1
|
Saadh MJ, Faisal A, Adil M, Zabibah RS, Mamadaliev AM, Jawad MJ, Alsaikhan F, Farhood B. Parkinson's Disease and MicroRNAs: A Duel Between Inhibition and Stimulation of Apoptosis in Neuronal Cells. Mol Neurobiol 2024; 61:8552-8574. [PMID: 38520611 DOI: 10.1007/s12035-024-04111-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/03/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
Parkinson's disease (PD) is one of the most prevalent diseases of central nervous system that is caused by degeneration of the substantia nigra's dopamine-producing neurons through apoptosis. Apoptosis is regulated by initiators' and executioners' caspases both in intrinsic and extrinsic pathways, further resulting in neuronal damage. In that context, targeting apoptosis appears as a promising therapeutic approach for treating neurodegenerative diseases. Non-coding RNAs-more especially, microRNAs, or miRNAs-are a promising target for the therapy of neurodegenerative diseases because they are essential for a number of cellular processes, including signaling, apoptosis, cell proliferation, and gene regulation. It is estimated that a substantial portion of coding genes (more than 60%) are regulated by miRNAs. These small regulatory molecules can have wide-reaching consequences on cellular processes like apoptosis, both in terms of intrinsic and extrinsic pathways. Furthermore, it was recommended that a disruption in miRNA expression levels could also result in perturbation of typical apoptosis pathways, which may be a factor in certain diseases like PD. The latest research on miRNAs and their impact on neural cell injury in PD models by regulating the apoptosis pathway is summarized in this review article. Furthermore, the importance of lncRNA/circRNA-miRNA-mRNA network for regulating apoptosis pathways in PD models and treatment is explored. These results can be utilized for developing new strategies in PD treatment.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Ahmed Faisal
- Department of Pharmacy, Al-Noor University College, Nineveh, Iraq
| | - Mohaned Adil
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Zhang P, Liu W, Wang Y. The mechanisms of tanshinone in the treatment of tumors. Front Pharmacol 2023; 14:1282203. [PMID: 37964867 PMCID: PMC10642231 DOI: 10.3389/fphar.2023.1282203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
Tanshinone is a lipophilic compound that is present in traditional Chinese medicine and is derived from the roots of Salvia miltiorrhiza (Danshen). It has been proven to be highly effective in combating tumors in various parts of the body, including liver carcinoma, gastric cancer, ovarian cancer, cervix carcinoma, breast cancer, colon cancer, and prostate cancer. Tanshinone can efficiently prevent the reproduction of cancerous cells, induce cell death, and inhibit the spread of cancerous cells, which are mainly involved in the PI3K/Akt signaling pathway, NF-κB pathway, Bcl-2 family, Caspase cascades, MicroRNA, MAPK signaling pathway, p21, STAT3 pathway, miR30b-P53-PTPN11/SHP2 axis, β-catenin, and Skp2. However, the properties and mechanisms of tanshinone's anti-tumor effects remain unclear currently. Thus, this study aims to review the research progress on tumor prevention and mechanisms of tanshinone to gain new perspectives for further development and clinical application of tanshinone.
Collapse
Affiliation(s)
- Pengyu Zhang
- The Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wendi Liu
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Wang
- Department of Histology and Embryology, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
3
|
Dong L, Gao L. JMJD3 and SNAI2 synergistically protect against Parkinson's disease by mediating the YAP/HIF1α signaling pathway in a mouse model. Hum Mol Genet 2023; 32:3040-3052. [PMID: 37453035 DOI: 10.1093/hmg/ddad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
This study aimed to characterize the functional relevance and mechanistic basis of the histone demethylase Jumonji domain-containing protein-3 (JMJD3) in preserving dopaminergic neuron survival in Parkinson's disease (PD). Mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced lesions and MN9D dopaminergic neuronal cell lines exposed to 6-OHDA, respectively, were used to simulate in vivo and in vitro PD-like environments. PD-related genes with differential expressions were identified using RNA sequencing of hippocampal tissues collected from MPTP-lesioned mice. A specific lentiviral shRNA vector was used to investigate the effects of JMJD3 on neuron activities in vitro and PD-like phenotypes in vivo. JMJD3 was found to up-regulate the expression of Snail family transcriptional repressor 2 (SNAI2) through the inhibition of H3 on lysine 27 (H3K27me3) enrichment in the SNAI2 promoter region. As a result, the viability of 6-OHDA-exposed MN9D cells was stimulated, and cell apoptosis was diminished. Knockdown of SNAI2 decreased the expression of yes-associated protein (YAP) and HIF1α while also reducing the viability of 6-OHDA-exposed MN9D cells and increasing cell apoptosis. The in vivo experiments demonstrated that JMJD3 activated the SNAI2/YAP/HIF1α signaling pathway, inhibiting PD-like phenotypes in MPTP-lesioned mice. Thus, the findings provide evidence that JMJD3 inhibits the enrichment of H3K27me3 at the SNAI2 promoter, leading to the upregulation of SNAI2 expression and activation of the YAP/HIF1α signaling pathway, ultimately exerting a protective effect on PD mice. This finding suggests that targeting the JMJD3-SNAI2 pathway could be a promising therapeutic strategy for PD. Further in-depth studies are needed to elucidate the underlying mechanisms and identify potential downstream targets of this pathway.
