. Using these methylation profiles, 48 probes associated with CpG promoter methylation showed differential hypermethylation between UC patients and normal controls. Technical validations for methylation analyses in a larger series of UC patients (n = 79) were performed by methylation-specific PCR (MSP) and bisulfite sequencing analysis. We finally found that three genes (FAM217B, KIAA1614 and RIBC2) that were significantly elevating the promoter methylation levels in UC compared to normal controls. Interestingly, we confirmed that three genes were transcriptionally silenced in UC patient samples by qRT-PCR, suggesting that their silencing is correlated with the promoter hypermethylation. Pathway analyses were performed using GO and KEGG databases with differentially hypermethylated genes in UC. Our results highlight that aberrant hypermethylation was identified in UC patients which can be a potential biomarker for detecting UC. Moreover, pathway-enriched hypermethylated genes are possibly implicating important cellular function in the pathogenesis of UC. Overall, this study describes a newly hypermethylated gene panel in UC patients and provides new clinical information that can be used for the diagnosis and therapeutic treatment of IBD.
Collapse
|
22
|
The Epigenetic Reprogramming Roadmap in Generation of iPSCs from Somatic Cells. J Genet Genomics 2015; 42:661-70. [PMID: 26743984 DOI: 10.1016/j.jgg.2015.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 10/09/2015] [Accepted: 10/15/2015] [Indexed: 12/30/2022]
Abstract
Reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) is a comprehensive epigenetic process involving genome-wide modifications of histones and DNA methylation. This process is often incomplete, which subsequently affects iPSC reprogramming, pluripotency, and differentiation capacity. Here, we review the epigenetic changes with a focus on histone modification (methylation and acetylation) and DNA modification (methylation) during iPSC induction. We look at changes in specific epigenetic signatures, aberrations and epigenetic memory during reprogramming and small molecules influencing the epigenetic reprogramming of somatic cells. Finally, we discuss how to improve iPSC generation and pluripotency through epigenetic manipulations.
Collapse
|
23
|
Yi JM, Kim TO. Epigenetic alterations in inflammatory bowel disease and cancer. Intest Res 2015; 13:112-21. [PMID: 25931995 PMCID: PMC4414752 DOI: 10.5217/ir.2015.13.2.112] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 01/14/2015] [Accepted: 01/14/2015] [Indexed: 12/15/2022] Open
Abstract
Overwhelming evidences supports the idea that inflammatory bowel disease (IBD) is caused by a complex interplay between genetic alterations of multiple genes and an aberrant interaction with environmental factors. There is growing evidence that epigenetic factors can play a significant part in the pathogenesis of IBD. Significant effort has been invested in uncovering genetic and epigenetic factors, which may increase the risk of IBD, but progress has been slow, and few IBD-specific factors have been detected so far. It has been known for decades that DNA methylation is the most well studied epigenetic modification, and analysis of DNA methylation is leading to a new generation of cancer biomarkers. Therefore, in this review, we summarize the role of DNA methylation alteration in IBD pathogenesis, and discuss specific genes or genetic loci using recent molecular technology advances. Here, we suggest that DNA methylation should be studied in depth to understand the molecular pathways of IBD pathogenesis, and discuss epigenetic studies of IBD that may have a significant impact on the field of IBD research.
Collapse
Affiliation(s)
- Joo Mi Yi
- Research Institute, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, Korea
| | - Tae Oh Kim
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| |
Collapse
|
24
|
Herszényi L, Barabás L, Miheller P, Tulassay Z. Colorectal cancer in patients with inflammatory bowel disease: the true impact of the risk. Dig Dis 2014; 33:52-7. [PMID: 25531497 DOI: 10.1159/000368447] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Patients with long-standing inflammatory bowel disease (IBD) have an increased risk of colorectal cancer (CRC). The association between IBD and CRC is well supported, but reported risk estimates vary widely. Although recent evidence from population-based studies reports a decline in risk, CRC accounts for 10-15% of all deaths in IBD. The potential causes of recent epidemiological trends and the real magnitude of risk of CRC in IBD are subjects of debate. The molecular pathway leading to CRC differs from the classic adenoma-to-CRC sequence. Chronic inflammation contributes to the development of low- and high-grade dysplasia which may further convert into CRC. Patients with a young age at onset, long-standing and extensive colitis with severe inflammatory burden, a family history of sporadic CRC, and concomitant primary sclerosing cholangitis are at greatest risk. The CRC risk in patients with colonic Crohn's disease is similar to that of ulcerative colitis. IBD-associated CRC can frequently be detected at late stages and at a younger age. The long-term prognosis of CRC may be poorer in patients with IBD than in those with sporadic CRC. Regular surveillance colonoscopies may permit earlier detection of CRC, with a corresponding improved prognosis. The interval between surveillance colonoscopies is dependent on each patient's personal risk profile.
