1
|
Aroca-Esteban J, Souza-Neto FV, Aguilar-Latorre C, Tribaldo-Torralbo A, González-López P, Ruiz-Simón R, Álvarez-Villareal M, Ballesteros S, de Ceniga MV, Landete P, González-Rodríguez Á, Martín-Ventura JL, de Las Heras N, Escribano Ó, Gómez-Hernández A. Potential protective role of let-7d-5p in atherosclerosis progression reducing the inflammatory pathway regulated by NF-κB and vascular smooth muscle cells proliferation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167327. [PMID: 38945455 DOI: 10.1016/j.bbadis.2024.167327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024]
Abstract
The prevalence of cardiovascular diseases (CVDs) is increasing in the last decades, even is the main cause of death in first world countries being atherosclerosis one of the principal triggers. Therefore, there is an urgent need to decipher the underlying mechanisms involved in atherosclerosis progression. In this respect, microRNAs dysregulation is frequently involved in the progression of multiple diseases including CVDs. Our aim was to demonstrate that let-7d-5p unbalance could contribute to the pathophysiology of atherosclerosis and serve as a potential diagnostic biomarker. We evaluated let-7d-5p levels in vascular biopsies and exosome-enriched extracellular vesicles (EVs) from patients with carotid atherosclerosis and healthy donors. Moreover, we overexpressed let-7d-5p in vitro in vascular smooth muscle cells (VSMCs) to decipher the targets and the underlying mechanisms regulated by let-7d-5p in atherosclerosis. Our results demonstrate that let-7d-5p was significantly upregulated in carotid plaques from overweight patients with carotid atherosclerosis. Moreover, in EVs isolated from plasma, we found that let-7d-5p levels were increased in carotid atherosclerosis patients compared to control subjects specially in overweight patients. Receiver Operating Characteristic (ROC) analyses confirmed its utility as a diagnostic biomarker for atherosclerosis. In VSMCs, we demonstrated that increased let-7d-5p levels impairs cell proliferation and could serve as a protective mechanism against inflammation by impairing NF-κB pathway without affecting insulin resistance. In summary, our results highlight the role of let-7d-5p as a potential therapeutic target for atherosclerosis since its overexpression induce a decrease in inflammation and VSMCs proliferation, and also, as a novel non-invasive diagnostic biomarker for atherosclerosis in overweight patients.
Collapse
Affiliation(s)
- Javier Aroca-Esteban
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Francisco V Souza-Neto
- Physiology Department, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Carlota Aguilar-Latorre
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Alba Tribaldo-Torralbo
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Paula González-López
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Rubén Ruiz-Simón
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Marta Álvarez-Villareal
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Sandra Ballesteros
- Physiology Department, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Melina Vega de Ceniga
- Department of Angiology and Vascular Surgery, Hospital of Galdakao-Usansolo, Galdakao, Bizkaia, Spain; Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Pedro Landete
- Departmento de Neumología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain; Faculty of Medicine, Autonoma University of Madrid, Madrid, Spain
| | - Águeda González-Rodríguez
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - José L Martín-Ventura
- IIS-Fundation Jimenez-Diaz, Autonoma University of Madrid and CIBERCV, Madrid, Spain
| | - Natalia de Las Heras
- Physiology Department, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Óscar Escribano
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
| | - Almudena Gómez-Hernández
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
2
|
Błaszczyk R, Petniak A, Bogucki J, Kocki J, Wysokiński A, Głowniak A. Association between Resistant Arterial Hypertension, Type 2 Diabetes, and Selected microRNAs. J Clin Med 2024; 13:542. [PMID: 38256676 PMCID: PMC10816137 DOI: 10.3390/jcm13020542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
INTRODUCTION In recent years, a very close relationship between miRNA and cardiovascular diseases has been found. RAH and T2DM are accompanied by a change in the microRNA expression spectrum. OBJECTIVES This study aimed to evaluate the clinical characteristics and expression of selected microRNAs in patients with idiopathic RAH and T2DM. PATIENTS AND METHODS A total of 115 patients with RAH were included in this study. Among them were 53 patients (46.09%) with T2DM. miRNA levels were determined using quantitative real-time polymerase chain reaction. The expression of the examined genes was calculated from the formula RQ = 2-ΔΔCT. RESULTS Analysis using the Mann-Whitney U test showed a statistically significant (p < 0.05) difference in the expression of MIR1-1 (p = 0.031) and MIR195 (p = 0.042) associated with the occurrence of T2DM in the subjects. The value of MIR1-1 gene expression was statistically significantly higher in patients with T2DM (median: 0.352; mean: 0.386; standard deviation: 0.923) compared to patients without T2DM (median: 0.147; mean: -0.02; standard deviation: 0.824). The value of MIR195 gene expression was statistically significantly higher in patients with T2DM (median: 0.389, mean: 0.442; standard deviation: 0.819) compared to patients without T2DM (median: -0.027; mean: 0.08; standard deviation: 0.942). CONCLUSIONS The values of MIR1-1 and MIR195 gene expression were statistically significantly higher in patients with RAH and T2DM compared to patients with RAH and without T2DM. Further studies are necessary to precisely clarify the roles of miRNAs in patients with RAH and T2DM. They should demonstrate the utility of these genetic markers in clinical practice.
Collapse
Affiliation(s)
- Robert Błaszczyk
- Department of Cardiology, Medical University of Lublin, 20-090 Lublin, Poland; (A.W.); (A.G.)
| | - Alicja Petniak
- Department of Clinical Genetics, Medical University of Lublin, 20-080 Lublin, Poland; (A.P.); (J.K.)
| | - Jacek Bogucki
- Department of Organic Chemistry, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, 20-080 Lublin, Poland; (A.P.); (J.K.)
| | - Andrzej Wysokiński
- Department of Cardiology, Medical University of Lublin, 20-090 Lublin, Poland; (A.W.); (A.G.)
| | - Andrzej Głowniak
- Department of Cardiology, Medical University of Lublin, 20-090 Lublin, Poland; (A.W.); (A.G.)
