1
|
Bushmeleva K, Vyshtakalyuk A, Terenzhev D, Belov T, Nikitin E, Zobov V. Effect of Flavonols of Aronia melanocarpa Fruits on Morphofunctional State of Immunocompetent Organs of Rats under Cyclophosphamide-Induced Immunosuppression. Biomolecules 2024; 14:578. [PMID: 38785985 PMCID: PMC11117470 DOI: 10.3390/biom14050578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Aronia melanocarpa berries contain many compounds with potential benefits for human health. The food flavonoids quercetin and rutin, found in significant amounts in the fruits of A. melanocarpa, are known to have favourable effects on animal and human organisms. However, data on the effect of flavonols isolated from black chokeberry on immune functions during immunosuppression are not available in the literature. Thus, the aim of this study was to evaluate the effect of flavonol fraction isolated from A. melanocarpa fruits, in comparison with pure quercetin and rutin substances, on the dysfunctional state of rat thymus and spleen in immunodeficiency. The study was performed on Wistar rats. The animals were orally administered solutions of the investigated substances for 7 days: water, a mixture of quercetin and rutin and flavonol fraction of A. melanocarpa. For induction of immunosuppression, the animals were injected once intraperitoneally with cyclophosphamide. Substance administration was then continued for another 7 days. The results showed that under the influence of flavonols, there was a decrease in cyclophosphamide-mediated reaction of lipid peroxidation enhancement and stimulation of proliferation of lymphocytes of thymus and spleen in rats. At that, the effect of the flavonol fraction of aronia was more pronounced.
Collapse
Affiliation(s)
- Kseniya Bushmeleva
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, Kazan 420088, Russia; (A.V.); (D.T.); (T.B.); (E.N.); (V.Z.)
| | | | | | | | | | | |
Collapse
|
2
|
Xu L, Pan F, Guo Z. TIPE2: A Candidate for Targeting Antitumor Immunotherapy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:755-763. [PMID: 38377476 DOI: 10.4049/jimmunol.2300433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/18/2023] [Indexed: 02/22/2024]
Abstract
TNF-α-induced protein 8-like 2 (TIPE2 or TNFAIP8L2) is a recently discovered negative regulator of innate and adaptive immunity. TIPE2 is expressed in a wide range of tissues, both immune and nonimmune, and is implicated in the maintenance of immune homeostasis within the immune system. Furthermore, TIPE2 has been shown to play a pivotal role in the regulation of inflammation and the development of tumor. This review focuses on the structural characteristics, expression patterns, and functional roles of TIPE proteins, with a particular emphasis on the role and underlying mechanisms of TIPE2 in immune regulation and its involvement in different diseases. However, the current body of evidence is still limited in providing a comprehensive understanding of the complex role of TIPE2 in the human body, warranting further investigation to elucidate the possible mechanisms and functions of TIPE2 in diverse disease contexts.
Collapse
Affiliation(s)
- Luxia Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Feiyan Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
3
|
Du HB, Jiang SB, Zhao ZA, Zhang H, Zhang LM, Wang Z, Guo YX, Zhai JY, Wang P, Zhao ZG, Niu CY, Jiang LN. TLR2/TLR4-Enhanced TIPE2 Expression Is Involved in Post-Hemorrhagic Shock Mesenteric Lymph-Induced Activation of CD4+T Cells. Front Immunol 2022; 13:838618. [PMID: 35572554 PMCID: PMC9101470 DOI: 10.3389/fimmu.2022.838618] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Post hemorrhagic shock mesenteric lymph (PHSML) return contributes to CD4+ T cell dysfunction, which leads to immune dysfunction and uncontrolled inflammatory response. Tumor necrosis factor α induced protein 8 like-2 (TIPE2) is one of the essential proteins to maintain the immune homeostasis. This study investigated the role of TIPE2 in regulation of CD4+ T lymphocyte function in interaction of PHSML and TLR2/TLR4. Methods The splenic CD4+ T cells were isolated from various mice (WT, TLR2-/-, TLR4-/-) by immunomagnetic beads, and stimulated with PHSML, normal lymphatic fluid (NML), respectively. Application of TIPE2-carrying interfering fragments of lentivirus were transfected to WT, TLR4-/-, and TLR2-/- CD4+ T cells, respectively. After interference of TIPE2, they were stimulated with PHSML and NML for the examinations of TIPE2, TLR2, and TLR4 mRNA expressions, proliferation, activation molecules on surface, and cytokine secretion function. Results PHSML stimulation significantly upregulated TIPE2, TLR2, and TLR4 mRNA expressions, decreased proliferation, CD25 expression, and IFN-γ secretion, and increased the secretion ability of IL-4 in WT CD4+ T cells. TIPE2 silencing enhanced proliferative capacity, upregulated CD25 expression, and increased IFNγ secretion in CD4+ T cells. PHSML stimulated TLR2-/-CD4+ T or TLR4-/-CD4+ T cells of which TIPE2 were silenced. TLR2 or TLR4 knockout attenuated PHSML-induced CD4+ T cells dysfunction; PHSML stimulation of silent TIPE2-expressing TLR2-/-CD4+ T or TLR4-/-CD4+ T revealed that the coexistence of low TIPE2 expression with lack of TLR2 or TLR4 eliminated this beneficial effect. Conclusion TIPE2 improves the PHSML-mediated CD4+T cells dysfunction by regulating TLR2/TLR4 pathway, providing a new intervention target following hemorrhagic shock-induced immune dysfunction.
