1
|
BMP-2 functional polypeptides relieve osteolysis via bi-regulating bone formation and resorption coupled with macrophage polarization. NPJ Regen Med 2023; 8:6. [PMID: 36759627 PMCID: PMC9911742 DOI: 10.1038/s41536-023-00279-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 01/25/2023] [Indexed: 02/11/2023] Open
Abstract
Osteolysis caused by wear debris around the prosthesis is the main reason for aseptic loosening. Extending prosthetic service life is still challenging. In this study, we first synthesized a bone morphogenetic protein-2 (BMP-2) functional polypeptide (BMP2pp), and evaluated the effects of BMP2pp on macrophage polarization and impaired osteogenesis caused by titanium (Ti) particles in vitro. Then, we delineated the impact of BMP2pp on bone formation and resorption in a mouse calvarial bone osteolysis model induced by Ti particles. The results showed that BMP2pp not only alleviated the Ti-induced inhibition of osteoblastic differentiation in human placenta-derived mesenchymal stem cells (hPMSCs) but also prevented Ti-induced M1 macrophage polarization and promoted M2 macrophage differentiation in mice. Conditioned medium from BMP2pp-activated macrophages increased the osteogenesis of hPMSCs. The western blot results indicated a significant decrease in the expression of NF-κB inducing kinase (NIK) and phospho-NF-κB p65 in bone marrow-derived macrophages treated with BMP2pp. Furthermore, we clarified the protective effect of BMP2pp on bone formation and the reduction in bone resorption coupled with the immunomodulatory properties of calvarial osteolysis in mice. In summary, BMP2pp ameliorated the Ti-mediated impairment in osteogenic potential of hPMSCs, suppressed the M1 polarization of macrophages by inhibiting the activation of the NF-κB signaling pathway, and ameliorated Ti-induced bone osteolysis. Our research suggests that BMP2pp may be a potential option for treating prosthetic loosening induced by wear debris from prostheses.
Collapse
|
2
|
Kang MS, Jang HJ, Lee SH, Lee JE, Jo HJ, Jeong SJ, Kim B, Han DW. Potential of Carbon-Based Nanocomposites for Dental Tissue Engineering and Regeneration. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5104. [PMID: 34501203 PMCID: PMC8434078 DOI: 10.3390/ma14175104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022]
Abstract
While conventional dental implants focus on mechanical properties, recent advances in functional carbon nanomaterials (CNMs) accelerated the facilitation of functionalities including osteoinduction, osteoconduction, and osseointegration. The surface functionalization with CNMs in dental implants has emerged as a novel strategy for reinforcement and as a bioactive cue due to their potential for mechanical reinforcing, osseointegration, and antimicrobial properties. Numerous developments in the fabrication and biological studies of CNMs have provided various opportunities to expand their application to dental regeneration and restoration. In this review, we discuss the advances in novel dental implants with CNMs in terms of tissue engineering, including material combination, coating strategies, and biofunctionalities. We present a brief overview of recent findings and progression in the research to show the promising aspect of CNMs for dental implant application. In conclusion, it is shown that further development of surface functionalization with CNMs may provide innovative results with clinical potential for improved osseointegration after implantation.
Collapse
Affiliation(s)
- Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.J.J.); (S.H.L.)
| | - Hee Jeong Jang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.J.J.); (S.H.L.)
| | - Seok Hyun Lee
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.J.J.); (S.H.L.)
| | - Ji Eun Lee
- Department of Optics and Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (J.E.L.); (H.J.J.)
| | - Hyo Jung Jo
- Department of Optics and Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (J.E.L.); (H.J.J.)
| | | | - Bongju Kim
- Dental Life Science Research Institute/Innovation Research & Support Center for Dental Science, Seoul National University Dental Hospital, Seoul 03080, Korea
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.J.J.); (S.H.L.)
