1
|
Du P, Zhang X, Lian X, Hölscher C, Xue G. O-GlcNAcylation and Its Roles in Neurodegenerative Diseases. J Alzheimers Dis 2024; 97:1051-1068. [PMID: 38250776 DOI: 10.3233/jad-230955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
As a non-classical post-translational modification, O-linked β-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) is widely found in human organ systems, particularly in our brains, and is indispensable for healthy cell biology. With the increasing age of the global population, the incidence of neurodegenerative diseases is increasing, too. The common characteristic of these disorders is the aggregation of abnormal proteins in the brain. Current research has found that O-GlcNAcylation dysregulation is involved in misfolding or aggregation of these abnormal proteins to mediate disease progression, but the specific mechanism has not been defined. This paper reviews recent studies on O-GlcNAcylation's roles in several neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, Machado-Joseph's disease, and giant axonal neuropathy, and shows that O-GlcNAcylation, as glucose metabolism sensor, mediating synaptic function, participating in oxidative stress response and signaling pathway conduction, directly or indirectly regulates characteristic pathological protein toxicity and affects disease progression. The existing results suggest that targeting O-GlcNAcylation will provide new ideas for clinical diagnosis, prevention, and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Pengyang Du
- Department of Neurology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaomin Zhang
- Department of Neurology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xia Lian
- Department of Neurology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Christian Hölscher
- Academy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou, China
| | - Guofang Xue
- Department of Neurology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
2
|
Liu G, Feng L, Liu X, Gao P, Wang F. O-GlcNAcylation Inhibition Upregulates Connexin43 Expression in the Endothelium to Protect the Tight Junction Barrier in Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2023; 64:30. [PMID: 37982762 PMCID: PMC10668625 DOI: 10.1167/iovs.64.14.30] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/28/2023] [Indexed: 11/21/2023] Open
Abstract
Purpose This study aimed to investigate the effects of O-linked N-acetylglucosamine modification (O-GlcNAcylation) on connexin43 (Cx43) expression and its subsequent effects on tight junction properties in diabetic retinopathy (DR). Methods O-GlcNAcylation levels in primary human retinal vascular endothelial cells (HRVECs) and retinas from rats with diabetes were regulated by treatment with Thiamet G or alloxan. Immunoprecipitation was used to examine the relationship between O-GlcNAcylation and Cx43 expression. Stable overexpression and knockdown of Cx43 in HRVECs were achieved using lentivirus constructs; further, their effects on occludin and zonula occluden-1 (ZO-1) expression and tight junction barrier function were determined. Results O-GlcNAcylation level increased significantly, whereas Cx43 expression decreased in retinas from rats with diabetes and HRVECs cultured under high-glucose conditions. Immunoprecipitation revealed that Cx43 was modified by O-GlcNAcylation and phosphorylation simultaneously. O-GlcNAcylation inhibition negatively regulated both total Cx43 and phosphorylated Cx43 expression, subsequently disrupting tight junction properties. Conversely, Cx43 overexpression reversed the disruption of tight junction properties and downregulated vascular endothelial growth factor expression. Consistently, Cx43 overexpression increased transendothelial electrical resistance values in HRVEC layers. Conclusions O-GlcNAcylation negatively regulated Cx43 expression, contributing to the disruption of the blood retinal barrier. However, O-GlcNAcylation inhibition and Cx43 overexpression could reverse the tight junction disruption. Therefore, O-GlcNAcylation inhibition is a potential target for avoiding tight junction disruption through the Cx43 pathway in DR.
Collapse
Affiliation(s)
- Guodong Liu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
- Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Le Feng
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
- Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Xiaoqiang Liu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
- Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Peng Gao
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Fang Wang
- Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Starr CR, Gorbatyuk MS. Posttranslational modifications of proteins in diseased retina. Front Cell Neurosci 2023; 17:1150220. [PMID: 37066080 PMCID: PMC10097899 DOI: 10.3389/fncel.2023.1150220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Posttranslational modifications (PTMs) are known to constitute a key step in protein biosynthesis and in the regulation of protein functions. Recent breakthroughs in protein purification strategies and current proteome technologies make it possible to identify the proteomics of healthy and diseased retinas. Despite these advantages, the research field identifying sets of posttranslationally modified proteins (PTMomes) related to diseased retinas is significantly lagging, despite knowledge of the major retina PTMome being critical to drug development. In this review, we highlight current updates regarding the PTMomes in three retinal degenerative diseases-namely, diabetic retinopathy (DR), glaucoma, and retinitis pigmentosa (RP). A literature search reveals the necessity to expedite investigations into essential PTMomes in the diseased retina and validate their physiological roles. This knowledge would accelerate the development of treatments for retinal degenerative disorders and the prevention of blindness in affected populations.
