1
|
Stavely R, Robinson AM, Fraser S, Filippone RT, Stojanovska V, Eri R, Apostolopoulos V, Sakkal S, Nurgali K. Bone marrow-derived mesenchymal stem cells mitigate chronic colitis and enteric neuropathy via anti-inflammatory and anti-oxidative mechanisms. Sci Rep 2024; 14:6649. [PMID: 38503815 PMCID: PMC10951223 DOI: 10.1038/s41598-024-57070-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 03/14/2024] [Indexed: 03/21/2024] Open
Abstract
Current treatments for inflammatory bowel disease (IBD) are often inadequate due to limited efficacy and toxicity, leading to surgical resection in refractory cases. IBD's broad and complex pathogenesis involving the immune system, enteric nervous system, microbiome, and oxidative stress requires more effective therapeutic strategies. In this study, we investigated the therapeutic potential of bone marrow-derived mesenchymal stem cell (BM-MSC) treatments in spontaneous chronic colitis using the Winnie mouse model which closely replicates the presentation and inflammatory profile of ulcerative colitis. The 14-day BM-MSC treatment regimen reduced the severity of colitis, leading to the attenuation of diarrheal symptoms and recovery in body mass. Morphological and histological abnormalities in the colon were also alleviated. Transcriptomic analysis demonstrated that BM-MSC treatment led to alterations in gene expression profiles primarily downregulating genes related to inflammation, including pro-inflammatory cytokines, chemokines and other biomarkers of inflammation. Further evaluation of immune cell populations using immunohistochemistry revealed a reduction in leukocyte infiltration upon BM-MSC treatment. Notably, enteric neuronal gene signatures were the most impacted by BM-MSC treatment, which correlated with the restoration of neuronal density in the myenteric ganglia. Moreover, BM-MSCs exhibited neuroprotective effects against oxidative stress-induced neuronal loss through antioxidant mechanisms, including the reduction of mitochondrial-derived superoxide and attenuation of oxidative stress-induced HMGB1 translocation, potentially relying on MSC-derived SOD1. These findings suggest that BM-MSCs hold promise as a therapeutic intervention to mitigate chronic colitis by exerting anti-inflammatory effects and protecting the enteric nervous system from oxidative stress-induced damage.
Collapse
Affiliation(s)
- Rhian Stavely
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Ainsley M Robinson
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Sarah Fraser
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | | | - Vanesa Stojanovska
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Rajaraman Eri
- School of Science, STEM College, RMIT University, Melbourne, VIC, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Immunology Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia
| | - Samy Sakkal
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.
- Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia.
- Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia.
- Enteric Neuropathy Lab, Western Centre for Health, Research and Education, St Albans, VIC, 3021, Australia.
| |
Collapse
|
2
|
Sun W, Zhang J, Zhou C, Yan B, Cai Q, He H, Duan X, Fan H. Differential Analysis of Serum Principal Components Treated with Compound Sophora Decoction and Related Compounds Based on High-Resolution Mass Spectrometry (HRMS). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:7518479. [PMID: 33062021 PMCID: PMC7545453 DOI: 10.1155/2020/7518479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/11/2020] [Accepted: 09/16/2020] [Indexed: 01/14/2023]
Abstract
OBJECTIVE To compare the differences in the serum principal components in ulcerative colitis- (UC-) induced rats, treated with compound Sophora decoction, matrine, oxymatrine monomer mixture, and indirubin monomer, and to provide a modern scientific basis for elucidating the clinical efficacy of compound Sophora decoction for the treatment of UC. METHODS The serum samples of rats from each group were obtained after drug administration, and the serum principal components of each group were analyzed by high-resolution mass spectrometry. Agilent Eclipse XDB C18 chromatographic column (100 mm × 2.1 mm, 3.5 m) was used for separation. The mobile phase was water (A) and methanol (B) (0.1% formic acid) gradient elution, 0-3 min (B: 20%-40%), 3-10 min (B: 40%-54%), 10-25 min (B: 54%), 25-35 min (B: 54%-70%), 35-45 min (B: 70%-80%), 45-50 min (B: 80%), 50-60 min (B: 80%-100%), 70-72 min (B: 100%-20%), and 72-77 min (B: 20%); flow rate, 300 μL/min; column temperature, 40°C; and injection volume, 10 μL. ESI source was selected and scanned in the positive and negative ion modes. The scanning range was 70-1500 m/z; ion-source gas 1 (GS1): 55 psi; ion-source gas 2 (GS2): 60 psi; CUR: 30 