Collapse
Affiliation(s)
- Hui-Bo Du
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, China
| | - Sun-Ban Jiang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
| | - Zhen-Ao Zhao
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, China
| | - Hong Zhang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, China
| | - Li-Min Zhang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, China
| | - Zhao Wang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
| | - Ya-Xiong Guo
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, China
| | - Jia-Yi Zhai
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
| | - Peng Wang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
| | - Zi-Gang Zhao
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, China
| | - Chun-Yu Niu
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, China
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Li-Na Jiang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, China
| |
Collapse
|
4
|
Zhang H, Li J, Saravanan KM, Wu H, Wang Z, Wu D, Wei Y, Lu Z, Chen YH, Wan X, Pan Y. An Integrated Deep Learning and Molecular Dynamics Simulation-Based Screening Pipeline Identifies Inhibitors of a New Cancer Drug Target TIPE2. Front Pharmacol 2021; 12:772296. [PMID: 34887765 PMCID: PMC8650684 DOI: 10.3389/fphar.2021.772296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/02/2021] [Indexed: 12/31/2022] Open
Abstract
The TIPE2 (tumor necrosis factor-alpha-induced protein 8-like 2) protein is a major regulator of cancer and inflammatory diseases. The availability of its sequence and structure, as well as the critical amino acids involved in its ligand binding, provides insights into its function and helps greatly identify novel drug candidates against TIPE2 protein. With the current advances in deep learning and molecular dynamics simulation-based drug screening, large-scale exploration of inhibitory candidates for TIPE2 becomes possible. In this work, we apply deep learning-based methods to perform a preliminary screening against TIPE2 over several commercially available compound datasets. Then, we carried a fine screening by molecular dynamics simulations, followed by metadynamics simulations. Finally, four compounds were selected for experimental validation from 64 candidates obtained from the screening. With surprising accuracy, three compounds out of four can bind to TIPE2. Among them, UM-164 exhibited the strongest binding affinity of 4.97 µM and was able to interfere with the binding of TIPE2 and PIP2 according to competitive bio-layer interferometry (BLI), which indicates that UM-164 is a potential inhibitor against TIPE2 function. The work demonstrates the feasibility of incorporating deep learning and MD simulation in virtual drug screening and provides high potential inhibitors against TIPE2 for drug development.
Collapse
Affiliation(s)
- Haiping Zhang
- Center for High Performance Computing, Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Junxin Li
- Shenzhen Laboratory of Human Antibody Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, University City of Shenzhen, Shenzhen, China
| | - Konda Mani Saravanan
- Center for High Performance Computing, Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hao Wu
- Center for High Performance Computing, Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhichao Wang
- Center for High Performance Computing, Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Du Wu
- Center for High Performance Computing, Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yanjie Wei
- Center for High Performance Computing, Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhen Lu
- Center for Cancer Immunology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, University City of Shenzhen, Shenzhen, China
| | - Youhai H Chen
- Center for Cancer Immunology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, University City of Shenzhen, Shenzhen, China
| | - Xiaochun Wan
- Shenzhen Laboratory of Human Antibody Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, University City of Shenzhen, Shenzhen, China
| | - Yi Pan
- Center for High Performance Computing, Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
5
|
Usmani J, Khan T, Ahmad R, Sharma M. Potential role of herbal medicines as a novel approach in sepsis treatment. Biomed Pharmacother 2021; 144:112337. [PMID: 34688080 DOI: 10.1016/j.biopha.2021.112337] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/09/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022] Open
Abstract
The growing number of deaths related to sepsis has become a major concern for past few years. Sepsis is a complex pathological reactions that is explained by series of host response to microbial insult. The resulted systemic reactions are manifested by early appearance of proinflammatory cytokines leading to hyperinflammatory phase which is followed by septic shock and death of the patient. The present study has revealed that antibiotics are not self-sufficient to control the complex mechanism of sepsis. Moreover prolonged and unnecessary administration of antibiotics may lead to antibiotic resistance to pathogens. In addition to this, immunosuppressive medications are selective and have targeted approach to certain study population. Drugs from herbal origin have shown to possess a mammoth of immunomodulatory potential by suppressing proinflammatory and anti-inflammatory cytokines exhibiting no or minimal unwanted secondary responses. Concomitantly, herbal plants tend to modulate oxidative stress level and haematological imbalance during inflammatory diseased conditions. Natural compounds have gained much attention for the treatment of several clinical complications. Considering the promising responses of medicinal plants with less/no side effects and easy procurement, comprehensive research on herbal plants to treat sepsis should be contemplated.