Collapse
Affiliation(s)
- Li Dong
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Lianbo Gao
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| |
Collapse
|
4
|
Bahamin N, Rafieian-Kopaei M, Ahmadian S, Karimi I, Doustimotlagh AH, Mobini G, Bijad E, Shafiezadeh M. Combined treatment with Alhagi maurorum and docetaxel inhibits breast cancer progression via targeting HIF-1α/VEGF mediated tumor angiogenesis in vivo. Heliyon 2023; 9:e16292. [PMID: 37234651 PMCID: PMC10205524 DOI: 10.1016/j.heliyon.2023.e16292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Breast cancer is a challenging disease and leading cause of cancer death in women. There is no effective agent for metastatic breast cancer after surgery and chemotherapy. Alhagi maurorum (A.m) has been reported to exhibit an anticancer effect on various types of cancer cells in vitro. This study aimed to examine the suppressive effect of A.m alone and combined with docetaxel (DTX) on the breast cancer growth in mice models and the possible underlying mechanisms. In the present study, the mice were inoculated subcutaneously with the injections of 4T1 cells. Then, A.m, DTX, and their combination were administered intraperitoneally. The expressions of β-catenin (β-cat), FZD7, MMP2, HIF1-α, and VEGF A (vascular endothelial growth factor A) were investigated using RT-PCR method. Also, plasma alkaline phosphatase (ALP), alanine aminotransferase (GPT or ALT), aspartate transaminase (GOT or AST), serum creatinine, and urea were examined, and histological analyses of the tissues were conducted. The results demonstrated that A.m (500 mg/kg) combined with DTX significantly decreased the expression of β-cat, MMP2, and FZD7 as compared with the negative control group and monotherapies. Also, the mRNA levels of HIF1-α and VEGF A were suppressed significantly by DTX + A.m (500 mg/kg). Tumor weights and sizes were significantly lower and tumor inhibition rate was significantly higher in the DTX + A.m group. The A.m 500 mg/kg + DTX also suppressed the serum GPT level in tumor-bearing mice and decreased the serum urea level. Taken together, our findings suggest that DTX combined with A.m at an optimal dose of 500 mg/kg as the optimal dose can inhibit β-cat, FZD7, MMP2, and breast cancer growth via interrupting HIF-1α/VEGF signaling and might be used as a promising antiangiogenic agent for breast cancer treatment.