| |
Collapse
|
3
|
Shirazi-Tehrani E, Chamasemani A, Firouzabadi N, Mousaei M. ncRNAs and polyphenols: new therapeutic strategies for hypertension. RNA Biol 2022; 19:575-587. [PMID: 35438046 PMCID: PMC9037439 DOI: 10.1080/15476286.2022.2066335] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Polyphenols have gained significant attention in protecting several chronic diseases, such as cardiovascular diseases (CVDs). Accumulating evidence indicates that polyphenols have potential protective roles for various CVDs. Hypertension (HTN) is among the hazardous CVDs accounting for nearly 8.5 million deaths worldwide. HTN is a complex and multifactorial disease and a combination of genetic susceptibility and environmental factors play major roles in its development. However, the underlying regulatory mechanisms are still elusive. Polyphenols have shown to cause favourable and beneficial effects in the management of HTN. Noncoding RNAs (ncRNAs) as influential mediators in modulating the biological properties of polyphenols, have shown significant footprints in CVDs. ncRNAs control basic functions in virtually all cell types relevant to the cardiovascular system and, thus, a direct link with blood pressure (BP) regulation is highly probable. Recent evidence suggests that a number of ncRNAs, including main small ncRNAs, microRNAs (miRNAs) and long ncRNAs (lncRNAs), play crucial roles with respect to the antihypertensive effects of polyphenols. Indeed, targeting lncRNAs by polyphenols will be a novel and promising strategy in the management of HTN. Herein, we reviewed the effects of polyphenols in HTN. Additionally, we emphasized on the potential effects of polyphenols on regulations of main ncRNAs, which imply the role of polyphenols in regulating ncRNAs in order to exert protective effects and thus proposing them as new targets for HTN treatment.Abbreviations : CVD: cardiovascular disease; BP: blood pressure; HTN: hypertension, lncRNAs: long noncoding RNAs; p38-MAPK: p38-mitogenactivated protein kinase; OPCs: oligomeric procyanidins; GTP: guanosine triphosphate; ROS: reactive oxygen species; cGMP: cyclic guanosine monophosphate; SGC: soluble guanylate cyclase; PI3K: phosphatidylinositol 3-kinase; cGMP: Cyclic GMP; eNOS: endothelial NO synthase; ERK ½: extracellular signal-regulated kinase ½; L-Arg: L-Arginine; MAPK: mitogen-activated protein kinases; NO: Nitric oxide; P: Phosphorus; PDK1: Phosphoinositide-dependent kinase 1; PI3-K: Phosphatidylinositol 3-kinase; PIP2: Phosphatidylinositol diphosphate; ncRNAs: non-protein-coding RNA; miRNAs: microRNAs; OPCs: oligomeric procyanidins; RES: resveratrol; GE: grape extract; T2DM: type 2 diabetes mellitus; IL: interleukin; TNF-α: tumour necrosis factor-alpha; NF-κB: nuclear factor NF-kappa-B; ALP: alkaline phosphatase; PARP1: poly [ADP-ribose] polymerase 1; HIF1a: Hypoxia-inducible-factor 1A; NFATc2: nuclear factor of activated T cells 2; PAD: peripheral artery disease; SHR: spontaneously hypertensive rat; RAAS: renin-angiotensin-aldosterone system; AT1R: angiotensin type-1 receptor; Nox: NADPH oxidase; HO-1: haem oxygenase-1; JAK/STAT: Janus kinase/signal transducers/activators of the transcription; PNS: panax notoginseng saponin; snoRNA: small nucleolar RNA; hnRNA: heterogeneous nuclear RNA; VSMCs: vascular smooth muscle cells; irf7: interferon regulatory factor 7; limo2: LIM only domain 2; GWAS: genome-wide association study; GAS5: Growth arrest-specific 5; Asb3, Ankyrin repeat and SPCS box containing 3; Chac2: cation transport regulator homolog 2; Pex11b: peroxisomal membrane 11B; Sp5: Sp5 transcription factor; EGCG: epigallocatechin gallate; ApoE: Apo lipoprotein E; ERK-MAP kinase: extracellular signal-regulated kinases-mitogen-activated protein kinase; PAH: pulmonary artery hypertension; PAP: pulmonary arterial pressure; HIF1a: hypoxia-inducible-factor 1A; NFATc2: nuclear factor of activated T cells 2; HMEC-1: Human microvascular endothelial cells; stat2: signal transducers and activators of transcription 2; JNK: c-Jun N-terminal kinase; iNOS: inducible NO synthase. SNP: single nucleotide polymorphism; CAD: coronary artery disease.
Collapse
Affiliation(s)
- Elham Shirazi-Tehrani
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Chamasemani
- Department of Cardiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Mousaei
- Archaea Centre, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
4
|
Tang K, Lv D, Miao L, Mao Y, Yu X. LncRNA TUG1 functions as a ceRNA for miR-1-3p to promote cell proliferation in hepatic carcinogenesis. J Clin Lab Anal 2022; 36:e24415. [PMID: 35421276 PMCID: PMC9102766 DOI: 10.1002/jcla.24415] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 12/19/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is characterised by high malignancy, metastasis and recurrence, but the specific mechanism that drives these outcomes is unclear. Recent studies have shown that long noncoding RNAs (lncRNAs) can regulate the proliferation and apoptosis of hepatic cells. Methods We searched for lncRNAs and microRNAs (miRNAs), which can regulate IGF1 expression, through a bioinformatics website, and predicted that lncRNA taurine‐upregulated gene 1 (TUG1) would have multiple targets for miR‐1‐3p binding, meaning that lncRNA TUG1 played an adsorption role. A double luciferase assay was used to verify the targeting relationship between lncRNA TUG1 and miR‐1‐3p. Western blotting and qPCR were used to verify the targeting relationship between miR‐1‐3p and IGF1, and qPCR was used to verify the regulatory relationship between the lncRNA TUG1‐miR‐1‐3p‐IGF1 axis. CCK‐8 was used to detect the growth activity of miRNA‐transfected L‐O2 cells, and flow cytometry was used to detect cell cycle changes and apoptosis. Result The proliferation cycle of L‐O2 cells transfected with miR‐1‐3p mimics was significantly slowed. Flow cytometry showed that the proliferation of L‐O2 cells was slowed, and the apoptosis rate was increased. In contrast, when L‐O2 cells were transfected with miR‐1‐3p inhibitor, the expression of IGF1 was significantly upregulated, and the cell proliferation cycle was significantly accelerated. Flow cytometry showed that the cell proliferation rate was accelerated, and the apoptosis rate was reduced. Conclusion LncRNA TUG1 can adsorb miR‐1‐3p as a competitive endogenous RNA (ceRNA) to promote the expression of IGF1 and promote cell proliferation in hepatic carcinogenesis.