Collapse
Affiliation(s)
- Juveria Usmani
- Department of Pharmacology, School of Pharmaceutical Sciences & Research, Jamia Hamdard, New Delhi, India
| | - Tahira Khan
- Department of Pharmacology, School of Pharmaceutical Sciences & Research, Jamia Hamdard, New Delhi, India
| | - Razi Ahmad
- Department of Pharmacology, Hamdard Institute of Medical Sciences & Research, Jamia Hamdard, New Delhi 110019, India.
| | - Manju Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences & Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
6
|
Wang F, Yao G, Pan S, Mao X, Zhao X, Li C, Hong Z, Liang G, Yu L, Hu X, Peng W. TIPE2-modified human amnion-derived mesenchymal stem cells promote the efficacy of allogeneic heart transplantation through inducing immune tolerance. J Thorac Dis 2021; 13:5064-5076. [PMID: 34527344 PMCID: PMC8411184 DOI: 10.21037/jtd-21-1034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/05/2021] [Indexed: 11/06/2022]
Abstract
Background Immune rejection of heart transplantation has been regarded as the biggest challenge encountered by a patient suffering from end-stage heart disease. The transplantation of human amnion-derived mesenchymal stem cells (hAD-MSCs) has exhibited promising application prospects in organ transplantation. However, its persistent unsatisfactory tolerance has limited the widespread application of this technology. We aim to investigate the role of tumor necrosis factor-α-induced protein-8 like-2 (TIPE2)-mediated hAD-MSCs in immune tolerance in heart transplantation and its molecular regulatory mechanisms. Methods This project detected the effect of TIPE2 on immune tolerance by constructing an allogeneic heart transplantation mouse model through which TIPE2-overexpressed hAD-MSCs were injected into recipients. The fluorescence distribution of TIPE2-hAD-MSCs in mice was observed by a small animal in vivo imaging system. Pathological changes of the transplanted heart were detected by hematoxylin and eosin (HE) staining. Flow cytometry was performed to detect the content of cardiac lymphocytes. The expression of immune-induced related factors was measured by quantitative real-time PCR (qRT-PCR) and western blot assays. Results TIPE2-hAD-MSCs protected myocardial tissue structures, reduced the spleen and thymus indexes in recipient mice, minimized the content of cardiac lymphocytes, reduced expressions of ERK, p38, and IFN-γ, and elevated expressions of both IL-10 and TGF-β, markedly improving the survival time and survival rates of recipient mice. Conclusions TIPE2-hAD-MSCs induce immune tolerance and improve the survival rates of allogeneic heart transplantation in mice. This study is expected to offer an ideal source and target of cells for organ transplantation.
Collapse
Affiliation(s)
- Feng Wang
- Department of Clinical Medical College, Guizhou Medical University, Guiyang, China.,Department of Cardiac Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Cardiac Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Guanping Yao
- Department of Guizhou Regenerative Medicine Laboratory, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Sisi Pan
- Department of Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Xin Mao
- Department of Clinical Medical College, Zunyi Medical University, Zunyi, China
| | - Xu Zhao
- Department of Clinical Medical College, Zunyi Medical University, Zunyi, China
| | - Chuntian Li
- Department of Clinical Medical College, Zunyi Medical University, Zunyi, China
| | - Zheng Hong
- Department of Clinical Medical College, Zunyi Medical University, Zunyi, China
| | - Guiyou Liang
- Department of Clinical Medical College, Guizhou Medical University, Guiyang, China.,Department of Cardiac Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Limei Yu
- Department of Guizhou Regenerative Medicine Laboratory, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xuanyi Hu
- Department of Cardiac Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wanfu Peng
- Department of Cardiac Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
7
|
You L, Zhang D, Geng H, Sun F, Lei M. Salidroside protects endothelial cells against LPS-induced inflammatory injury by inhibiting NLRP3 and enhancing autophagy. BMC Complement Med Ther 2021; 21:146. [PMID: 34011327 PMCID: PMC8136193 DOI: 10.1186/s12906-021-03307-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 04/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Salidroside (SAL) is a bioactive compound extracted from Rhodiola rosea with various biological properties. This study was designed to explore the functions of SAL on the endothelial damage induced by lipopolysaccharide (LPS) and its related mechanisms. METHODS Human umbilical vein endothelial cells (HUVECs) were pretreated with SAL (0, 10, 25, 50, 100 μM), and then incubated with LPS (10 μg/mL). Cell viability was evaluated by MTT assay, cell injury by lactate dehydrogenase (LDH) release, and inflammatory cytokines release by ELISA assay. Oxidative stress was evaluated by malondialdehyde (MDA) and superoxide dismutase (SOD) in cell lysate. Apoptosis was detected by flow cytometry and caspase-3 activity. Western blot were performed to determine expression levels of autophagy and NOD-like receptor protein 3 (NLRP3) related proteins. RESULTS SAL at 50 μM concentration showed no toxicity on HUVECs, but attenuated LPS-induced injury, as evidenced by increased cell viability, reduction in LDH level and inflammatory cytokines in culture media. SAL also reduced MDA level and increased SOD activity in HUVECs, and inhibited apoptosis rate and caspase-3 activity. (P < 0.05). Moreover, LPS enhanced HUVECs autophagy, and SAL pretreatment further enhanced autophagy, with increased Beclin-1 protein and decreased P62 protein. SAL also attenuated LPS-induced activation of NLRP3 inflammasome, reduced the protein expression of NLRP3-related proteins, including ASC and caspase-1. Autophagy inhibition by 3-MA markedly reversed SAL-modulated changes in cell viability and NLRP3 expression in LPS-stimulated HUVECs. CONCLUSION SAL protects endothelial cells against LPS-induced injury through inhibition of NLRP3 pathways and enhancing autophagy.