psi; ion-source temperature (TEM): 550°C; ion-source voltage (ISVF) : 5500 V/-4500 V; decluster voltage (DP): 100 V; collision energy (CE): 35 V/-35 V; collision energy gain (CES) : 15 V/-15 V; and data acquisition mode: IDA. After the data from each group were imported into MarkView 1.3, the molecular weights and retention times of different substances were obtained and qualitatively analyzed by ChemSpider and PeakView 2.0. RESULTS In the negative ion mode, 26 differential compounds were identified in the compound Sophora decoction group (FFKST) compared to the model group (M), and 18 differential compounds were identified in the matrine and oxymatrine group (KST) compared to the model group (M). In the positive ion mode, 11 and 7 differential compounds were identified in the compound Sophora decoction group (FFKST) and the matrine and oxymatrine group (KST) compared to the model group (M), respectively. The responses of all compounds in each group were compared with each other. As the different principal component substances in the indirubin group (DYH) displayed little correlation with other groups, the different components in this group were not researched thoroughly. CONCLUSION By comparing the differences in the serum principal components from each administration group, we found that the FFKST group exhibited enhanced synthesis of the serum principal components; however, the compound doses of matrine and oxymatrine monomers did not exhibit the same changes in the serum principal components of UC-induced rats. Finally, the traditional Chinese medicine compound is more advantageous than monomers.
Collapse
Affiliation(s)
- Wanjin Sun
- Department of Pharmacy, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, China
- Department of Pharmacy, Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430074, China
| | - Junjie Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Conghui Zhou
- Department of Pharmacy, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, China
- Department of Pharmacy, Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430074, China
| | - Bin Yan
- Department of Pharmacy, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, China
- Department of Pharmacy, Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430074, China
| | - Quan Cai
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongxia He
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xueyun Duan
- Department of Pharmacy, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, China
- Department of Pharmacy, Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430074, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
3
|
Gao JG, Yu MS, Zhang MM, Gu XW, Ren Y, Zhou XX, Chen D, Yan TL, Li YM, Jin X. Adipose-derived mesenchymal stem cells alleviate TNBS-induced colitis in rats by influencing intestinal epithelial cell regeneration, Wnt signaling, and T cell immunity. World J Gastroenterol 2020; 26:3750-3766. [PMID: 32774055 PMCID: PMC7383848 DOI: 10.3748/wjg.v26.i26.3750] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/14/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Conventional Crohn’s disease (CD) treatments are supportive rather than curative and have serious side effects. Adipose-derived mesenchymal stem cells (ADSCs) have been gradually applied to treat various diseases. The therapeutic effect and underlying mechanism of ADSCs on CD are still not clear.
AIM To investigate the effect of ADSC administration on CD and explore the potential mechanisms.
METHODS Wistar rats were administered with 2,4,6-trinitrobenzene sulfonic acid (TNBS) to establish a rat model of CD, followed by tail injections of green fluorescent protein (GFP)-modified ADSCs. Flow cytometry, qRT-PCR, and Western blot were used to detect changes in the Wnt signaling pathway, T cell subtypes, and their related cytokines.
RESULTS The isolated cells showed the characteristics of ADSCs, including spindle-shaped morphology, high expression of CD29, CD44, and CD90, low expression of CD34 and CD45, and osteogenic/adipogenic ability. ADSC therapy markedly reduced disease activity index and ameliorated colitis severity in the TNBS-induced rat model of CD. Furthermore, serum anti-sacchromyces cerevisiae antibody and p-anti-neutrophil cytoplasmic antibody levels were significantly reduced in ADSC-treated rats. Mechanistically, the GFP-ADSCs were colocalized with intestinal epithelial cells (IECs) in the CD rat model. GFP-ADSC delivery significantly antagonized TNBS-induced increased canonical Wnt pathway expression, decreased noncanonical Wnt signaling pathway expression, and increased apoptosis rates and protein level of cleaved caspase-3 in rats. In addition, ADSCs attenuated TNBS-induced abnormal inflammatory cytokine production, disturbed T cell subtypes, and their related markers in rats.