- Department of Optics and Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (J.E.L.); (H.J.J.)
| |
Collapse
|
3
|
Geng T, Sun S, Yu H, Guo H, Zheng M, Zhang S, Chen X, Jin Q. Strontium ranelate inhibits wear particle-induced aseptic loosening in mice. ACTA ACUST UNITED AC 2018; 51:e7414. [PMID: 29995108 PMCID: PMC6050946 DOI: 10.1590/1414-431x20187414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 05/17/2018] [Indexed: 11/21/2022]
Abstract
The imbalance between bone formation and osteolysis plays a key role in the pathogenesis of aseptic loosening. Strontium ranelate (SR) can promote bone formation and inhibit osteolysis. The aim of this study was to explore the role and mechanism of SR in aseptic loosening induced by wear particles. Twenty wild-type (WT) female C57BL/6j mice and 20 sclerostin-/- female C57BL/6j mice were used in this study. Mice were randomly divided into four groups: WT control group, WT SR group, knockout (KO) control group, and KO SR group. We found that SR enhanced the secretion of osteocalcin (0.72±0.007 in WT control group, 0.98±0.010 in WT SR group, P=0.000), Runx2 (0.34±0.005 in WT control group, 0.47±0.010 in WT SR group, P=0.000), β-catenin (1.04±0.05 in WT control group, 1.22±0.02 in WT SR group, P=0.000), and osteoprotegerin (OPG) (0.59±0.03 in WT control group, 0.90±0.02 in WT SR group, P=0.000). SR significantly decreased the level of receptor activator for nuclear factor-κB ligand (RANKL) (1.78±0.08 in WT control group, 1.37±0.06 in WT SR group, P=0.000) and improved the protein ratio of OPG/RANKL, but these effects were not observed in sclerostin-/- mice. Our findings demonstrated that SR enhanced bone formation and inhibited bone resorption in a wear particle-mediated osteolysis model in wild-type mice, and this effect relied mainly on the down-regulation of sclerostin levels to ameliorate the inhibition of the canonical Wnt pathway.
Collapse
Affiliation(s)
- Tianxiang Geng
- Ningxia Medical University, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shouxuan Sun
- Department of Orthopedic Surgery, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Haochen Yu
- Ningxia Medical University, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Haohui Guo
- Department of Orthopedic Surgery, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Mengxue Zheng
- Ningxia Medical University, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shuai Zhang
- Department of Orthopedic Surgery, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xi Chen
- Ningxia Medical University, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Qunhua Jin
- Department of Orthopedic Surgery, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
4
|
Geng T, Chen X, Zheng M, Yu H, Zhang S, Sun S, Guo H, Jin Q. Effects of strontium ranelate on wear particle‑induced aseptic loosening in female ovariectomized mice. Mol Med Rep 2018; 18:1849-1857. [PMID: 29901109 DOI: 10.3892/mmr.2018.9133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 05/02/2018] [Indexed: 11/06/2022] Open
Abstract
Aseptic loosening and menopause‑induced osteoporosis are caused by an imbalance between bone formation and osteolysis. With an aging population, the probability of simultaneous occurrence of such conditions in an elderly individual is increasing. Strontium ranelate (SR) is an anti‑osteoporosis drug that promotes bone formation and inhibits osteolysis. The present study compared the effects of SR with those of the traditional anti‑osteoporosis drug alendronate (ALN) using an ovariectomized mouse model of osteolysis. The degree of firmness of the prosthesis and the surrounding tissue was examined, a micro‑CT scan of the prosthesis and the surrounding tissue was performed, and the levels of inflammatory and osteogenic and osteoclast factors were examined. It was observed that treatment with SR and ALN improved the bond between the prosthesis and the surrounding bone tissue by reducing the degree of osteolysis, thus improving the quality of bone around the prosthesis. SR increased the secretion of osteocalcin, runt‑related transcription factor 2 and osteoprotegerin (OPG). It additionally decreased the expression of the receptor activator of nuclear factor‑κB ligand (RANKL) and consequently increased the protein ratio OPG/RANKL, whereas ALN exhibited the opposite effect. Furthermore, SR and ALN suppressed tumor necrosis factor‑α and interleukin‑1β production, with SR exerting a more marked effect. The present results demonstrate that SR and ALN may stimulate bone formation and inhibit bone resorption in the ovariectomized mouse model of wear particle‑mediated osteolysis, with SR demonstrating better effects compared with ALN.