Collapse
Affiliation(s)
- Keke Tang
- The Affiliated Hospital of the Medical School of Ningbo University, Ningbo, China
| | - Di Lv
- The Affiliated Hospital of the Medical School of Ningbo University, Ningbo, China
| | - Lingling Miao
- The Affiliated Hospital of the Medical School of Ningbo University, Ningbo, China
| | - Yushan Mao
- The Affiliated Hospital of the Medical School of Ningbo University, Ningbo, China
| | - Xiaoyan Yu
- The Affiliated Hospital of the Medical School of Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Zhang Y, Tang S, Yang W, Du F. let-7b-5p suppresses the proliferation and migration of pulmonary artery smooth muscle cells via down-regulating IGF1. Clinics (Sao Paulo) 2022; 77:100051. [PMID: 35636162 PMCID: PMC9156868 DOI: 10.1016/j.clinsp.2022.100051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/12/2022] [Accepted: 05/06/2022] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Some previous studies indicated that the excessive proliferation and migration of Pulmonary Artery Smooth Muscle Cells (PASMCs) could be observed in pulmonary artery intima after Pulmonary Embolism (PE) occurred. In addition, recent studies identified some miRNAs that are differentially expressed in the blood of PE patients, which might be used as a diagnostic biomarker for PE, including let-7a-5p, let-7b-5p, and miR-150-5p. Hence, the authors sought to explore the effects of let-7b-5p in PASMC proliferation and migration and the corresponding regulatory mechanism. METHODS Platelet-Derived Growth Factor (PDGF) was utilized to induce the hyper-proliferation model in PASMCs. The mRNA and protein expression levels were detected by RT-qPCR and western blot, respectively. The proliferation of PASMCs was evaluated by the detection of PCNA expression, as well as CCK-8 and Edu assays. Wound healing and Transwell assays were exploited to assess the migration ability of PASMCs. The targets of let-7b-5p were predicted based on two bioinformatics online tools. Dual-luciferase and Ago2 pull-down assays were applied to confirm the interaction between let-7b-5p and IGF1. RESULTS 40 ng/mL PDGF was selected as the optimal concentration to induce PASMCs. let-7b-5p mimics suppressed the proliferation and migration of PDGF-induced PASMCs, while let-7b-5p inhibitor led to the opposite result. In further mechanism exploration, IGF1 was predicted and confirmed as the direct target gene of let-7b-5p. The promotion role of IGF1 overexpression on the proliferation and migration of PDGF-induced PASMCs was dramatically countered by let-7b-5p mimics. CONCLUSION let-7b-5p prohibits the proliferation and migration of PDGF-induced PASMCs by modulating IGF1.
Collapse
Affiliation(s)
- Yadi Zhang
- Department of Respiratory Medicine, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China
| | - Sihui Tang
- Department of Respiratory Medicine, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China
| | - Wanchun Yang
- Department of Respiratory Medicine, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China
| | - Fangbing Du
- Department of Respiratory Medicine, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China.
| |
Collapse
|
6
|
Ye LL, Cheng ZG, Cheng XE, Huang YL. Propofol regulates miR-1-3p/IGF1 axis to inhibit the proliferation and accelerates apoptosis of colorectal cancer cells. Toxicol Res (Camb) 2021; 10:696-705. [PMID: 34745557 DOI: 10.1093/toxres/tfab047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 04/06/2021] [Accepted: 04/29/2021] [Indexed: 12/22/2022] Open
Abstract
This study aimed to clarify the mechanism of propofol on proliferation and apoptosis of colorectal cancer (CRC) cell. SW620 and HCT15 cells were exposed to different concentrations of propofol, the proliferation and apoptotic rate, were measured by MTT, colony formation and flow cytometry assays, respectively. The expressions of miR-1-3p and insulin-like growth factors 1 (IGF1) were examined by real-time polymerase chain reaction (RT-qPCR). Western bolt was employed to quantify the protein levels of IGF1 and apoptotic proteins. The molecular interaction between miR-1-3p and IGF1 was validated using dual-luciferase reporter assay. A xenograft tumor model was established to further assess the effects of propofol on CRC in vivo. Propofol dramatically decreased the proliferation and elevated apoptotic rate of CRC cells. RT-qPCR assay demonstrated that miR-1-3p was downregulated in CRC cells, and could be strikingly increased by propofol. Importantly, miR-1-3p inhibited IGF-1 expression through interacting with its 3'-UTR region, thus inactivating AKT/mTOR signals. Gain or loss of functional study revealed that miR-1-3p downregulation remarkedly diminished the anti-tumor roles of propofol by directly inhibiting IGF1. In vivo study showed that propofol inhibited tumor growth by regulating miR-1-3p/IGF1 axis. Our data eventually elucidated that propofol suppressed CRC progression by promoting miR-1-3p which targeted IGF1. These results might provide a scientific basis for the application of propofol on the clinical surgery and the prognosis of patients with CRC.
Collapse
Affiliation(s)
- Ling-Ling Ye
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Zhong-Gui Cheng
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xiao-E Cheng
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yuan-Lu Huang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
7
|
Zia A, Farkhondeh T, Sahebdel F, Pourbagher-Shahri AM, Samarghandian S. Key miRNAs in Modulating Aging and Longevity: A Focus on Signaling Pathways and Cellular Targets. Curr Mol Pharmacol 2021; 15:736-762. [PMID: 34533452 DOI: 10.2174/1874467214666210917141541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/02/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022]
Abstract
Aging is a multifactorial procedure accompanied by gradual deterioration of most biological procedures of cells. MicroRNAs (miRNAs) are a class of short non-coding RNAs that post-transcriptionally regulate the expression of mRNAs through sequence-specific binding, and contributing to many crucial aspects of cell biology. Several miRNAs are expressed differently in various organisms through aging. The function of miRNAs in modulating aging procedures has been disclosed recently with the detection of miRNAs that modulate longevity in the invertebrate model organisms, through the IIS pathway. In these model organisms, several miRNAs have been detected to both negatively and positively regulate lifespan via commonly aging pathways. miRNAs modulate age-related procedures and disorders in different mammalian tissues by measuring their tissue-specific expression in older and younger counterparts, including heart, skin, bone, brain, and muscle tissues. Moreover, several miRNAs have been contributed to modulating senescence in different human cells, and the roles of these miRNAs in modulating cellular senescence have allowed illustrating some mechanisms of aging. The review discusses the available data on miRNAs through the aging process and we highlight the roles of miRNAs as aging biomarkers and regulators of longevity in cellular senescence, tissue aging, and organism lifespan.