CONCLUSION Successfully isolated ADSCs show therapeutic effects in CD by regulating IEC proliferation, the Wnt signaling pathway, and T cell immunity.
Collapse
Affiliation(s)
- Jian-Guo Gao
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Mo-Sang Yu
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Meng-Meng Zhang
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Xue-Wei Gu
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Yue Ren
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Xin-Xin Zhou
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Dong Chen
- Department of Colorectal Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Tian-Lian Yan
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - You-Ming Li
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Xi Jin
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
4
|
Xu CL, Guo Y, Qiao L, Ma L, Cheng YY. Recombinant expressed vasoactive intestinal peptide analogue ameliorates TNBS-induced colitis in rats. World J Gastroenterol 2018; 24:706-715. [PMID: 29456409 PMCID: PMC5807673 DOI: 10.3748/wjg.v24.i6.706] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/19/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the modulatory effect of recombinant-expressed vasoactive intestinal peptide (VIP) analogue (rVIPa) on trinitrobenzene sulfonic acid (TNBS)-induced colitis in rats.
METHODS Forty-eight rats were randomized into six groups: normal control group (Control), model control group (TNBS), ethanol treatment group (ETOH), and VIP treatment groups with different dosage (rVIPa1nmol, rVIPa2nmol, rVIPa4nmol). Diarrhea and bloody stool were observed. Colonic damage was evaluated histologically. The levels of tumor necrosis factor-α (TNF-α), interleukin-10 (IL-10), myeloperoxidase (MPO) and endotoxin in colonic tissue and serum were determined by enzyme-linked immunosorbent assay (ELISA). The expression of occludin, ZO-1, Toll-like receptor 4 (TLR4), and nuclear factor-kappa B p65 (NF-κB p65), IκBα, and p-IκBα were detected by Western blot.
RESULTS Administration with 2 nmol rVIPa prevented TNBS-induced necrosis, hyperemia, swelling, inflammation, etc., pathologic changes observed in the inner surface of colon in experimental rats. Moreover, rVIPa significantly decreased colonic TNF-α level (P < 0.001), MPO activity (P < 0.001) and serum endotoxin level (P < 0.01), and remarkably increased colonic IL-10 content (P < 0.001) in rats with TNBS-induced colitis. Furthermore, compared to the TNBS-induced colitis group, 2 nmol rVIPa treatment up-regulated the levels of occludin (P < 0.05) and ZO-1 (P < 0.05), NF-κB p65 (P < 0.01) and IκBα (P < 0.001), and down-regulated the levels of TLR4.
CONCLUSION rVIPa ameliorates TNBS-induced colonic injury and inflammation and effectively protected the intestinal mucosal barrier function in rats. The mechanism may be related to TLR4/NF-κB-mediated signaling pathway. rVIPa could be used as a new alternative therapy for intestinal inflammatory disorders.