Collapse
Affiliation(s)
- Lijiao You
- Department of Critical Care Medicine, Seventh People's Hospital of Shanghai University of TCM, No.358 Datong Road, Gaoqiao Town, Pudong New District, Shanghai, 200137, China
| | - Di Zhang
- Department of Rehabilitation Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai, 200137, P.R. China
| | - Huan Geng
- Department of Critical Care Medicine, Seventh People's Hospital of Shanghai University of TCM, No.358 Datong Road, Gaoqiao Town, Pudong New District, Shanghai, 200137, China
| | - Fangyuan Sun
- Department of Critical Care Medicine, Seventh People's Hospital of Shanghai University of TCM, No.358 Datong Road, Gaoqiao Town, Pudong New District, Shanghai, 200137, China
| | - Ming Lei
- Department of Critical Care Medicine, Seventh People's Hospital of Shanghai University of TCM, No.358 Datong Road, Gaoqiao Town, Pudong New District, Shanghai, 200137, China.
| |
Collapse
|
8
|
Wang Z, Lin Y, Jin S, Wei T, Zheng Z, Chen W. Bone marrow mesenchymal stem cells improve thymus and spleen function of aging rats through affecting P21/PCNA and suppressing oxidative stress. Aging (Albany NY) 2020; 12:11386-11397. [PMID: 32561691 PMCID: PMC7343510 DOI: 10.18632/aging.103186] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/09/2020] [Indexed: 12/13/2022]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) have been considered to be an important regulator for immune function. We aim to prove the function improvement of aging spleen and thymus induced by BMSCs and unfold the specific mechanisms. Aging animal model was established using D-galactose. The morphological changes of spleen and thymus tissues were observed using hematoxylin-eosin staining and transmission electron microscopy. Key cytokines in the serum were measured with enzyme linked immunosorbent assay. Protein and mRNA levels of P16, P21, and PCNA were detected using western blotting and RT-qPCR. Special markers of BMSCs were identified using flow cytometry, and successful induction of BMSCs to steatoblast and osteoblasts was observed. Compared to aging model, BMSCs significantly increased the spleen and thymus index, improved the histological changes of spleen and thymus tissues. A remarkable increase of ratio between CD4+T cells and CD8+T cells, level of IL-2 was achieved by BMSCs. However, BMSCs markedly inhibited the content of IL-10, TNF-a, P16, and P21 but promoted PCNA. Significant inhibition of oxidative stress by BMSCs was also observed. We demonstrated that BMSCs significantly improved the tissue damage of aging spleen and thymus, BMSCs may improve aging organs through influencing cytokines, oxidative stress, and P21/PCNA.