Collapse
Affiliation(s)
- Tianxiang Geng
- Department of Orthopedic Surgery, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Xi Chen
- Department of Orthopedic Surgery, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Mengxue Zheng
- Department of Orthopedic Surgery, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Haochen Yu
- Department of Orthopedic Surgery, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Shuai Zhang
- Department of Orthopedic Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Shouxuan Sun
- Department of Orthopedic Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Haohui Guo
- Department of Orthopedic Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Qunhua Jin
- Department of Orthopedic Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
5
|
Zhang L, Zhou Q, Song W, Wu K, Zhang Y, Zhao Y. Dual-Functionalized Graphene Oxide Based siRNA Delivery System for Implant Surface Biomodification with Enhanced Osteogenesis. ACS APPLIED MATERIALS & INTERFACES 2017; 9:34722-34735. [PMID: 28925678 DOI: 10.1021/acsami.7b12079] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Surface functionalization by small interfering RNA (siRNA) is a novel strategy for improved implant osseointegration. A gene delivery system with safety and high transfection activity is a crucial factor for an siRNA-functionalized implant to exert its biological function. To this end, polyethylene glycol (PEG) and polyethylenimine (PEI) dual-functionalized graphene oxide (GO; nGO-PEG-PEI) may present a promising siRNA vector. In this study, nanosized nGO-PEG-PEI was prepared and optimized for siRNA delivery. Titania nanotubes (NTs) fabricated by anodic oxidation were biomodified with nGO-PEG-PEI/siRNA by cathodic electrodeposition, designated as NT-GPP/siRNA. NT-GPP/siRNA possessed benign cytocompatibility, as evaluated by cell adhesion and proliferation. Cellular uptake and knockdown efficiency of the NT-GPP/siRNA were assessed by MC3T3-E1 cells, which exhibited high siRNA delivery efficiency and sustained target gene silencing. Casein kinase-2 interacting protein-1 (Ckip-1) is a negative regulator of bone formation. siRNA-targeting Ckip-1 (siCkip-1) was introduced to the implant, and a series of in vitro and in vivo experiments were carried out to evaluate the osteogenic capacity of NT-GPP/siCkip-1. NT-GPP/siCkip-1 dramatically improved the in vitro osteogenic differentiation of MC3T3-E1 cells in terms of improved osteogenesis-related gene expression, and increased alkaline phosphatase (ALP) production, collagen secretion, and extracellular matrix (ECM) mineralization. Moreover, NT-GPP/siCkip-1 led to apparently enhanced in vivo osseointegration, as indicated by histological staining and EDX line scanning. Collectively, these findings suggest that NT-GPP/siRNA represents a practicable and promising approach for implant functionalization, showing clinical potential for dental and orthopedic applications.
Collapse
Affiliation(s)
- Li Zhang
- The State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, and Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University , Xi'an 710032, China
| | - Qing Zhou
- Department of Pharmaceutical Analysis, School of Pharmacy, The Fourth Military Medical University , Xi'an 710032, China
| | - Wen Song
- The State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, and Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University , Xi'an 710032, China
| | - Kaimin Wu
- Department of Stomatology, 401 Military Hospital , Qingdao 266071, China
| | - Yumei Zhang
- The State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, and Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University , Xi'an 710032, China
| | - Yimin Zhao
- The State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, and Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University , Xi'an 710032, China
| |
Collapse
|
6
|
Inhibitory effect of quercetin on titanium particle-induced endoplasmic reticulum stress (ERS)-related apoptosis and in vivoosteolysis. Biosci Rep 2017; 37:BSR20170961. [PMID: 28760844 PMCID: PMC5634327 DOI: 10.1042/bsr20170961] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/21/2017] [Accepted: 07/31/2017] [Indexed: 11/23/2022] Open
Abstract
Wear particle induced periprosthetic osteolysis is the main cause of aseptic
loosening of orthopedic implants. The aim of the present study is to determine
the protective effect of quercetin (QUE) against titanium (Ti) particle induced
endoplasmic reticulum stress (ERS) related apoptosis and osteolysis. In the
present study, RAW264.7 cells were pretreated with different concentrations (40,
80, and 160 μmol/l) of QUE for 30 min and then treated with Ti particle
(5 mg/ml) for 24 h. Cell viability and apoptosis were determined using MTT assay
and Annexin V-FITC Apoptosis Detection Kit, respectively. Protein and mRNA
expressions of ERS-related genes were examined by Western blot and real-time
PCR, respectively. The release of inflammatory cytokines was detected by ELISA.