Collapse
Affiliation(s)
- Chun-Lan Xu
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, Shaanxi Province, China
| | - Yu Guo
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, Shaanxi Province, China
| | - Lei Qiao
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, Shaanxi Province, China
| | - Li Ma
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, Shaanxi Province, China
| | - Yi-Yi Cheng
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, Shaanxi Province, China
| |
Collapse
|
5
|
Yang J, Zhou CZ, Zhu R, Fan H, Liu XX, Duan XY, Tang Q, Shou ZX, Zuo DM. miR-200b-containing microvesicles attenuate experimental colitis associated intestinal fibrosis by inhibiting epithelial-mesenchymal transition. J Gastroenterol Hepatol 2017; 32:1966-1974. [PMID: 28370348 DOI: 10.1111/jgh.13797] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 03/06/2017] [Accepted: 03/28/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Epithelial-mesenchymal transition (EMT), characterized by the decrease of E-cadherin (E-Cad) and increase in vimentin and alpha-smooth muscle actin (α-SMA), was demonstrated to participate in inflammatory bowel disease-related fibrosis. miR-200b plays an anti-fibrosis role in inhibiting EMT by targeting ZEB1 and ZEB2. But the stability of exogenous miR-200b in blood limits its application. Microvesicles (MVs), which can transfer miRNAs among cells and prevent them from degradation, may provide an excellent transport system for the delivery of miR-200b in the treatment of fibrosis. METHODS Bone marrow mesenchymal stem cells (BMSCs) were transfected with lentivirus to overexpress miR-200b. The MVs packaged with miRNA-200b were harvested for the anti-fibrotic treatment using in vitro (transforming growth factor beta 1-mediated EMT in intestinal epithelial cells: IEC-6) and in vivo (TNBS-induced intestinal fibrosis in rats) models. The pathological morphology was observed, and the fibrosis related proteins, such as E-Cad, vimentin, α-SMA, ZEB1, and ZEB2, were detected. RESULTS MiR-200b-MVs would significantly reverse the morphology in TGF-β1-treated IEC-6 cells and improve the TNBS-induced colon fibrosis histologically. The treatment of miR-200b-MVs increased miR-200b levels both in the IEC-6 cells and colon, resulting in a significant prevention EMT and alleviation of fibrosis. The expression of E-Cad was increased, and the expressions of vimentin and α-SMA were decreased. ZBE1 and ZEB2, the targets of miR-200b, were also decreased. CONCLUSIONS miR-200b could be transferred from genetically modified BMSCs to the target cells or tissue by MVs. The mechanisms of miR-200b-MVs in inhibiting colonic fibrosis were related to suppressing the development of EMT by targeting ZEB1and ZEB2.
Collapse
Affiliation(s)
- Jia Yang
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng-Zhi Zhou
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Cardiology, The Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
| | - Rui Zhu
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Fan
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing-Xing Liu
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue-Yun Duan
- Department of Pharmacy, The Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
| | - Qing Tang
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe-Xing Shou
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong-Mei Zuo
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Crosstalk between mesenchymal stem cells and macrophages in inflammatory bowel disease and associated colorectal cancer. Contemp Oncol (Pozn) 2017; 21:91-97. [PMID: 28947877 PMCID: PMC5611497 DOI: 10.5114/wo.2017.68616] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/17/2017] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are attractive seed cells for immunotherapy, tissue engineering and regenerative medicine due to their self-renewal and multidirectional differentiation abilities, diverse immunoregulatory functions and ease of isolation from a wide range of tissues. MSCs exert their immunoregulatory effect on immune cells via cell-to-cell contact and paracrine mechanisms. In turn, MSCs can also be modulated by immune cells. Macrophages are constantly present in the mucosa of the intestinal tract of mammals and play an important role in the development and progression of inflammatory bowel disease (IBD), a chronic and recurrent inflammatory disease of the gastrointestinal tract characterized by idiopathic mucosal inflammation. The increased morbidity and mortality of IBD have made it a disease hard to cure in the clinic. MSCs have emerged as an important tool for IBD therapy due to their abilities to differentiate into enterocyte-like cells and regulate inflammatory cells, especially macrophages. In this review, we discuss the recent advances in the interaction between MSCs and macrophages in diseases, with an emphasis on IBD. We propose that an optimized MSC-based therapy would provide a novel strategy for the treatment of IBD and the prevention of IBD-associated colorectal cancer (CRC).
Collapse
|
7
|
Miyairi S, Hirai T, Ishii R, Okumi M, Nunoda S, Yamazaki K, Ishii Y, Tanabe K. Donor bone marrow cells are essential for iNKT cell-mediated Foxp3+ Treg cell expansion in a murine model of transplantation tolerance. Eur J Immunol 2017; 47:734-742. [PMID: 28127757 DOI: 10.1002/eji.201646670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/03/2016] [Accepted: 01/23/2017] [Indexed: 01/03/2023]
Abstract
Mixed chimerism induction is the most reliable method for establishing transplantation tolerance. We previously described a novel treatment using a suboptimal dose of anti-CD40 ligand (anti-CD40L) and liposomal formulation of a ligand for invariant natural killer T cells administered to sub-lethally irradiated recipient mice after donor bone marrow cell (BMC) transfer. Recipient mice treated with this regimen showed expansion of a Foxp3-positive regulatory T(Treg) cell phenotype, and formation of mixed chimera. However, the mechanism of expansion and bioactivity of Treg cells remains unclear. Here, we examine the role of donor BMCs in the expansion of bioactive Treg cells. The mouse model was transplanted with a heart allograft the day after treatment. The results showed that transfer of spleen cells in place of BMCs failed to deplete host interferon (IFN)-γ-producing CD8+ T cells, expand host Ki67+ CD4+ CD25+ Foxp3+ Treg cells, and prolong graft survival. Severe combined immunodeficiency mice who received Treg cells obtained from BMC-recipients accepted skin grafts in an allo-specific manner. Myeloid-derived suppressor cells, which were a copious cell subset in BMCs, enhanced the Ki67 expression of Treg cells. This suggests that donor BMCs are indispensable for the expansion of host bioactive Treg cells in our novel treatment for transplant tolerance induction.