Collapse
Affiliation(s)
| | - Marina S. Gorbatyuk
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
4
|
O-GlcNAc Modification and Its Role in Diabetic Retinopathy. Metabolites 2022; 12:metabo12080725. [PMID: 36005597 PMCID: PMC9415332 DOI: 10.3390/metabo12080725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Diabetic retinopathy (DR) is a leading complication in type 1 and type 2 diabetes and has emerged as a significant health problem. Currently, there are no effective therapeutic strategies owing to its inconspicuous early lesions and complex pathological mechanisms. Therefore, the mechanism of molecular pathogenesis requires further elucidation to identify potential targets that can aid in the prevention of DR. As a type of protein translational modification, O-linked β-N-acetylglucosamine (O-GlcNAc) modification is involved in many diseases, and increasing evidence suggests that dysregulated O-GlcNAc modification is associated with DR. The present review discusses O-GlcNAc modification and its molecular mechanisms involved in DR. O-GlcNAc modification might represent a novel alternative therapeutic target for DR in the future.
Collapse
|
5
|
Dozio E, Massaccesi L, Corsi Romanelli MM. Glycation and Glycosylation in Cardiovascular Remodeling: Focus on Advanced Glycation End Products and O-Linked Glycosylations as Glucose-Related Pathogenetic Factors and Disease Markers. J Clin Med 2021; 10:jcm10204792. [PMID: 34682915 PMCID: PMC8539574 DOI: 10.3390/jcm10204792] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 02/07/2023] Open
Abstract
Glycation and glycosylation are non-enzymatic and enzymatic reactions, respectively, of glucose, glucose metabolites, and other reducing sugars with different substrates, such as proteins, lipids, and nucleic acids. Increased availability of glucose is a recognized risk factor for the onset and progression of diabetes-mellitus-associated disorders, among which cardiovascular diseases have a great impact on patient mortality. Both advanced glycation end products, the result of non-enzymatic glycation of substrates, and O-linked-N-Acetylglucosaminylation, a glycosylation reaction that is controlled by O-N-AcetylGlucosamine (GlcNAc) transferase (OGT) and O-GlcNAcase (OGA), have been shown to play a role in cardiovascular remodeling. In this review, we aim (1) to summarize the most recent data regarding the role of glycation and O-linked-N-Acetylglucosaminylation as glucose-related pathogenetic factors and disease markers in cardiovascular remodeling, and (2) to discuss potential common mechanisms linking these pathways to the dysregulation and/or loss of function of different biomolecules involved in this field.
Collapse
Affiliation(s)
- Elena Dozio
- Laboratory of Clinical Pathology, Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy; (L.M.); (M.M.C.R.)
- Correspondence: ; Tel.: +39-02-50-315-342
| | - Luca Massaccesi
- Laboratory of Clinical Pathology, Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy; (L.M.); (M.M.C.R.)
| | - Massimiliano Marco Corsi Romanelli
- Laboratory of Clinical Pathology, Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy; (L.M.); (M.M.C.R.)