Collapse
Affiliation(s)
- Nayereh Bahamin
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shahin Ahmadian
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Iraj Karimi
- Pathobiology Department, Veterinary Faculty, Shahrekord University, Shahrekord, Iran
| | - Amir Hossein Doustimotlagh
- Department of Clinical Biochemistry, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Gholamreza Mobini
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Bijad
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahshid Shafiezadeh
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| |
Collapse
|
5
|
Zhang G, Chen L, Liu J, Jin Y, Lin Z, Du S, Fu Z, Chen T, Qin Y, Sui F, Jiang Y. HIF-1α/microRNA-128-3p axis protects hippocampal neurons from apoptosis via the Axin1-mediated Wnt/β-catenin signaling pathway in Parkinson's disease models. Aging (Albany NY) 2020; 12:4067-4081. [PMID: 32167488 PMCID: PMC7093183 DOI: 10.18632/aging.102636] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/23/2019] [Indexed: 04/08/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder. A common and disabling disease of the elderly, the standard dopamine replacement therapies do not arrest the ongoing neurodegeneration, thus calling for new treatment strategies. The present study aimed to clarify the functional relevance of the hypoxia inducible factor-1α (HIF-1α)/microRNA-128-3p (miR-128-3p) axis in hippocampal neurodegeneration in a PD mouse model obtained by intraperitoneal injection of MPTP. Targeting relationship between miR-128-3p and Axin1 was verified, so we probed the roles of Hif1a, miR-128-3p, and Axin1 in apoptosis of hippocampal neurons with gain- and loss-of function experiments using flow cytometry and TUNEL staining. We found that Axin1 was upregulated in hippocampal tissues and cells of the MPTP-lesioned mouse model of PD, while Hif1a and miR-128-3p were downregulated. Elevation of HIF-1α/miR-128-3p inhibited apoptosis of hippocampal neurons via Wnt/β-catenin signaling pathway activation due to the suppression of Axin1 in PD. In addition, forced overexpression of Hif1a could ameliorate motor dysfunction and pathological changes in the model. Collectively, activation of the HIF-1α/miR-128-3p axis could repress hippocampal neurodegeneration in MPTP-lesioned mice through an activated Wnt/β-catenin pathway due to Axin1 downregulation.
Collapse
Affiliation(s)
- Guangping Zhang
- The Fourth Ward, Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, P.R. China
| | - Luzhu Chen
- The Fourth Ward, Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, P.R. China
| | - Jing Liu
- The Fourth Ward, Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, P.R. China
| | - Yan Jin
- The Fourth Ward, Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, P.R. China
| | - Zaihong Lin
- The Fourth Ward, Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, P.R. China
| | - Shu Du
- The Fourth Ward, Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, P.R. China
| | - Zenghui Fu
- The Fourth Ward, Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, P.R. China
| | - Tuantuan Chen
- The Fourth Ward, Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, P.R. China
| | - Yinghui Qin
- The Fourth Ward, Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, P.R. China
| | - Fenghu Sui
- Department of Health Care, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, P.R. China
| | - Yan Jiang
- The Fourth Ward, Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, P.R. China
| |
Collapse
|
6
|
Tanshinone IIA inhibits β-catenin/VEGF-mediated angiogenesis by targeting TGF-β1 in normoxic and HIF-1α in hypoxic microenvironments in human colorectal cancer. Cancer Lett 2017; 403:86-97. [DOI: 10.1016/j.canlet.2017.05.013] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 02/02/2023]
|
7
|
Ashok BS, Ajith TA, Sivanesan S. Hypoxia-inducible factors as neuroprotective agent in Alzheimer's disease. Clin Exp Pharmacol Physiol 2017; 44:327-334. [PMID: 28004401 DOI: 10.1111/1440-1681.12717] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/17/2016] [Accepted: 12/15/2016] [Indexed: 07/31/2024]
Abstract
Beta amyloid (Aβ)-42 peptide and phosphorylated tau protein have been demonstrated as the pathological hallmarks of Alzheimer's disease (AD). A gradual decline of oxygen and glucose supply to the brain during aging or hypoxia was manifested as a contributing factor to hypometabolism. The brain regions susceptible to hypometabolism are the hippocampus, entorhinal cortex and cognition-associated neocortical regions like parietal, temporal and frontal cortex. In AD patients, the brain regions with hypometabolism can trigger overexpression of amyloid precursor protein and decrease the clearance of Aβ. Aβ and hypoxia can evoke inflammation, oxidative stress and finally neuronal cell death. Among the transcription factors involved in the compensatory mechanism, hypoxia-inducible factor-1 alpha (HIF-1α) has a major role in the cellular adaptation by inducing the expression of several proteins, including vascular endothelial growth factor, erythropoietin and inducible nitric oxide synthase. Therefore, maintaining the HIF-1α level by inhibiting the prolyl 4-hydroxylase was effective to attenuate the nerve damage during hypoxia and postpone the incidence of AD. Agents such as iron chelators, and heavy metals like cobalt and nickel were demonstrated to be effective in maintaining the HIF-1α level in the nerve. This review article discusses the possible role of HIF-1α as a neuroprotector in AD and the future perspectives.