Collapse
Affiliation(s)
- Aliabbas Zia
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Faezeh Sahebdel
- Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, MN, United States
| | | | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
8
|
MiRNAs, lncRNAs, and circular RNAs as mediators in hypertension-related vascular smooth muscle cell dysfunction. Hypertens Res 2020; 44:129-146. [DOI: 10.1038/s41440-020-00553-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/20/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022]
|
9
|
Jonker SS, Giraud GD, Chang EI, Elman MR, Louey S. Coronary vascular growth matches IGF-1-stimulated cardiac growth in fetal sheep. FASEB J 2020; 34:10041-10055. [PMID: 32573852 DOI: 10.1096/fj.202000215r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/24/2020] [Accepted: 05/07/2020] [Indexed: 01/01/2023]
Abstract
As loss of contractile function in heart disease could often be mitigated by increased cardiomyocyte number, expansion of cardiomyocyte endowment paired with increased vascular supply is a desirable therapeutic goal. Insulin-like growth factor 1 (IGF-1) administration increases fetal cardiomyocyte proliferation and heart mass, but how fetal IGF-1 treatment affects coronary growth and function is unknown. Near-term fetal sheep underwent surgical instrumentation and were studied from 127 to 134 d gestation (term = 147 d), receiving either IGF-1 LR3 or vehicle. Coronary growth and function were interrogated using pressure-flow relationships, an episode of acute hypoxia with progressive blockade of adenosine receptors and nitric oxide synthase, and by modeling the determinants of coronary flow. The main findings were that coronary conductance was preserved on a per-gram basis following IGF-1 treatment, adenosine and nitric oxide contributed to hypoxia-mediated coronary vasodilation similarly in IGF-1-treated and Control fetuses, and the relationships between coronary flow and blood oxygen contents were similar between groups. We conclude that IGF-1-stimulated fetal myocardial growth is accompanied by appropriate expansion and function of the coronary vasculature. These findings support IGF-1 as a potential strategy to increase cardiac myocyte and coronary vascular endowment at birth.
Collapse
Affiliation(s)
- Sonnet S Jonker
- Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health & Science University, Portland, OR, USA
| | - George D Giraud
- Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health & Science University, Portland, OR, USA.,Division of Cardiology, VA Portland Health Care System, Portland, OR, USA
| | - Eileen I Chang
- Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health & Science University, Portland, OR, USA
| | - Miriam R Elman
- School of Public Health, Oregon Health & Science University-Portland State University, Portland, OR, USA
| | - Samantha Louey
- Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
10
|
Zhou Y, Ma W, Bian H, Chen Y, Li T, Shang D, Sun H. Long non-coding RNA MIAT/miR-148b/PAPPA axis modifies cell proliferation and migration in ox-LDL-induced human aorta vascular smooth muscle cells. Life Sci 2020; 256:117852. [PMID: 32470448 DOI: 10.1016/j.lfs.2020.117852] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/15/2020] [Accepted: 05/23/2020] [Indexed: 01/22/2023]
Abstract
AIMS Atherosclerosis (AS) performs the important pathogenesis which refers to coronaryheart and vascular diseases. Long non-coding RNAs (lncRNAs) was reported to be related to the AS progression. We aimed to probe the role and potential mechanism of Myocardial Infarction Associated Transcript (MIAT) in AS. MATERIALS AND METHODS Levels of MIAT, microRNA-148b (miR-148b) and pregnancy-associated plasma protein A (PAPPA) were detected by quantitative Real-time polymerase chain reaction (qRT-PCR) in oxidized low-density lipoprotein (ox-LDL)-induced human aorta vascular smooth muscle cells (HA-VSMCs). Proliferation and migration were examined by Cell counting kit-8 (CCK-8) and wound-healing assays, respectively. Protein levels of Ki-67, proliferating cell nuclear antigen (PCNA), matrix metalloproteinase (MMP)-2, MMP-9 and PAPPA were examined by western blot assay. Ki-67 and PCNA level was detected by flow cytometry. The interaction among MIAT, miR-148b and PAPPA was confirmed via dual-luciferase reporter and RNA immunoprecipitation (RIP). The biology role of MIAT was detected by an AS model in vivo. KEY FINDINGS The levels of MIAT and PAPPA were augmented, whereas mature miR-148b level was repressed in ox-LDL-induced AS model. The inhibitory effects of knockdown of MIAT on proliferation and migration were relieved by miR-148b inhibitor. Additionally, miR-148b regulated proliferation and migration by targeting PAPPA. Mechanically, MIAT functioned as sponge of miR-148b to impact PAPPA expression. MIAT knockdown protected AS mice against lipid metabolic disorders in vivo. SIGNIFICANCE Proliferation and migration were modified by MIAT/miR-148b/PAPPA axis in ox-LDL induced AS cell model, supplying a novel insight into the underlying application of MIAT in the clinical treatment of AS.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Weiwu Ma
- Department of Cardiology, The First People's Hospital of Pingyuan County, Dezhou, Shandong, China
| | - Hongjun Bian
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yong Chen
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Tao Li
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Deya Shang
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Haihui Sun
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
11
|
Girdauskas E, Neumann N, Petersen J, Sequeira-Gross T, Naito S, von Stumm M, von Kodolitsch Y, Reichenspurner H, Zeller T. Expression Patterns of Circulating MicroRNAs in the Risk Stratification of Bicuspid Aortopathy. J Clin Med 2020; 9:jcm9010276. [PMID: 31963884 PMCID: PMC7020030 DOI: 10.3390/jcm9010276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/27/2019] [Accepted: 01/14/2020] [Indexed: 11/16/2022] Open
Abstract