Collapse
Affiliation(s)
- Zhihong Wang
- Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian, China
- Department of Hematology, Fujian Provincial Hospital, Fuzhou 350001, Fujian, China
| | - Yun Lin
- Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian, China
- Department of Hematology, Fujian Provincial Hospital, Fuzhou 350001, Fujian, China
| | - Shang Jin
- Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian, China
- Department of Hematology, Fujian Provincial Hospital, Fuzhou 350001, Fujian, China
| | - Tiannan Wei
- Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian, China
- Department of Hematology, Fujian Provincial Hospital, Fuzhou 350001, Fujian, China
| | - Zhihai Zheng
- Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian, China
- Department of Hematology, Fujian Provincial Hospital, Fuzhou 350001, Fujian, China
| | - Weimin Chen
- Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian, China
- Department of Hematology, Fujian Provincial Hospital, Fuzhou 350001, Fujian, China
| |
Collapse
|
9
|
Shi B, Hao Y, Li W, Dong H, Xu M, Gao P. The enigmatic role of TIPE2 in asthma. Am J Physiol Lung Cell Mol Physiol 2020; 319:L163-L172. [PMID: 32493031 DOI: 10.1152/ajplung.00069.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Unlike other members of the tumor necrosis factor (TNF)-α-induced protein 8 (TNFAIP8/TIPE) family that play a carcinogenic role and regulate apoptosis, TNFAIP8-like 2 (TIPE2) can not only maintain immune homeostasis but also regulate inflammation. TIPE2 mainly restrains the activation of T cell receptor (TCR) and Toll-like receptors (TLR), regulating its downstream signaling pathways, thereby regulating inflammation. Interestingly, TIPE2 is abnormally expressed in many inflammatory diseases and may promote or inhibit inflammation in different diseases. This review summarizes the molecular target and cellular function of TIPE2 in immune cells and inflammatory diseases and the underlying mechanism by which TIPE2 regulates inflammation. The function and mechanism of TIPE2 in asthma is also explained in detail. TIPE2 is abnormally expressed in asthma and participates in the pathogenesis of different phenotypes of asthma through regulating multiple inflammatory cells' activity and function. Considering the indispensable role of TIPE2 in asthma, TIPE2 may be an effective therapeutic target in asthma. However, the available data are insufficient to provide a full understanding of the complex role of TIPE2 in human asthma. Further study is still necessary to explore the possible mechanism and functions of TIPE2 in different asthma phenotypes.
Collapse
Affiliation(s)
- Bingqing Shi
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yuqiu Hao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Li
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Hongna Dong
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Mengting Xu
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Peng Gao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
10
|
Abstract
Salidroside is a phenolic secondary metabolite present in plants of the genus Rhodiola, and studies investigating its extensive pharmacological activities and mechanisms have recently attracted increasing attention. This review summarizes the progress of recent research on the antiproliferative activities of salidroside and its effects on breast, ovarian, cervical, colorectal, lung, liver, gastric, bladder, renal, and skin cancer as well as gliomas and fibrosarcomas. Thus, it provides a reference for the further development and utilization of salidroside.
Collapse
|
11
|
Bai XL, Deng XL, Wu GJ, Li WJ, Jin S. Rhodiola and salidroside in the treatment of metabolic disorders. Mini Rev Med Chem 2019; 19:1611-1626. [PMID: 31481002 DOI: 10.2174/1389557519666190903115424] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/31/2017] [Accepted: 07/31/2017] [Indexed: 12/14/2022]
Abstract
Over the past three decades, the knowledge gained about the mechanisms that underpin the potential use of Rhodiola in stress- and ageing-associated disorders has increased, and provided a universal framework for studies that focused on the use of Rhodiola in preventing or curing metabolic diseases. Of particular interest is the emerging role of Rhodiola in the maintenance of energy homeostasis. Moreover, over the last two decades, great efforts have been undertaken to unravel the underlying mechanisms of action of Rhodiola in the treatment of metabolic disorders. Extracts of Rhodiola and salidroside, the most abundant active compound in Rhodiola, are suggested to provide a beneficial effect in mental, behavioral, and metabolic disorders. Both in vivo and ex vivo studies, Rhodiola extracts and salidroside ameliorate metabolic disorders when administered acutely or prior to experimental injury. The mechanism involved includes multi-target effects by modulating various synergistic pathways that control oxidative stress, inflammation, mitochondria, autophagy, and cell death, as well as AMPK signaling that is associated with possible beneficial effects on metabolic disorders. However, evidence-based data supporting the effectiveness of Rhodiola or salidroside in treating metabolic disorders is limited. Therefore, a comprehensive review of available trials showing putative treatment strategies of metabolic disorders that include both clinical effective perspectives and fundamental molecular mechanisms is warranted. This review highlights studies that focus on the potential role of Rhodiola extracts and salidroside in type 2 diabetes and atherosclerosis, the two most common metabolic diseases.