Collapse
Affiliation(s)
- László Herszényi
- Second Departments of Internal Medicine, Semmelweis University, Budapest, Hungary
| | | | | | | |
Collapse
|
25
|
Analysis of genome-wide copy number variations in Chinese indigenous and western pig breeds by 60 K SNP genotyping arrays. PLoS One 2014; 9:e106780. [PMID: 25198154 PMCID: PMC4157799 DOI: 10.1371/journal.pone.0106780] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 08/07/2014] [Indexed: 12/28/2022] Open
Abstract
Copy number variations (CNVs) represent a substantial source of structural variants in mammals and contribute to both normal phenotypic variability and disease susceptibility. Although low-resolution CNV maps are produced in many domestic animals, and several reports have been published about the CNVs of porcine genome, the differences between Chinese and western pigs still remain to be elucidated. In this study, we used Porcine SNP60 BeadChip and PennCNV algorithm to perform a genome-wide CNV detection in 302 individuals from six Chinese indigenous breeds (Tongcheng, Laiwu, Luchuan, Bama, Wuzhishan and Ningxiang pigs), three western breeds (Yorkshire, Landrace and Duroc) and one hybrid (Tongcheng×Duroc). A total of 348 CNV Regions (CNVRs) across genome were identified, covering 150.49 Mb of the pig genome or 6.14% of the autosomal genome sequence. In these CNVRs, 213 CNVRs were found to exist only in the six Chinese indigenous breeds, and 60 CNVRs only in the three western breeds. The characters of CNVs in four Chinese normal size breeds (Luchuan, Tongcheng and Laiwu pigs) and two minipig breeds (Bama and Wuzhishan pigs) were also analyzed in this study. Functional annotation suggested that these CNVRs possess a great variety of molecular function and may play important roles in phenotypic and production traits between Chinese and western breeds. Our results are important complementary to the CNV map in pig genome, which provide new information about the diversity of Chinese and western pig breeds, and facilitate further research on porcine genome CNVs.
Collapse
|
26
|
Berdiel-Acer M, Cuadras D, Díaz-Maroto NG, Sanjuan X, Serrano T, Berenguer A, Moreno V, Gonçalves-Ribeiro S, Salazar R, Villanueva A, Molleví DG. A monotonic and prognostic genomic signature from fibroblasts for colorectal cancer initiation, progression, and metastasis. Mol Cancer Res 2014; 12:1254-66. [PMID: 24829396 DOI: 10.1158/1541-7786.mcr-14-0121] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
UNLABELLED The differential gene expression patterns between normal colonic fibroblasts (NCF), carcinoma-associated fibroblasts from primary tumors (CAF-PT), and CAFs from hepatic metastasis (CAF-LM) are hypothesized to be useful for predicting relapse in primary tumors. A transcriptomic profile of NCF (n = 9), CAF-PT (n = 14), and CAF-LM (n = 11) was derived. Prediction Analysis of Microarrays (PAM) was used to obtain molecular details for each fibroblast class, and differentially expressed transcripts were used to classify patients according to recurrence status. A number of transcripts (n = 277) were common to all three types of fibroblasts and whose expression level was sequentially deregulated according to the transition: NCF→CAF-PT→CAF-LM. Importantly, the gene signature was able to accurately classify patients with primary tumors according to their prognosis. This capacity was exploited to obtain a refined 19-gene classifier that predicted recurrence with high accuracy in two independent datasets of patients with colorectal cancer and correlates with fibroblast migratory potential. The prognostic power of this genomic signature is strong evidence of the link between the tumor-stroma microenvironment and cancer progression. Furthermore, the 19-gene classifier was able to identify low-risk patients very accurately, which is of particular importance for stage II patients, who would benefit from the omission of chemotherapy, especially T4N0 patients, who are clinically classified as being at high risk. IMPLICATIONS A defined stromal gene expression signature predicts relapse in patients with colorectal cancer.