Objective: Aortic size-based criteria are of limited value in the prediction of aortic events, while most aortic events occur in patients with proximal aortic diameters < 50 mm. Serological biomarkers and especially circulating microRNAs (miRNAs) have been proposed as an elegant tool to improve risk stratification in patients with different aortopathies. Therefore, we aimed to evaluate the levels of circulating miRNAs in a surgical cohort of patients presenting with bicuspid aortic valve disease and distinct valvulo-aortic phenotypes. Methods: We prospectively examined a consecutive cohort of 145 patients referred for aortic valve surgery: (1) Sixty three patients (mean age 47 ± 11 years, 92% male) with bicuspid aortic valve regurgitation and root dilatation (BAV-AR), (2) thirty two patients (mean age 59 ± 11 years, 73% male) with bicuspid aortic valve stenosis (BAV-AS), and (3) fifty patients (mean age 56 ± 14 years, 55% male) with tricuspid aortic valve stenosis and normal aortic root diameters (TAV-AS) who underwent aortic valve+/-proximal aortic surgery at a single institution. MicroRNAs analysis included 11 miRNAs, all published previously in association with aortopathies. Endpoints of our study were (1) correlation between circulating miRNAs and aortic diameter and (2) comparison of circulating miRNAs in distinct valvulo-aortic phenotypes. Results: We found a significant inverse linear correlation between circulating miRNAs levels and proximal aortic diameter in the whole study cohort. The strongest correlation was found for miR-17 (r = −0.42, p < 0.001), miR-20a (r = −0.37, p < 0.001), and miR-106a (r = −0.32, p < 0.001). All miRNAs were significantly downregulated in BAV vs. TAV with normal aortic root dimensions Conclusions: Our data demonstrate a significant inverse correlation between circulating miRNAs levels and the maximal aortic diameter in BAV aortopathy. When comparing miRNAs expression patterns in BAV vs. TAV patients with normal aortic root dimensions, BAV patients showed significant downregulation of analyzed miRNAs as compared to their TAV counterparts. Further multicenter studies in larger cohorts are needed to further validate these results.
Collapse
Affiliation(s)
- Evaldas Girdauskas
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, 20246 Hamburg, Germany; (N.N.); (J.P.); (T.S.-G.); (S.N.); (M.v.S.); (H.R.)
- German Center of Cardiovascular Research (DZHK), Partner site Hamburg/Lübeck/Kiel, 20246 Hamburg, Germany; (Y.v.K.); (T.Z.)
- Correspondence: ; Tel.: +40-7410-57853; Fax: +40-7410-54931
| | - Niklas Neumann
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, 20246 Hamburg, Germany; (N.N.); (J.P.); (T.S.-G.); (S.N.); (M.v.S.); (H.R.)
| | - Johannes Petersen
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, 20246 Hamburg, Germany; (N.N.); (J.P.); (T.S.-G.); (S.N.); (M.v.S.); (H.R.)
- German Center of Cardiovascular Research (DZHK), Partner site Hamburg/Lübeck/Kiel, 20246 Hamburg, Germany; (Y.v.K.); (T.Z.)
| | - Tatiana Sequeira-Gross
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, 20246 Hamburg, Germany; (N.N.); (J.P.); (T.S.-G.); (S.N.); (M.v.S.); (H.R.)
| | - Shiho Naito
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, 20246 Hamburg, Germany; (N.N.); (J.P.); (T.S.-G.); (S.N.); (M.v.S.); (H.R.)
| | - Maria von Stumm
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, 20246 Hamburg, Germany; (N.N.); (J.P.); (T.S.-G.); (S.N.); (M.v.S.); (H.R.)
| | - Yskert von Kodolitsch
- German Center of Cardiovascular Research (DZHK), Partner site Hamburg/Lübeck/Kiel, 20246 Hamburg, Germany; (Y.v.K.); (T.Z.)
- Department of Cardiology, University Heart and Vascular Center Hamburg, 20246 Hamburg, Germany
| | - Hermann Reichenspurner
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, 20246 Hamburg, Germany; (N.N.); (J.P.); (T.S.-G.); (S.N.); (M.v.S.); (H.R.)
- German Center of Cardiovascular Research (DZHK), Partner site Hamburg/Lübeck/Kiel, 20246 Hamburg, Germany; (Y.v.K.); (T.Z.)
| | - Tanja Zeller
- German Center of Cardiovascular Research (DZHK), Partner site Hamburg/Lübeck/Kiel, 20246 Hamburg, Germany; (Y.v.K.); (T.Z.)
- Department of Cardiology, University Heart and Vascular Center Hamburg, 20246 Hamburg, Germany
| |
Collapse
|
12
|
Altered biogenesis of microRNA-1 is associated with cardiac dysfunction in aging of spontaneously hypertensive rats. Mol Cell Biochem 2019; 459:73-82. [PMID: 31104265 DOI: 10.1007/s11010-019-03551-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/04/2019] [Indexed: 12/19/2022]
Abstract
Currently we face the issues of aging-associated pathologies, particularly those leading to heart failure. With that in mind, in current research we focus on aging and hypertension combination as a widely spread threating problem. In a row with functional and morphological characterization of these aging- and hypertension-associated cardiac changes, we evaluate biogenesis of microRNA-1 being one of major microRNAs in the heart. The aim of this study was to check the hypothesis if dysregulation of microRNA-1 biogenesis is associated with heart failure in aged and especially aged hypertensive rats. The experiments were carried out on male SHR and Wistar rats of age 6 months (young) and 18 months (old). The evaluation of hemodynamic parameters was performed in heart left ventricles of narcotized rats using the ultra-small 2F catheter. The development of fibrosis was determined using light and electron microscopy. Levels of mature and immature forms of microRNA-1 and mRNA encoding the proteins involved in its biogenesis were determined using reverse transcription and quantitative PCR. Aging of both Wistar and SHRs is accompanied with altered hemodynamic parameters compared with correspondent younger mates. SHRs, especially old ones, demonstrated significant heart fibrosis. In aged animals, the level of primary microRNA-1 in Wistar rats were 7 times higher (p < 0.05) and in SHR 17 times higher (p < 0.05) in comparison with young rats of the same strain. We also observed 22 times higher level of immature microRNA-1 in the heart of Wistar and 5.9 times higher level for aged hypertensive rats (p < 0.05) compared to young rats. At the same time, the level of mature microRNA-1 occurred 2.5 and 3.2 times lower in respective groups (p < 0.05). In the current study, we observe the significant dysregulation of microRNA-1 processing in the heart associated with aging and arterial hypertension.