Collapse
Affiliation(s)
- Xiang-Li Bai
- Department of Clinical Laboratory, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, China
| | - Xiu-Ling Deng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Guang-Jie Wu
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology. Wuhan, Hubei 430077, China
| | - Wen-Jing Li
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology. Wuhan, Hubei 430077, China
| | - Si Jin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology. Wuhan, Hubei 430077, China
| |
Collapse
|
12
|
Zhou R, Sun X, Li Y, Huang Q, Qu Y, Mu D, Li X. Low-dose Dexamethasone Increases Autophagy in Cerebral Cortical Neurons of Juvenile Rats with Sepsis Associated Encephalopathy. Neuroscience 2019; 419:83-99. [PMID: 31682824 DOI: 10.1016/j.neuroscience.2019.09.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/21/2022]
Abstract
Studies have shown that a certain dose of dexamethasone can improve the survival rate of patients with sepsis, and in sepsis associated encephalopathy (SAE), autophagy plays a regulatory role in brain function. Here, we proved for the first time that small-dose dexamethasone (SdDex) can regulate the autophagy of cerebral cortex neurons in SAE rats and plays a protective role. Cortical neurons were cultured in vitro in a septic microenvironment and a sepsis rat model was established. The small-dose dexamethasone (SdDex) or high-dose dexamethasone (HdDex) was used to intervene in neurons or SAE rats. Through fluorescence microscopy and western blot analysis, the expressions of microtubule-associated protein 1 light chain 3 (LC3), p62/sequestosome1 (p62/SQSTM1), mammalian target of rapamycin (mTOR) signaling pathway related proteins, and apoptosis-related proteins were detected. Theresultsshowthat compared with those in SAE rats, the cortical pathological changes in SAE rats treated with SdDex were improved, and damaged substances were encapsulated and degraded by autophagosomes in neurons. Additionally, similar to neurons in vitro, cortical autophagy was further activated and the mTOR signaling pathway was inhibited. After HdDex treatment, the mTOR signaling pathway in cortex is inhibited, but further activation of autophagy is not obvious, the cortical pathological changes were further worsened and the ultrastructure of neurons was disturbed. Furthermore, the HdDex group exhibited the most obvious apoptosis. SdDex can regulate autophagy of cortical neurons by inhibiting the mTOR signaling pathway and plays a protective role. Brain damage induced by HdDex may be related to the activation of apoptosis.
Collapse
Affiliation(s)
- Ruixi Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Xuemei Sun
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Yuyao Li
- Medical College, Xiamen University, Xiamen 361102, China
| | - Qun Huang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Xihong Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China; Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
13
|
Huang H, Cui Y, Tian Z, Li T, Yao Y. Tumor Necrosis Factor-α-Induced Protein 8-like 2 Downregulation Reduces CD4⁺ T Lymphocyte Apoptosis in Mice with Thermal Injury. Med Sci Monit 2019; 25:7547-7556. [PMID: 31591376 PMCID: PMC6795105 DOI: 10.12659/msm.917229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Cellular immunity plays a crucial role in sepsis, and lymphocyte apoptosis is a key factor in immune homeostasis. Tumor necrosis factor-α (TNF-α)-induced protein 8-like 2 (TIPE2) is suggested to play a critical role in maintaining immune homeostasis. This study investigated the role of TIPE2 in CD4+ T lymphocyte apoptosis based on a mouse model of thermal injury. Material/Methods BALB/c male mice were randomized into 6 groups: sham, burn, burn with siTIPE2, burn with siTIPE2 control, burn with TIPE2, and burn with TIPE2 control groups. Splenic CD4+ T lymphocytes were collected by use of a magnetic cell sorting system. Results We found that TIPE2 downregulation reduced the CD4+ T lymphocytes apoptosis in the burn with siTIPE2 group, and the protein expression of P-smad2/P-Smad3 were remarkably downregulated. In the burn with siTIPE2 group, Bcl-2 expression was increased compared with that in the sham group (P<0.05), and Bim expression was reduced (P<0.05). In the burn with TIPE2 group, the mitochondrial membrane potential was markedly reduced (P<0.01), while cytochrome C expression was clearly higher than that in the other groups (P<0.01). Activities of caspase-3, -8, and -9 were notably higher in the burn with TIPE2 group relative to those for other groups (P<0.05). Conclusions Downregulation of TIPE2 in vivo can reduce the apoptosis of CD4+ T lymphocytes following thermal damage, and activate the TGFβ downstream signaling of Smad2/Smad3, upregulating Bim, and downregulating Bcl-2.