- Service of Laboratory Medicine1-Clinical Pathology, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| |
Collapse
|
6
|
Xing X, Wang H, Niu T, Jiang Y, Shi X, Liu K. RUNX1 can mediate the glucose and O-GlcNAc-driven proliferation and migration of human retinal microvascular endothelial cells. BMJ Open Diabetes Res Care 2021; 9:9/1/e001898. [PMID: 34348917 PMCID: PMC8340280 DOI: 10.1136/bmjdrc-2020-001898] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 07/17/2021] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION This study aims to determine whether high glucose condition and dynamic O-linked N-acetylglucosamine (O-GlcNAc) modification can promote the proliferation and migration of human retinal microvascular endothelial cells (HRMECs) and whether Runt-related transcription factor 1 (RUNX1) could mediate the glucose and O-GlcNAc-driven proliferation and migration of HRMECs. RESEARCH DESIGN AND METHODS Western blot analysis was used to detect the O-GlcNAc modification level and RUNX1 level in cells and retina tissues, cell growth was studied by cell counting kit-8 assay, cell proliferation was detected by immunofluorescence staining. Then, cell migration and tube formation were investigated by scratch-wound assay, Transwell assay, and tube-forming assay. The changes of retinal structure were detected by H&E staining. The O-GlcNAc modification of RUNX1 was detected by immunoprecipitation. RESULTS High glucose increases pan-cellular O-GlcNAc modification and the proliferation and migration of HRMECs. Hence, O-GlcNAc modification is critical for the proliferation and migration of HRMECs. RUNX1 mediates the glucose and O-GlcNAc-driven proliferation and migration in HRMECs. RUNX1 can be modified by O-GlcNAc, and that the modification is enhanced in a high glucose environment. CONCLUSIONS The present study reveals that high glucose condition directly affects retinal endothelial cells (EC) function, and O-GlcNAc modification is critical for the proliferation and migration of HRMECs, RUNX1 may take part in this mechanism, and maybe the function of RUNX1 is related to its O-GlcNAc modification level, which provides a new perspective for studying the mechanism of RUNX1 in diabetic retinopathy.
Collapse
Affiliation(s)
- Xindan Xing
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Hanying Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Tian Niu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Yan Jiang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Xin Shi
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Kun Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| |
Collapse
|
7
|
Liu G, Wang Y, Keyal K, Feng L, Zhang C, Wang H, Wang F. Identification of connexin43 in diabetic retinopathy and its downregulation by O-GlcNAcylation to inhibit the activation of glial cells. Biochim Biophys Acta Gen Subj 2021; 1865:129955. [PMID: 34229069 DOI: 10.1016/j.bbagen.2021.129955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/20/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Despite advances in the treatments of diabetic complications, proliferative diabetic retinopathy (PDR) still remains a major cause leading to visual loss, mainly because of the lack of pathological mechanisms and complicated protein expressions in vivo. Current study aimed to investigate the patterns of connexin43 (Cx43) changes and the possible interactions with O-GlcNAcylation in DR. METHODS Clinical samples of vitreous and fibrovascular membranes were acquired from PDR patients during pars plana vitrectomy. Brown Norway rats were used to build diabetic animal models; to investigate the effects of O-GlcNAcylation on Cx43 expressions, total retinal O-GlcNAcylation was changed by intravitreal injections. Levels of protein expressions were examined by immunofluorescence staining and western blot. RESULTS Our results revealed increased Cx43 expressions in a vessel-shape pattern followed by the distribution of glial fibrillary acidic protein (GFAP) in diabetic fibrovascular membranes. Similarly, Cx43 and GFAP expressions were elevated in PDR vitreous and diabetic animal retinas. Retinal O-GlcNAcylation was effectively regulated by intravitreal injections, and the increase of Cx43 and GFAP was significantly suppressed by O-GlcNAcylation inhibition under hyperglycemia conditions. CONCLUSIONS We systemically proved the changes of Cx43 with different retinal cells, and reported the effective methods to regulate retinal O-GlcNAcylation by intravitreal injections, and clearly illustrated the downregulated effects of O-GlcNAcylation inhibition on Cx43 and GFAP expressions. GENERAL SIGNIFICANCE Targeting connexin43 in glial cells reveals a novel mechanism to understand the formation of diabetic fibrovascular membranes and offers a potential therapeutic strategy to interfere the development of PDR.
Collapse
Affiliation(s)
- Guodong Liu
- Department of Ophthalmology, Shanghai Tenth People's Hospital affiliated with Tongji University, 301 Middle Yan Chang Road, Shanghai 200072, PR China
| | - Yanliang Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital affiliated with Tongji University, 301 Middle Yan Chang Road, Shanghai 200072, PR China
| | - Khusbu Keyal
- Department of Ophthalmology, Shanghai Tenth People's Hospital affiliated with Tongji University, 301 Middle Yan Chang Road, Shanghai 200072, PR China
| | - Le Feng
- Department of Ophthalmology, Shanghai Tenth People's Hospital affiliated with Tongji University, 301 Middle Yan Chang Road, Shanghai 200072, PR China
| | - Conghui Zhang
- Department of Ophthalmology, Shanghai Tenth People's Hospital affiliated with Tongji University, 301 Middle Yan Chang Road, Shanghai 200072, PR China
| | - Hao Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital affiliated with Tongji University, 301 Middle Yan Chang Road, Shanghai 200072, PR China
| | - Fang Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital affiliated with Tongji University, 301 Middle Yan Chang Road, Shanghai 200072, PR China.