Then, a mouse calvarial osteolysis model was established. Histological sections
of calvaria were stained with Hematoxylin-Eosin (H&E) or
tartrate-resistant acid phosphatase (TRAP). The results showed that Ti particle
reduced cell viability and induced apoptosis in RAW264.7 macrophages. The
cytotoxic effects of Ti particle were dramatically inhibited by QUE
pretreatment. Interestingly, we found that QUE also significantly reduced Ti
particle induced up-regulation of the expression levels of protein kinase
RNA-like ER kinase (PERK), inositol-requiring enzyme-1 (IRE1), glucose-regulated
protein (GRP78), CCAAT/enhancer-binding protein homologous protein (CHOP),
caspase-12, and caspase-3 and enhanced the down-regulation of Bcl-2. In
addition, QUE decreased Ti particle-induced inflammatory cytokines release from
RAW264.7 cells. Moreover, treatment with QUE markedly decreased osteoclast
number. In a mouse calvarial osteolysis model, QUE inhibited Ti particle induced
osteolysis in vivo by inhibiting osteoclast formation and
expressions of ERS-related genes. In conclusion, QUE can protect RAW264.7 cells
from Ti particle induced ERS-related apoptosis and suppress calvarial osteolysis
in vivo.
Collapse
|
7
|
Wang Y, Zheng Y, Wang Z, Li J, Wang Z, Zhang G, Yu J. 10(-7) m 17β-oestradiol enhances odonto/osteogenic potency of human dental pulp stem cells by activation of the NF-κB pathway. Cell Prolif 2013; 46:677-84. [PMID: 24152244 PMCID: PMC4065368 DOI: 10.1111/cpr.12071] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/31/2013] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVES Oestrogen has been proven to significantly enhance osteogenic potency, while oestrogen deficiency usually leads to impaired osteogenic differentiation of mesenchymal stem cells. However, little is known concerning direct effects of oestrogen on differentiation of human dental pulp stem cells (DPSCs). MATERIALS AND METHODS In this study, human DPSCs were isolated and treated with 10(-7) m 17β-oestradiol (E2). Alkaline phosphatase (ALP) assay and alizarin red staining were performed. RESULTS Alkaline phosphatase and alizarin red showed that E2 treatment significantly enhanced ALP activity and mineralization ability of DPSCs, but had no effect on cell proliferation. Real-time RT-PCR and western blot assay demonstrated that odonto/osteogenic markers (ALP, RUNX2/RUNX2, OSX/OSX, OCN/OCN and DSPP/DSP) were significantly upregulated in the cells after E2 treatment. Moreover, phosphorylation of cytoplasmic IκBα/P65 and expression of nuclear P65 were enhanced in a time-dependent manner following E2 treatment, suggesting activation of NF-κB signaling. Conversely, inhibition of the NF-κB pathway suppressed E2-mediated upregulation of odonto/osteogenic markers, indicating that the NF-κB pathway was pivotal for E2-mediated differentiation. CONCLUSION These findings provide evidence that 10(-7) m 17β-oestradiol promoted odonto/osteogenic differentiation of human DPSCs via activation of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Y Wang
- Institute of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Endodontic Department, Suzhou Stomatological Hospital, Suzhou, Jiangsu, 215005, China
| | | | | | | | | | | | | |
Collapse
|