Collapse
Affiliation(s)
- He Huang
- Department of Critical Care Medicine, The 960th Hospital of the PLA (People's Liberation Army) Joint Logistics Support Force, Jinan, Shandong, China (mainland)
| | - Yunliang Cui
- Department of Critical Care Medicine, The 960th Hospital of the PLA (People's Liberation Army) Joint Logistics Support Force, Jinan, Shandong, China (mainland)
| | - Zhaotao Tian
- Department of Critical Care Medicine, The 960th Hospital of the PLA (People's Liberation Army) Joint Logistics Support Force, Jinan, Shandong, China (mainland)
| | - Tanshi Li
- Emergency Department, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China (mainland)
| | - Yongming Yao
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA (People's Liberation Army) General Hospital, Beijing, China (mainland)
| |
Collapse
|
14
|
Tao H, Wu X, Cao J, Peng Y, Wang A, Pei J, Xiao J, Wang S, Wang Y. Rhodiola
species: A comprehensive review of traditional use, phytochemistry, pharmacology, toxicity, and clinical study. Med Res Rev 2019; 39:1779-1850. [PMID: 30652331 DOI: 10.1002/med.21564] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/23/2018] [Accepted: 12/31/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Hongxun Tao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao; China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University; Luzhou Sichuan China
| | - Jiliang Cao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao; China
| | - Yu Peng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao; China
| | - Anqi Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao; China
| | - Jin Pei
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Development and Utilization of Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine; Chengdu Sichuan China
| | - Jianbo Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao; China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao; China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao; China
| |
Collapse
|
15
|
Immunopotentiating significance of conventionally used plant adaptogens as modulators in biochemical and molecular signalling pathways in cell mediated processes. Biomed Pharmacother 2017; 95:1815-1829. [DOI: 10.1016/j.biopha.2017.09.081] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/09/2017] [Accepted: 09/18/2017] [Indexed: 12/24/2022] Open
|
16
|
Administration of Rhodiola kirilowii Extracts during Mouse Pregnancy and Lactation Stimulates Innate but Not Adaptive Immunity of the Offspring. J Immunol Res 2017; 2017:8081642. [PMID: 29214185 PMCID: PMC5682888 DOI: 10.1155/2017/8081642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 09/14/2017] [Indexed: 02/06/2023] Open
Abstract
The use of antibiotics during pregnancy and lactation is associated with an increased risk of developmental disorders. One of the natural medicinal plants—Rhodiola kirilowii, widely used as an immunostimulant in adults—might be a good alternative to antibiotic treatment. The aim of present study was to assess whether daily oral administration of 20 mg/kg of Rhodiola kirilowii aqueous (RKW) or 50% hydroalcoholic (RKW-A) extracts affected hematological and immunological parameters of 6-week-old mouse progeny. There was no significant change in hematological parameters of blood with the exception of hemoglobin, which was significantly higher (about 4%) in RKW group. Offspring of mothers fed Rhodiola kirilowii extracts had increased percentage of granulocytes and decreased percentage of lymphocytes. These changes correlated with decreased percentage of CD3+/CD4+ T-cells (RKW and RKW-A), decrease of CD8+ cells, and increase percentage of NK cells in RKW group. In addition, both types of Rhodiola kirilowii extracts stimulated granulocyte phagocytosis and increased level of respiratory burst. In conclusion, the long-term supplementation of mouse mothers during pregnancy and lactation with RKW or RKW-A extracts affects the immune system of their progeny. These results should be taken into consideration before administration of Rhodiola kirilowii to pregnant and lactating women.
Collapse
|
17
|
Rhodiola rosea L.: an herb with anti-stress, anti-aging, and immunostimulating properties for cancer chemoprevention. ACTA ACUST UNITED AC 2017; 3:384-395. [PMID: 30393593 DOI: 10.1007/s40495-017-0106-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Purpose of review Rhodiola rosea extracts have been used as a dietary supplement in healthy populations, including athletes, to non-specifically enhance the natural resistance of the body to both physical and behavior stresses for fighting fatigue and depression. We summarize the information with respect to the new pharmacological activities of Rhodiola rosea extracts and its underlying molecular mechanisms in this review article. Recent findings In addition to its multiplex stress-protective activity, Rhodiola rosea extracts have recently demonstrated its anti-aging, anti-inflammation, immunostimulating, DNA repair and anti-cancer effects in different model systems. Molecular mechanisms of Rhodiola rosea extracts's action have been studied mainly along with one of its bioactive compounds, salidroside. Both Rhodiola rosea extracts and salidroside have contrast molecular mechanisms on cancer and normal physiological functions. For cancer, Rhodiola rosea extracts and salidroside inhibit the mTOR pathway and reduce angiogenesis through down-regulation of the expression of HIF-1α/HIF-2α. For normal physiological functions, Rhodiola rosea extracts and salidroside activate the mTOR pathway, stimulate paracrine function and promote neovascularization by inhibiting PHD3 and stabilizing HIF-1α proteins in skeletal muscles. In contrast to many natural compounds, salidroside is water-soluble and highly bioavailable via oral administration and concentrated in urine by kidney excretion. Summary Rhodiola rosea extracts and salidroside can impose cellular and systemic benefits similar to the effect of positive lifestyle interventions to normal physiological functions and for anti-cancer. The unique pharmacological properties of Rhodiola rosea extracts or salidroside deserve further investigation for cancer chemoprevention, in particular for human urinary bladder cancer.