| |
Collapse
|
8
|
Ahmad K, Shaikh S, Lee EJ, Lee YH, Choi I. Consequences of Dicarbonyl Stress on Skeletal Muscle Proteins in Type 2 Diabetes. Curr Protein Pept Sci 2021; 21:878-889. [PMID: 31746292 DOI: 10.2174/1389203720666191119100759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/27/2019] [Accepted: 10/22/2019] [Indexed: 12/15/2022]
Abstract
Skeletal muscle is the largest organ in the body and constitutes almost 40% of body mass. It is also the primary site of insulin-mediated glucose uptake, and skeletal muscle insulin resistance, that is, diminished response to insulin, is characteristic of Type 2 diabetes (T2DM). One of the foremost reasons posited to explain the etiology of T2DM involves the modification of proteins by dicarbonyl stress due to an unbalanced metabolism and accumulations of dicarbonyl metabolites. The elevated concentration of dicarbonyl metabolites (i.e., glyoxal, methylglyoxal, 3-deoxyglucosone) leads to DNA and protein modifications, causing cell/tissue dysfunctions in several metabolic diseases such as T2DM and other age-associated diseases. In this review, we recapitulated reported effects of dicarbonyl stress on skeletal muscle and associated extracellular proteins with emphasis on the impact of T2DM on skeletal muscle and provided a brief introduction to the prevention/inhibition of dicarbonyl stress.
Collapse
Affiliation(s)
- Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Korea
| | - Yong-Ho Lee
- Department of Biomedical Sciences, Daegu Catholic University, Gyeongsan, 38430, Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Korea
| |
Collapse
|
9
|
Liu Y, Xu B, Hu Y, Liu P, Lian S, Lv H, Yang Y, Ji H, Yang H, Liu J, Yao R, Li S. O-GlcNAc / Akt pathway regulates glucose metabolism and reduces apoptosis in liver of piglets with acute cold stress. Cryobiology 2021; 100:125-132. [PMID: 33651993 DOI: 10.1016/j.cryobiol.2021.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/30/2020] [Accepted: 02/23/2021] [Indexed: 02/08/2023]
Abstract
Cold stress is one of the serious factors restricting the development of animal husbandry in cold areas. Cold exposure can easily lead to cold stress, slow growth and even death of newborn animals. O-GlcNAcylation modification can act as type of "stress receptor" and"nutrition sensor" in a variety of stress responses, however, it is not clear how O-GlcNAcylation can regulate glucose metabolism in the liver of piglets under cold stress. In this study, piglets 21 days of age were exposed to 4 °C for 4 h or 8 h in a phytotron. Serum cortisol and other stress hormones were used to assess body status to establish a cold stress piglet model. The changes of glycogen in liver were detected by PAS. FDP and PA were also measured to study the glycolysis level of liver. To characterize potential mechanisms of O-GlcNAcylation on the livers of cold stress piglets, AKT, GSK3β, GS, PFKFB2, AS160 and their corresponding phosphorylation were determined by Western blotting. Results show O-GlcNAcylation increased and apoptosis levels increased in the liver following cold exposure during excessive CORT or metabolic dysfunction. It is suggested that the acute cold exposure of piglets induced a sequential change in the level of O-GlcNAcylation, which may be one of the factors mediating liver cell apoptosis and glucose metabolism regulation by the O-GlcNAc/AKT pathway. These findings provide new insight into the mechanisms of the cold stress response, which can facilitate the development of new strategies to combat the effects of hypothermia.