Collapse
|
13
|
Mozzini C, Girelli D, Cominacini L, Soresi M. An Exploratory Look at Bicuspid Aortic Valve (Bav) Aortopathy: Focus on Molecular and Cellular Mechanisms. Curr Probl Cardiol 2019; 46:100425. [PMID: 31097209 DOI: 10.1016/j.cpcardiol.2019.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 01/12/2023]
Abstract
Bicuspid aortic valve (BAV) is the most common congenital heart malformation. BAV patients are at increased risk for aortic valve disease (stenosis/regurgitation), infective endocarditis, thrombi formation and, in particular, aortic dilatation, aneurysm and dissection. This review aims at exploring the possible interplay among genetics, extracellular matrix remodeling, abnormal signaling pathways, oxidative stress and inflammation in contributing to BAV-associated aortopathy (BAV-A-A). Novel circulating biomarkers have been proposed as diagnostic tools able to improve risk stratification in BAV-A-A. However, to date, the precise molecular and cellular mechanisms that lead to BAV-A-A remain unknown. Genetic, hemodynamic and cardiovascular risk factors have been implicated in the development and progression of BAV-A-A. Oxidative stress may also play a role, similarly to what observed in atherosclerosis and vulnerable plaque formation. The identification of common pathways between these 2 conditions may provide a platform for future therapeutic solutions.
Collapse
|
14
|
Miao C, Chang J, Zhang G. Recent research progress of microRNAs in hypertension pathogenesis, with a focus on the roles of miRNAs in pulmonary arterial hypertension. Mol Biol Rep 2018; 45:2883-2896. [DOI: 10.1007/s11033-018-4335-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/28/2018] [Indexed: 12/22/2022]
|
15
|
The Clinical Significance of Changes in the Expression Levels of MicroRNA-1 and Inflammatory Factors in the Peripheral Blood of Children with Acute-Stage Asthma. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7632487. [PMID: 30046607 PMCID: PMC6038680 DOI: 10.1155/2018/7632487] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/18/2018] [Accepted: 05/07/2018] [Indexed: 12/21/2022]
Abstract
This study assessed the changes and clinical significance of microRNA-1 (miR-1) and inflammatory factors in the peripheral blood of children with acute-stage asthma. 100 children with acute-stage asthma (study group) and 100 healthy children (control group) were enrolled. For all enrolled children, the peripheral blood levels of miR-1, interleukin-4 (IL-4), IL-5, IL-8, tumor necrosis factor-alpha (TNF-α), and interferon-γ (IFN-γ) were measured. The relative expression levels of miR-1 and IFN-γ in the peripheral blood of children in the study group were significantly lower than those in the control group, whereas expression levels of IL-4, IL-5, IL-8, and TNF-α were significantly higher. Moreover, these levels changed to a greater extent in patients with severe disease (P < 0.05). Further analyses showed that the miR-1 expression level positively correlated with IFN-γ and negatively correlated with IL-4, IL-5, IL-8, and TNF-α expression levels (P < 0.05). ROC curve analysis to identify diagnostic specificity and sensitivity showed that, for diagnosing exacerbation in asthma, the area under the curve (AUC) for miR-1 was the highest (AUC = 0.900, P < 0.05) of all tested markers; this held true for diagnosing severe asthma as well (AUC = 0.977, P < 0.05). Compared to healthy children, children with acute-stage asthma had a low miR-1 expression level and a Th1/Th2 imbalance in their peripheral blood. The changes were closely related, became more exaggerated with an increase in disease severity, and could be used as auxiliary variables for diagnosing asthma exacerbation and evaluating disease severity.
Collapse
|
16
|
Girdauskas E, Petersen J, Neumann N, Groß T, Naito S, Hillebrand M, Reichenspurner H, Blankenberg S, Zeller T. Evaluation of microribonucleic acids as potential biomarkers in the bicuspid aortic valve-associated aortopathy†. Interact Cardiovasc Thorac Surg 2018; 27:60-66. [DOI: 10.1093/icvts/ivy033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 01/21/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Evaldas Girdauskas
- Clinic of Cardiovascular Surgery, University Heart Center Hamburg, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Hamburg, Germany
| | - Johannes Petersen
- Clinic of Cardiovascular Surgery, University Heart Center Hamburg, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Hamburg, Germany
| | - Niklas Neumann
- Clinic of Cardiovascular Surgery, University Heart Center Hamburg, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Hamburg, Germany
| | - Tatiana Groß
- Clinic of Cardiovascular Surgery, University Heart Center Hamburg, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Hamburg, Germany
| | - Shiho Naito
- Clinic of Cardiovascular Surgery, University Heart Center Hamburg, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Hamburg, Germany
| | - Mathias Hillebrand
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Hamburg, Germany
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
| | - Hermann Reichenspurner
- Clinic of Cardiovascular Surgery, University Heart Center Hamburg, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Hamburg, Germany
| | - Stefan Blankenberg
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Hamburg, Germany
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
| | - Tanja Zeller
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Hamburg, Germany
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
| |
Collapse
|
17
|
Effect of miR-29b on the Proliferation and Apoptosis of Pulmonary Artery Smooth Muscle Cells by Targeting Mcl-1 and CCND2. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6051407. [PMID: 29662889 PMCID: PMC5831881 DOI: 10.1155/2018/6051407] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 12/11/2017] [Indexed: 12/20/2022]
Abstract
The proliferation and apoptosis of pulmonary artery smooth muscle cells (PASMCs) are considered to be key steps in the progression of pulmonary arterial hypertension (PAH). MicroRNAs (e.g., miR-29b) have been identified in various diseases to be critical modulators of cell growth and apoptosis by targeting Mcl-1 and CCND2. However, the role of miR-29b in PAH remains unknown. So we try to investigate the effect of miR-29b on Mcl-1 and CCND2 protein in PASMCs, analyze the effect of miR-29b on the proliferation of PASMCs, and explore the significance of miR-29b in the proliferation, apoptosis, and gene therapy of PAH. It was observed that gene chip analysis showed miR-29b expression in pulmonary artery tissue. The expression of miR-29b was significantly reduced in PAH model mice. MiR-29b inhibited the proliferation of PASMCs and promoted the apoptosis of PASMCs. Mechanically, miR-29b could inhibit the expression of Mcl-1 and CCND2 protein and silenced Mcl-1 and CCND2 could abolish the change of proliferation and apoptosis of PASMCs. These results demonstrate that miR-29b suppressed cellular proliferation and promoted apoptosis of PASMCs, possibly through the inhibition of Mcl-1 and CCND2. Therefore, miR-29b may serve as a useful therapeutic tool to treat PAH.