Collapse
Affiliation(s)
- Satoshi Miyairi
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan.,Department of Cardiovascular Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshihito Hirai
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Rumi Ishii
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Masayoshi Okumi
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Shinichi Nunoda
- Department of Cardiovascular Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Kenji Yamazaki
- Department of Cardiovascular Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Yasuyuki Ishii
- Cluster for Industry Partnerships (CIP), RIKEN, Yokohama, Kanagawa, Japan
| | - Kazunari Tanabe
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
8
|
Pianta S, Bonassi Signoroni P, Muradore I, Rodrigues MF, Rossi D, Silini A, Parolini O. Amniotic membrane mesenchymal cells-derived factors skew T cell polarization toward Treg and downregulate Th1 and Th17 cells subsets. Stem Cell Rev Rep 2016; 11:394-407. [PMID: 25348066 PMCID: PMC4451472 DOI: 10.1007/s12015-014-9558-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We previously demonstrated that cells derived from the mesenchymal layer of the human amniotic membrane (hAMSC) and their conditioned medium (CM-hAMSC) modulate lymphocyte proliferation in a dose-dependent manner. In order to understand the mechanisms involved in immune regulation exerted by hAMSC, we analyzed the effects of CM-hAMSC on T-cell polarization towards Th1, Th2, Th17, and T-regulatory (Treg) subsets. We show that CM-hAMSC equally suppresses the proliferation of both CD4+ T-helper (Th) and CD8+ cytotoxic T-lymphocytes. Moreover, we prove that the CM-hAMSC inhibitory ability affects both central (CD45RO+CD62L+) and effector memory (CD45RO+CD62L−) subsets. We evaluated the phenotype of CD4+ cells in the MLR setting and showed that CM-hAMSC significantly reduced the expression of markers associated to the Th1 (T-bet+CD119+) and Th17 (RORγt+CD161+) populations, while having no effect on the Th2 population (GATA3+CD193+/GATA3+CD294+cells). T-cell subset modulation was substantiated through the analysis of cytokine release for 6 days during co-culture with alloreactive T-cells, whereby we observed a decrease in specific subset-related cytokines, such as a decrease in pro-inflammatory, Th1-related (TNFα, IFNγ, IL-1β), Th2 (IL-5, IL-6), Th9 (IL-9), and Th17 (IL-17A, IL-22). Furthermore, CM-hAMSC significantly induced the Treg compartment, as shown by an induction of proliferating CD4+FoxP3+ cells, and an increase of CD25+FoxP3+ and CD39+FoxP3+ Treg in the CD4+ population. Induction of Treg cells was corroborated by the increased secretion of TGF-β. Taken together, these data strengthen the findings regarding the immunomodulatory properties of CM-hAMSC derived from human amniotic membrane MSC, and in particular provide insights into their effect on regulation of T cell polarization.