Collapse
Affiliation(s)
- Ben Sundra Ashok
- Department of Biochemistry, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra University, Chennai, Tamil Nadu, India
| | | | | |
Collapse
|
8
|
Zhang P, Bai Y, Lu L, Li Y, Duan C. An oxygen-insensitive Hif-3α isoform inhibits Wnt signaling by destabilizing the nuclear β-catenin complex. eLife 2016; 5. [PMID: 26765566 PMCID: PMC4769163 DOI: 10.7554/elife.08996] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 01/13/2016] [Indexed: 12/15/2022] Open
Abstract
Hypoxia-inducible factors (HIFs), while best known for their roles in the hypoxic response, have oxygen-independent roles in early development with poorly defined mechanisms. Here, we report a novel Hif-3α variant, Hif-3α2, in zebrafish. Hif-3α2 lacks the bHLH, PAS, PAC, and ODD domains, and is expressed in embryonic and adult tissues independently of oxygen availability. Hif-3α2 is a nuclear protein with significant hypoxia response element (HRE)-dependent transcriptional activity. Hif-3α2 overexpression not only decreases embryonic growth and developmental timing but also causes left-right asymmetry defects. Genetic deletion of Hif-3α2 by CRISPR/Cas9 genome editing increases, while Hif-3α2 overexpression decreases, Wnt/β-catenin signaling. This action is independent of its HRE-dependent transcriptional activity. Mechanistically, Hif-3α2 binds to β-catenin and destabilizes the nuclear β-catenin complex. This mechanism is distinct from GSK3β-mediated β-catenin degradation and is conserved in humans. These findings provide new insights into the oxygen-independent actions of HIFs and uncover a novel mechanism regulating Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Yan Bai
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Ling Lu
- Key Laboratory of Marine Drugs, Ministry of Education and School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yun Li
- Key Laboratory of Marine Drugs, Ministry of Education and School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Cunming Duan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
| |
Collapse
|
9
|
Sun J, Wang H, Chen LN, Wang J, Lv Y, Yang XD, Zhang BY, Tian C, Shi Q, Dong XP. Remarkable impairment of Wnt/β-catenin signaling in the brains of the mice infected with scrapie agents. J Neurochem 2015; 136:731-740. [PMID: 26526056 DOI: 10.1111/jnc.13416] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/02/2015] [Accepted: 10/02/2015] [Indexed: 01/06/2023]
Abstract
Prion diseases are a group of neurodegenerative diseases characterized by neuronal loss and spongiform degeneration, astrogliosis and aggregation of scrapie prion protein (PrPSc ) in the central nervous system (CNS). The Wnt signaling pathway is a highly evolutionarily conserved pathway in eukaryotes that regulates cell proliferation, differentiation and survival. Impairment of Wnt/β-catenin signaling has been reported in the CNS of various neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. To investigate the functional state of Wnt/β-catenin signaling in the CNS tissues during the progression of prion disease, the components of Wnt/β-catenin signaling in the brains of the scrapie agents 139A- and ME7-infected mice were evaluated. Compared with the normal controls, the brain levels of phosphor-β-catenin (Ser33,37 and Thr41 ) in 139A- and ME7-infected mice were significantly increased, while those of cyclin D1, which is one of the target genes of Wnt signaling, were decreased. The levels of phosphor-glycogen synthase kinase-3β (GSK-3β) Ser9 were markedly reduced, representing an enhanced GSK-3β activity in scrapie-infected mice. Both western blot and immunohistochemical assays revealed a remarkable increase of Dickkopf-1, the antagonist of Wnt/β-catenin signaling, in the brains of scrapie-infected anim-als, which co-localized well with the remaining neurons in the immunofluorescent tests. We also observed slightly decreased Wnt-3 and unchanged disheveled-3 (Dvl-3) in the brains of the infected mice. Our data, here, strongly indicate an impairment of Wnt/β-catenin pathway in the brains of prion disease, which shows a time-dependent progression along with the incubation period. Schematic for the impairment of canonical Wnt signaling during prion infection. The left and right parts represent the normal and prion-infected situations, respectively. Prion infection or PrPSc accumulation triggers the over-expression of Dickkopf WNT signaling pathway inhibitor 1 (DKK-1) and the enhancement of glycogen synthase kinase 3β (GSK-3β) activity, which subsequently promotes the phosphorylation and degradation of β-catenin. As a result, the impairment of β-catenin signaling leads to the down-regulation of Wnt target genes.