Collapse
|
18
|
Sysol JR, Chen J, Singla S, Zhao S, Comhair S, Natarajan V, Machado RF. Micro-RNA-1 is decreased by hypoxia and contributes to the development of pulmonary vascular remodeling via regulation of sphingosine kinase 1. Am J Physiol Lung Cell Mol Physiol 2017; 314:L461-L472. [PMID: 29167124 DOI: 10.1152/ajplung.00057.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Sphingosine kinase 1 (SphK1) upregulation is associated with pathologic pulmonary vascular remodeling in pulmonary arterial hypertension (PAH), but the mechanisms controlling its expression are undefined. In this study, we sought to characterize the regulation of SphK1 expression by micro-RNAs (miRs). In silico analysis of the SphK1 3'-untranslated region identified several putative miR binding sites, with miR-1-3p (miR-1) being the most highly predicted target. Therefore we further investigated the role of miR-1 in modulating SphK1 expression and characterized its effects on the phenotype of pulmonary artery smooth muscle cells (PASMCs) and the development of experimental pulmonary hypertension in vivo. Our results demonstrate that miR-1 is downregulated by hypoxia in PASMCs and can directly inhibit SphK1 expression. Overexpression of miR-1 in human PASMCs inhibits basal and hypoxia-induced proliferation and migration. Human PASMCs isolated from PAH patients exhibit reduced miR-1 expression. We also demonstrate that miR-1 is downregulated in mouse lung tissues during experimental hypoxia-mediated pulmonary hypertension (HPH), consistent with upregulation of SphK1. Furthermore, administration of miR-1 mimics in vivo prevented the development of HPH in mice and attenuated induction of SphK1 in PASMCs. These data reveal the importance of miR-1 in regulating SphK1 expression during hypoxia in PASMCs. A pivotal role is played by miR-1 in pulmonary vascular remodeling, including PASMC proliferation and migration, and its overexpression protects from the development of HPH in vivo. These studies improve our understanding of the molecular mechanisms underlying the pathogenesis of pulmonary hypertension.
Collapse
Affiliation(s)
- Justin R Sysol
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois.,Department of Pharmacology, University of Illinois at Chicago , Chicago, Illinois.,Medical Scientist Training Program, University of Illinois at Chicago , Chicago, Illinois
| | - Jiwang Chen
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Sunit Singla
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Shuangping Zhao
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | | | - Viswanathan Natarajan
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois.,Department of Pharmacology, University of Illinois at Chicago , Chicago, Illinois
| | - Roberto F Machado
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University , Indianapolis, Indiana
| |
Collapse
|
19
|
Wang Z, Wang J, Chen Z, Wang K, Shi L. MicroRNA-1-3p inhibits the proliferation and migration of oral squamous cell carcinoma cells by targeting DKK1. Biochem Cell Biol 2017; 96:355-364. [PMID: 28763625 DOI: 10.1139/bcb-2017-0015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We investigated the functional role and mechanism of miR-1-3p and DKK1 in oral squamous cell carcinoma (OSCC) cells. The level of miR-1-3p and DKK1 expression were detected in OSCC tissues and cells using reverse-transcription - quantitative PCR and Western blot. A dual luciferase reporter gene assay was applied to confirm the targeting relationship between miR-1-3p and DKK1. Functional assays, including MTT, Transwell, colony formation, and flow cytometry analysis were conducted to verify their effect on cell progressions. MTT, colony formation, and Transwell assays indicated that the proliferation, migration, and invasion of SCC-4 cells was impaired with high miR-1-3p expression but promoted with high DKK1 expression. The results from cell cycle analysis and annexin-V-PI assays for apoptosis suggested that miR-1-3p suppressed the transit of SCC-4 cells from G0/G1 to S and induced apoptosis. In summary, miR-1-3p suppressed the progression of OSCC by inhibiting DKK1 expression.
Collapse
Affiliation(s)
- Zhenshi Wang
- a Department of Prosthodontics, Affiliated Stomatological Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,b Jiangxi Provincial Key Laboratory of Oral Biomedicine, Nanchang, 330006, Jiangxi, China
| | - Jiaolong Wang
- a Department of Prosthodontics, Affiliated Stomatological Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,b Jiangxi Provincial Key Laboratory of Oral Biomedicine, Nanchang, 330006, Jiangxi, China
| | - Zhihua Chen
- c Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Kun Wang
- a Department of Prosthodontics, Affiliated Stomatological Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,b Jiangxi Provincial Key Laboratory of Oral Biomedicine, Nanchang, 330006, Jiangxi, China
| | - Lianshui Shi
- a Department of Prosthodontics, Affiliated Stomatological Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,b Jiangxi Provincial Key Laboratory of Oral Biomedicine, Nanchang, 330006, Jiangxi, China
| |
Collapse
|
20
|
Li K, Wang Y, Zhang A, Liu B, Jia L. miR-379 Inhibits Cell Proliferation, Invasion, and Migration of Vascular Smooth Muscle Cells by Targeting Insulin-Like Factor-1. Yonsei Med J 2017; 58:234-240. [PMID: 27873518 PMCID: PMC5122642 DOI: 10.3349/ymj.2017.58.1.234] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/29/2016] [Accepted: 05/30/2016] [Indexed: 01/12/2023] Open
Abstract
PURPOSE MicroRNAs are small non-coding RNAs that play important roles in vascular smooth muscle cell (VSMC) function. This study investigated the role of miR-379 on proliferation, invasion, and migration of VSMCs and explored underlying mechanisms thereof. MATERIALS AND METHODS MicroRNA, mRNA, and protein levels were determined by quantitative real-time PCR and western blot. The proliferative, invasive, and migratory abilities of VSMCs were measured by CCK-8, invasion, and wound healing assay, respectively. Luciferase reporter assay was used to confirm the target of miR-379. RESULTS Platelet-derived growth factor-bb was found to promote cell proliferation and suppress miR-379 expression in VSMCs. Functional assays demonstrated that miR-379 inhibited cell proliferation, cell invasion, and migration. Flow cytometry results further showed that miR-379 induced apoptosis in VSMCs. TargetScan analysis and luciferase report assay confirmed that insulin-like growth factor-1 (IGF-1) 3'UTR is a direct target of miR-379, and mRNA and protein levels of miR-379 and IGF-1 were inversely correlated. Rescue experiments showed that enforced expression of IGF-1 sufficiently overcomes the inhibitory effect of miR-379 on cell proliferation, invasion, and migration in VSMCs. CONCLUSION Our results suggest that miR-379 plays an important role in regulating VSMCs proliferation, invasion, and migration by targeting IGF-1.