Collapse
Affiliation(s)
- Mireia Berdiel-Acer
- Translational Research Laboratory, Department of Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Catalonia, Spain
| | | | | | - Xavier Sanjuan
- Pathology Department, Hospital Universitari de Bellvitge-IDIBELL, IDIBELL, Barcelona; and
| | - Teresa Serrano
- Pathology Department, Hospital Universitari de Bellvitge-IDIBELL, IDIBELL, Barcelona; and
| | | | | | | | - Ramon Salazar
- Medical Oncology Department, Institut Català d'Oncologia-ICO
| | | | | |
Collapse
|
27
|
Connelly TM, Berg AS, Harris LR, Brinton DL, Hegarty JP, Deiling SM, Stewart DB, Koltun WA. Ulcerative colitis neoplasia is not associated with common inflammatory bowel disease single-nucleotide polymorphisms. Surgery 2014; 156:253-62. [PMID: 24947639 DOI: 10.1016/j.surg.2014.03.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/07/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND Neoplasia complicating ulcerative colitis (UC-neoplasia) is a problem that is poorly addressed by present surveillance techniques. The association of greater than 300 single nucleotide polymorphisms (SNPs) with inflammatory bowel disease (IBD) suggests the possibility that certain genetic polymorphisms might identify patients with UC destined for malignant degeneration. This present study tested the hypothesis that presently known IBD-associated SNPs may correlate with UC-neoplasia. MATERIALS AND METHODS A total of 41 patients with UC-neoplasia (mean age 56 ± 2.1 years) were identified from our divisional IBD Biobank (low-grade dysplasia n = 13, high-grade dysplasia n = 8, colorectal cancer [CRC] n = 20). These patients were individually age, sex, and disease duration matched with UC patients without neoplasia. Primary sclerosing cholangitis and family history of CRC were recorded. Patients were genotyped for 314 of the most commonly IBD-associated SNPs by a custom SNP microarray. Logistic regression and Fischer exact test were used for statistical analysis. RESULTS After Bonferroni correction, none of the 314 IBD-associated SNPs correlated with UC-neoplasia when compared with matched UC controls. The incidence of primary sclerosing cholangitis was greater in the UC-neoplasia group (10/41, 24% vs 3/41, 7%; P = .03) compared with UC controls. The severity of neoplasia (low grade dysplasia versus high grade dysplasia versus CRC) correlated with disease duration (7.9 vs 13.4 vs 20.7 years, respectively). CONCLUSION The lack of correlation between well-known IBD-associated SNPs and UC-neoplasia demonstrated in this study suggests that the development of neoplasia in patients with UC is associated with genetic determinants other than those that predispose to inflammation or results from posttranslational modifications or epigenetic factors rather than germline polymorphisms.
Collapse
Affiliation(s)
- Tara M Connelly
- Division of Colon and Rectal Surgery, College of Medicine, The Pennsylvania State University, Hershey, PA
| | - Arthur S Berg
- Department of Biostatistics, College of Medicine, The Pennsylvania State University, Hershey, PA
| | - Leonard R Harris
- Division of Colon and Rectal Surgery, College of Medicine, The Pennsylvania State University, Hershey, PA
| | - David L Brinton
- Division of Colon and Rectal Surgery, College of Medicine, The Pennsylvania State University, Hershey, PA
| | - John P Hegarty
- Division of Colon and Rectal Surgery, College of Medicine, The Pennsylvania State University, Hershey, PA
| | - Sue M Deiling
- Division of Colon and Rectal Surgery, College of Medicine, The Pennsylvania State University, Hershey, PA
| | - David B Stewart
- Division of Colon and Rectal Surgery, College of Medicine, The Pennsylvania State University, Hershey, PA
| | - Walter A Koltun
- Division of Colon and Rectal Surgery, College of Medicine, The Pennsylvania State University, Hershey, PA.
| |
Collapse
|
28
|
Bae JH, Park J, Yang KM, Kim TO, Yi JM. Detection of DNA hypermethylation in sera of patients with Crohn's disease. Mol Med Rep 2013; 9:725-9. [PMID: 24317008 DOI: 10.3892/mmr.2013.1840] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 11/11/2013] [Indexed: 11/06/2022] Open
Abstract
Mounting evidence suggests that inflammatory bowel disease (IBD) is caused by genetic predisposition of various genes as well as an abnormal interaction with environmental factors, resulting in epigenetic alterations. It has become evident that epigenetic factors play a significant contributory role during disease development. Additionally, DNA methylation has been reported to be correlated with the development of IBD. In the present study, we examined the role of DNA hypermethylation in Crohn's disease (CD) patients. The transcription elongation regulator 1-like (TCERG1L) gene, which has been previously reported to be highly frequently methylated in colon tumors was selected as a candidate for the early detection of biomarkers for colon cancer patients. DNA methylation of TCERG1L in 101 serum samples of CD patients was examined. Results of conventional MSP analysis revealed high methylation [57% (58/101)] of serum samples in CD patients. The DNA methylation pattern of TCEEG1L was confirmed using bisulfate sequencing analysis. The results of the present study suggest that using regular colonoscopic surveillance sensitive DNA methylation markers may detect serum samples of CD patients, leading to reduced risk or prevention of the progression of advanced stages of disease.