Collapse
Affiliation(s)
- Jing Sun
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou 310003), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hui Wang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou 310003), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Department of Immunology and the key Laboratory of laboratory medicine of Jiangsu province, Jiangsu University Medical School, Zhenjiang, Jiangsu, China
| | - Li-Na Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou 310003), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jing Wang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou 310003), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yan Lv
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou 310003), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiao-Dong Yang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou 310003), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bao-Yun Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou 310003), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chan Tian
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou 310003), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou 310003), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou 310003), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Liu F, Dong X, Lv H, Xiu P, Li T, Wang F, Xu Z, Li J. Targeting hypoxia-inducible factor-2α enhances sorafenib antitumor activity via β-catenin/C-Myc-dependent pathways in hepatocellular carcinoma. Oncol Lett 2015; 10:778-784. [PMID: 26622569 DOI: 10.3892/ol.2015.3315] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 05/07/2015] [Indexed: 12/12/2022] Open
Abstract
Sorafenib is a type of multikinase inhibitor that exhibits antiangiogenic and antiproliferative effects; in addition, sorafenib is a unique first-line drug recommended for the treatment of advanced hepatocellular carcinoma (HCC). However, the effectiveness of HCC treatment remains poor due to acquired drug resistance. It has been suggested that hypoxia, induced as a results of the antiangiogenic effects of sustained sorafenib treatment, may be an important factor in sorafenib resistance. The transcription factor hypoxia-inducible factor (HIF)-2α has been reported to be associated with cell proliferation under hypoxic conditions; therefore, it was hypothesized that hypoxia may enhance tumor cell proliferation via this mechanism. The present study aimed to evaluate whether the knock-down of HIF-2α was able to enhance the therapeutic efficacy of sorafenib in order to effectively treat HCC. The results demonstrated that hypoxia protected HCC cells against sorafenib; however, short hairpin RNA-HIF-2α transfection in combination with sorafenib treatment exhibited a significantly synergistic effect against HCC cell proliferation. In addition, HCC cells acquired increased β-catenin/C-Myc expression, which enhanced proliferation under hypoxic conditions; however, targeted knock-down of HIF-2α or C-Myc markedly decreased cell proliferation in HCC cells. In conclusion, the results of the present study indicated that the targeted knock-down of HIF-2α in combination with sorafenib may be a promising strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Feng Liu
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Xiaofeng Dong
- Department of Hepatobiliary Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Hong Lv
- Department of Hematology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Peng Xiu
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Tao Li
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Fuhai Wang
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Zongzhen Xu
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Jie Li
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
11
|
Melatonin as a proteasome inhibitor. Is there any clinical evidence? Life Sci 2014; 115:8-14. [PMID: 25219883 DOI: 10.1016/j.lfs.2014.08.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/20/2014] [Accepted: 08/27/2014] [Indexed: 01/13/2023]
Abstract
Proteasome inhibitors and melatonin are both intimately involved in the regulation of major signal transduction proteins including p53, cyclin p27, transcription factor NF-κB, apoptotic factors Bax and Bim, caspase 3, caspase 9, anti-apoptotic factor Bcl-2, TRAIL, NRF2 and transcription factor beta-catenin. The fact that these factors are shared targets of the proteasome inhibitor bortezomib and melatonin suggests the working hypothesis that melatonin is a proteasome inhibitor. Supporting this hypothesis is the fact that melatonin shares with bortezomib a selective pro-apoptotic action in cancer cells. Furthermore, both bortezomib and melatonin increase the sensitivity of human glioma cells to TRAIL-induced apoptosis. Direct evidence for melatonin inhibition of the proteasome was recently found in human renal cancer cells. We raise the issue whether melatonin should be investigated in combination with proteasome inhibitors to reduce toxicity, to reduce drug resistance, and to enhance efficacy. This may be particularly valid for hematological malignancies in which proteasome inhibitors have been shown to be useful. Further studies are necessary to determine whether the actions of melatonin on cellular signaling pathways are due to a direct inhibitory effect on the catalytic core of the proteasome, due to an inhibitory action on the regulatory particle of the proteasome, or due to an indirect effect of melatonin on phosphorylation of signal transducing factors.
Collapse
|