Collapse
Affiliation(s)
- Kai Li
- Department of Cardiology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi Province, China
| | - Yong Wang
- Department of Cardiology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi Province, China.
| | - Anji Zhang
- Department of Cardiology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi Province, China
| | - Baixue Liu
- Department of Cardiology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi Province, China
| | - Li Jia
- Department of Cardiology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
21
|
Gao S, Cheng C, Chen H, Li M, Liu K, Wang G. IGF1 3'UTR functions as a ceRNA in promoting angiogenesis by sponging miR-29 family in osteosarcoma. J Mol Histol 2016; 47:135-43. [PMID: 26759259 DOI: 10.1007/s10735-016-9659-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/08/2016] [Indexed: 01/11/2023]
Abstract
Osteosarcoma is one of the most common malignant bone tumors in human worldwide. Angiogenesis is a pivotal process during osteosarcoma development. Insulin-like growth factor 1 (IGF1) has been reported to promote angiogenesis. However, the role of 3' untranslational region (3'UTR) of IGF1 mRNA in angiogenic activity in osteosarcomas is still unknown. In the present study, we performed gain-of-function assays to investigate the role of IGF1-3'UTR in angiogenesis. For the first time, we demonstrated that IGF1 3'UTR increased VEGF expression and promotes angiogenesis in osteosarcoma cells. In addition, RNA-immunoprecipitation and luciferase reporter assays showed that IGF1 3'UTR was a direct target of miR-29s. Our data also demonstrated that there existed a competition of miR-29s between IGF1-3'UTR and VEGF mRNA, and IGF1-3'UTR promoted angiogenesis at least in part via sponging miR-29s. Taken together, our study suggests that IGF1-3'UTR functions as a ceRNA in promoting angiogenesis by sponging miR-29s in osteosarcoma.
Collapse
Affiliation(s)
- Shuming Gao
- Department of orthopaedics, Cangzhou Central Hospital, Xinhua Road, Cangzhou, Hebei Province, China
| | - Cai Cheng
- Department of orthopaedics, Cangzhou Central Hospital, Xinhua Road, Cangzhou, Hebei Province, China
| | - Hanwen Chen
- Department of orthopaedics, Cangzhou Central Hospital, Xinhua Road, Cangzhou, Hebei Province, China
| | - Min Li
- Department of orthopaedics, Cangzhou Central Hospital, Xinhua Road, Cangzhou, Hebei Province, China
| | - Kehun Liu
- Department of orthopaedics, Cangzhou Central Hospital, Xinhua Road, Cangzhou, Hebei Province, China
| | - Guangya Wang
- Department of orthopaedics, Cangzhou Central Hospital, Xinhua Road, Cangzhou, Hebei Province, China.
| |
Collapse
|
22
|
Rodrigues PG, Leite-Moreira AF, Falcão-Pires I. Myocardial reverse remodeling: how far can we rewind? Am J Physiol Heart Circ Physiol 2016; 310:H1402-22. [PMID: 26993225 DOI: 10.1152/ajpheart.00696.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 03/04/2016] [Indexed: 12/19/2022]
Abstract
Heart failure (HF) is a systemic disease that can be divided into HF with reduced ejection fraction (HFrEF) and with preserved ejection fraction (HFpEF). HFpEF accounts for over 50% of all HF patients and is typically associated with high prevalence of several comorbidities, including hypertension, diabetes mellitus, pulmonary hypertension, obesity, and atrial fibrillation. Myocardial remodeling occurs both in HFrEF and HFpEF and it involves changes in cardiac structure, myocardial composition, and myocyte deformation and multiple biochemical and molecular alterations that impact heart function and its reserve capacity. Understanding the features of myocardial remodeling has become a major objective for limiting or reversing its progression, the latter known as reverse remodeling (RR). Research on HFrEF RR process is broader and has delivered effective therapeutic strategies, which have been employed for some decades. However, the RR process in HFpEF is less clear partly due to the lack of information on HFpEF pathophysiology and to the long list of failed standard HF therapeutics strategies in these patient's outcomes. Nevertheless, new proteins, protein-protein interactions, and signaling pathways are being explored as potential new targets for HFpEF remodeling and RR. Here, we review recent translational and clinical research in HFpEF myocardial remodeling to provide an overview on the most important features of RR, comparing HFpEF with HFrEF conditions.
Collapse
Affiliation(s)
- Patrícia G Rodrigues
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, Universidade do Porto, Porto, Portugal
| | - Adelino F Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, Universidade do Porto, Porto, Portugal
| | - Inês Falcão-Pires
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, Universidade do Porto, Porto, Portugal
| |
Collapse
|
23
|
Welten S, Goossens E, Quax P, Nossent A. The multifactorial nature of microRNAs in vascular remodelling. Cardiovasc Res 2016; 110:6-22. [DOI: 10.1093/cvr/cvw039] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/07/2016] [Indexed: 12/22/2022] Open
|