Collapse
|
18
|
Suzuki T, Suzuki Y, Okuda J, Kurazumi T, Suhara T, Ueda T, Nagata H, Morisaki H. Sepsis-induced cardiac dysfunction and β-adrenergic blockade therapy for sepsis. J Intensive Care 2017; 5:22. [PMID: 28270914 PMCID: PMC5335779 DOI: 10.1186/s40560-017-0215-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/18/2017] [Indexed: 12/17/2022] Open
Abstract
Despite recent advances in medical care, mortality due to sepsis, defined as life-threatening organ dysfunction caused by a dysregulated host response to infection, remains high. Fluid resuscitation and vasopressors are the first-line treatment for sepsis in order to optimize hemodynamic instability caused by vasodilation and increased vascular permeability. However, these therapies, aimed at maintaining blood pressure and blood flow to vital organs, could have deleterious cardiac effects, as cardiomyocyte damage occurs in the early stages of sepsis. Recent experimental and clinical studies have demonstrated that a number of factors contribute to sepsis-induced cardiac dysfunction and the degree of cardiac dysfunction is one of the major prognostic factors of sepsis. Therefore, strategies to prevent further cardiomyocyte damage could be of crucial importance in improving the outcome of sepsis. Among many factors causing sepsis-induced cardiac dysfunction, sympathetic nerve overstimulation, due to endogenous elevated catecholamine levels and exogenous catecholamine administration, is thought to play a major role. β-adrenergic blockade therapy is widely used for ischemic heart disease and chronic heart failure and in the prevention of cardiovascular events in high-risk perioperative patients undergoing major surgery. It has also been shown to restore cardiac function in experimental septic animal models. In a single-center randomized controlled trial, esmolol infusion in patients with septic shock with persistent tachycardia reduced the 28-day mortality. Furthermore, it is likely that β-adrenergic blockade therapy may result in further beneficial effects in patients with sepsis, such as the reduction of inflammatory cytokine production, suppression of hypermetabolic status, maintenance of glucose homeostasis, and improvement of coagulation disorders. Recent accumulating evidence suggests that β-adrenergic blockade could be an attractive therapy to improve the prognosis of sepsis. We await a large multicenter randomized clinical trial to confirm the beneficial effects of β-adrenergic blockade therapy in sepsis, of which mortality is still high.
Collapse
Affiliation(s)
- Takeshi Suzuki
- Department of Anesthesiology and General Intensive Care Unit, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 Japan
| | - Yuta Suzuki
- Department of Anesthesiology and General Intensive Care Unit, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 Japan
| | - Jun Okuda
- Department of Anesthesiology and General Intensive Care Unit, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 Japan
| | - Takuya Kurazumi
- Department of Anesthesiology and General Intensive Care Unit, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 Japan
| | - Tomohiro Suhara
- Department of Anesthesiology and General Intensive Care Unit, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 Japan
| | - Tomomi Ueda
- Department of Anesthesiology and General Intensive Care Unit, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 Japan
| | - Hiromasa Nagata
- Department of Anesthesiology and General Intensive Care Unit, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 Japan
| | - Hiroshi Morisaki
- Department of Anesthesiology and General Intensive Care Unit, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 Japan
| |
Collapse
|
19
|
Marchev AS, Dimitrova P, Koycheva IK, Georgiev MI. Altered expression of TRAIL on mouse T cells via ERK phosphorylation by Rhodiola rosea L. and its marker compounds. Food Chem Toxicol 2017; 108:419-428. [PMID: 28189478 DOI: 10.1016/j.fct.2017.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 12/22/2022]
Abstract
Rhodiola rosea L. extracts have shown neuroprotective, anti-fatigue, anti-inflammatory and anti-tumor properties. However, the studies on their effect on T cell function are rather scarce. We examined the potential of R. rosea extract and its major constituents - salidroside, rosarin, rosavin and rosin to alter cell growth of human Jurkat T cells, apoptosis of splenic mouse CD3 T cells and expression of the surface markers and phosphorylation of extracellular signal-regulated kinase (ERK). The initial screening for cell viability in Jurkat T cells and for apoptosis of mouse T cells showed the strongest activity for rosavin and rosarin. Rosarin and rosavin did not alter significantly the dynamic of CD69 expression upon stimulation, but altered TNF-related apoptosis-inducing ligand (TRAIL) expression. Rosavin inhibited TRAIL up-regulation, while rosarin showed an opposite effect. Indeed, rosarin increased the frequencies of CD3+TRAIL+ T cells and the fold inhibition of ERK phosphorylation. Our data showed that different effects of rosarin and rosavin on TRAIL expression can involve distinct action on ERK signaling and hence highlighted their potential to manipulate TRAIL as a tool to rescue the resistance to apoptosis in autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Andrey S Marchev
- Group of Plant Cell Biotechnology and Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria.
| | - Petya Dimitrova
- Department of Immunology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Georgi Bonchev Str., 1113 Sofia, Bulgaria
| | - Ivanka K Koycheva
- Group of Plant Cell Biotechnology and Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria
| | - Milen I Georgiev
- Group of Plant Cell Biotechnology and Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria.
| |
Collapse
|