Collapse
Affiliation(s)
- Stefano Pianta
- Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Via Bissolati, 57, I-25124, Brescia, Italy
| | | | | | | | | | | | | |
Collapse
|
9
|
Duan D, Yang J, Yang JH, Tang YM, Wang YY. Human umbilical cord mesenchymal stem cells for treatment of cirrhosis. Shijie Huaren Xiaohua Zazhi 2016; 24:362-367. [DOI: 10.11569/wcjd.v24.i3.362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The incidence of liver cirrhosis in China is increasing year by year. About one million people die from liver cirrhosis each year, which is a serious threat to human health. Unfortunately, the treatment effect for end stage liver cirrhosis is poor. Orthotopic liver transplantation (OLT) is considered the most effective treatment, but it has limited use because of the shortage of donor liver, high cost, high risk of surgery, and immune rejection after transplantation. With the deep research of stem cell transplantation technology, human umbilical cord mesenchymal stem cells (HUC-MSCs), which have many unique advantages such as rich source, easy collection and preservation, high proliferation and differentiation capacity, low immunity, and no ethical disputes, show a broad prospect for clinical application. In this paper, we review the biological characteristics of HUC-MSCs, the theoretical basis for the treatment of liver cirrhosis using HUC-MSCs, as well as their clinical application, problems and prospects.
Collapse
|
10
|
Research Progress on Regulatory T Cells in Acute Kidney Injury. J Immunol Res 2015; 2015:174164. [PMID: 26273681 PMCID: PMC4529954 DOI: 10.1155/2015/174164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/02/2015] [Indexed: 02/06/2023] Open
Abstract
Immune inflammation is crucial in mediating acute kidney injury (AKI). Immune cells of both the innate and adaptive immune systems substantially contribute to overall renal damage in AKI. Regulatory T cells (Tregs) are key regulator of immunological function and have been demonstrated to ameliorate injury in several murine experimental models of renal inflammation. Recent studies have illuminated the renal-protective function of Tregs in AKI. Tregs appear to exert beneficial effects in both the acute injury phase and the recovery phase of AKI. Additionally, Tregs-based immunotherapy may represent a promising approach to ameliorate AKI and promote recovery from AKI. This review will highlight the recent insights into the role of Tregs and their therapeutic potential in AKI.
Collapse
|
11
|
Yi Z, Fan H, Liu X, Tang Q, Zuo D, Yang J. Adrenomedullin improves intestinal epithelial barrier function by downregulating myosin light chain phosphorylation in ulcerative colitis rats. Mol Med Rep 2015; 12:3615-3620. [PMID: 26043783 DOI: 10.3892/mmr.2015.3887] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 05/08/2015] [Indexed: 11/06/2022] Open
Abstract
Adrenomedullin (AM) is a pivotal endogenous vasoactive peptide, which can maintain epithelial barrier function in inflammatory bowel disease. Myosin light chain kinase (MLCK)‑dependent phosphorylated myosin light chain kinase (p‑MLC) is a key regulator of intestinal barrier function. The aim of the present study was to investigate the effect and mechanism of AM on the intestinal epithelial barrier in a rat model of ulcerative colitis (UC) induced by 2,4,6‑trinitro‑benzene‑sulfonic acid (TNBS). A total of 21 male Sprague‑Dawley rats were randomly divided into the following three groups and administered different agents for 7 days: The normal group (water and saline), model group (TNBS and saline) and the AM group (TNBS and AM; 1.0 µg). The weight of rats was recorded every day. Serum tumor necrosis factor‑α (TNF‑α) and interleukin‑6 (IL‑6) levels were detected using ELISA kits. Colon tissue was collected for the assessment of histological alterations. The protein expression of MLCK, p‑MLC and zonula occludens‑1 (ZO‑1) was examined by western blot analysis. Intestinal epithelial tight junctions were examined using transmission electron microscopy. The results demonstrated that in colitis model rats, the expression of TNF‑α, IL‑6, MLCK and p‑MLC significantly increased compared with normal rats. In addition, the expression of ZO‑1 decreased (P<0.05) and intestinal epithelial cell permeability increased. Following AM administration, TNF‑α, IL‑6, MLCK and p‑MLC expression significantly decreased compared with the model rats, the expression of ZO‑1 increased (P<0.05) and intestinal epithelial cell permeability reduced. These data indicate a protective effect of AM on intestinal epithelial barrier dysfunction via suppression of inflammatory cytokines and downregulation of MLCK‑p‑MLC in TNBS‑induced UC. In conclusion, AM/MLCK‑p‑MLC may be an important signaling pathway in the occurrence and development of UC.
Collapse
Affiliation(s)
- Zaifeng Yi
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xingxing Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qing Tang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Dongmei Zuo
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jia Yang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|