Collapse
Affiliation(s)
- Jin-Han Bae
- Research Center, Dongnam Institute of Radiological and Medical Sciences (DIRAMS), Busan, Republic of Korea
| | - Jongha Park
- Department of Internal Medicine, Inje University Haeundae Paik Hospital, Busan, Republic of Korea
| | - Kwang Mo Yang
- Research Center, Dongnam Institute of Radiological and Medical Sciences (DIRAMS), Busan, Republic of Korea
| | - Tae-Oh Kim
- Department of Internal Medicine, Inje University Haeundae Paik Hospital, Busan, Republic of Korea
| | - Joo Mi Yi
- Research Center, Dongnam Institute of Radiological and Medical Sciences (DIRAMS), Busan, Republic of Korea
| | | |
Collapse
|
29
|
Rogler G. Chronic ulcerative colitis and colorectal cancer. Cancer Lett 2013; 345:235-41. [PMID: 23941831 DOI: 10.1016/j.canlet.2013.07.032] [Citation(s) in RCA: 265] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/13/2013] [Accepted: 07/28/2013] [Indexed: 12/15/2022]
Abstract
One of the most important consequences of chronically active ulcerative colitis (UC) or Crohn's disease (CD) - the two major forms of inflammatory bowel disease (IBD) - is the development of colorectal cancer (CRC). An increased risk for the occurrence of CRC in up to 30% of affected patients after 35years of UC has been reported. Recent evidence from population based studies indicates a lower risk. Nevertheless the incidence is still significantly increased as compared to individuals without chronic colitis. Colitis-associated CRC (CAC) does not display the adenoma-carcinoma sequence which is typical for sporadic CRC and the pathophysiology appears to be different. Chronic inflammation and the increased turnover of epithelial cells contribute to the development of low- and high-grade dysplasia which may further transform into CAC. Reactive oxygen species (ROS) generated by the inflammatory infiltrate are thought to contribute to the generation of dysplastic lesions. In sporadic CRC the sequence of mutations that finally lead to malignancy involves early activation of Wnt/β-catenin pathway (in 90% of cases) including mutations in adenomatous polyposis coli (APC) tumor suppressor gene, its regulating kinase GSK3β and β-catenin itself. β-catenin mutations are rarer in CAC and mutations in APC occur rather late during the disease progression, whereas there are earlier mutations in p53 and K-ras. Recent data indicate that the intestinal microbiome and its interaction with a functionally impaired mucosal barrier may also play a role in CAC development. CACs frequently show aggressive growth and early metastases. The treatment of CAC in patients with colitis always includes proctocolectomy with ileoanal anastomosis as meta- or synchronic lesions are frequent.
Collapse
Affiliation(s)
- Gerhard Rogler
- Division of Gastroenterology and Hepatology, Department of Visceral Medicine, University Hospital Zürich, Rämistrasse 100, CH-8091 Zürich, Switzerland.
| |
Collapse
|
30
|
Sipos F, Mũzes G, Patai AV, Fũri I, Péterfia B, Hollósi P, Molnár B, Tulassay Z. Genome-wide screening for understanding the role of DNA methylation in colorectal cancer. Epigenomics 2013; 5:569-81. [PMID: 24059802 DOI: 10.2217/epi.13.52] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
DNA methylation analysis methods have undergone an impressive revolution over the past 15 years. Regarding colorectal cancer (CRC), the localization and distribution of several differently methylated genes have been determined by genome-wide DNA methylation assays. These genes do not just influence the pathogenesis of CRC, but can be used further as diagnostic or prognostic markers. Moreover, the identified four DNA methylation-based subgroups of CRC have important clinical and therapeutic merit. Since genome-wide DNA methylation analyzes result in a large amount of data, there is a need for complex bioinformatic and pathway analysis. Future challenges in epigenetic alterations of CRC include the demand for comprehensive identification and experimental validation of gene abnormalities. By introduction of genome-wide DNA methylation profiling into clinical practice not only the patients' risk stratification but development of targeted therapies will also be possible.
Collapse
Affiliation(s)
- Ferenc Sipos
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|