Collapse
Affiliation(s)
- Yang Liu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Bin Xu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Yajie Hu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Peng Liu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Shuai Lian
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Hongming Lv
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Yuying Yang
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Hong Ji
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Huanmin Yang
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Juxiong Liu
- College of Veterinary Medicine, Jilin University, Changchun, 130062, PR China
| | - Ruizhi Yao
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, 028000, PR China.
| | - Shize Li
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China.
| |
Collapse
|
10
|
Schlotterer A, Kolibabka M, Lin J, Acunman K, Dietrich N, Sticht C, Fleming T, Nawroth P, Hammes HP. Methylglyoxal induces retinopathy-type lesions in the absence of hyperglycemia: studies in a rat model. FASEB J 2018; 33:4141-4153. [PMID: 30485119 DOI: 10.1096/fj.201801146rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of this study was to evaluate whether damage to the neurovascular unit in diabetes depends on reactive metabolites such as methylglyoxal (MG), and to assess its impact on retinal gene expression. Male Wistar rats were supplied with MG (50 mM) by drinking water and compared with age-matched streptozotocin-diabetic animals and untreated controls. Retinal damage was evaluated for the accumulation of MG-derived advanced glycation end products, changes in hexosamine and PKC pathway activation, microglial activation, vascular alterations (pericyte loss and vasoregression), neuroretinal function assessed by electroretinogram, and neurodegeneration. Retinal gene regulation was studied by microarray analysis, and transcription factor involvement was identified by upstream regulator analysis. Systemic application of MG by drinking water increased retinal MG to levels comparable with diabetic animals. Elevated retinal MG resulted in MG-derived hydroimidazolone modifications in the ganglion cell layer, inner nuclear layer, and outer nuclear layer, a moderate activation of the hexosamine pathway, a pan-retinal activation of microglia, loss of pericytes, increased formation of acellular capillaries, decreased function of bipolar cells, and increased expression of the crystallin gene family. MG mimics important aspects of diabetic retinopathy and plays a pathogenic role in microglial activation, vascular damage, and neuroretinal dysfunction. In response to MG, the retina induces expression of neuroprotective crystallins.-Schlotterer, A., Kolibabka, M., Lin, J., Acunman, K., Dietrich, N., Sticht, C., Fleming, T., Nawroth, P., Hammes, H.-P. Methylglyoxal induces retinopathy-type lesions in the absence of hyperglycemia: studies in a rat model.
Collapse
Affiliation(s)
- Andrea Schlotterer
- Fifth Medical Department, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Matthias Kolibabka
- Fifth Medical Department, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Jihong Lin
- Fifth Medical Department, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Kübra Acunman
- Fifth Medical Department, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Nadine Dietrich
- Fifth Medical Department, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Carsten Sticht
- Medical Research Center, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany; and
| | - Thomas Fleming
- Department of Medicine I and Clinical Chemistry, Heidelberg University, Heidelberg, Germany
| | - Peter Nawroth
- Department of Medicine I and Clinical Chemistry, Heidelberg University, Heidelberg, Germany
| | - Hans-Peter Hammes
- Fifth Medical Department, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
11
|
Galectin-1 expression imprints a neurovascular phenotype in proliferative retinopathies and delineates responses to anti-VEGF. Oncotarget 2018; 8:32505-32522. [PMID: 28455954 PMCID: PMC5464805 DOI: 10.18632/oncotarget.17129] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/31/2017] [Indexed: 02/06/2023] Open
Abstract
Neovascular retinopathies are leading causes of irreversible blindness. Although vascular endothelial growth factor (VEGF) inhibitors have been established as the mainstay of current treatment, clinical management of these diseases is still limited. As retinal impairment involves abnormal neovascularization and neuronal degeneration, we evaluated here the involvement of galectin-1 in vascular and non-vascular alterations associated with retinopathies, using the oxygen-induced retinopathy (OIR) model. Postnatal day 17 OIR mouse retinas showed the highest neovascular profile and exhibited neuro-glial injury as well as retinal functional loss, which persisted until P26 OIR. Concomitant to VEGF up-regulation, galectin-1 was highly expressed in P17 OIR retinas and it was mainly localized in neovascular tufts. In addition, OIR induced remodelling of cell surface glycophenotype leading to exposure of galectin-1-specific glycan epitopes. Whereas VEGF returned to baseline levels at P26, increased galectin-1 expression persisted until this time period. Remarkably, although anti-VEGF treatment in P17 OIR improved retinal vascularization, neither galectin-1 expression nor non-vascular and functional alterations were attenuated. However, this functional defect was partially prevented in galectin-1-deficient (Lgals1-/-) OIR mice, suggesting the importance of targeting both VEGF and galectin-1 as non-redundant independent pathways. Supporting the clinical relevance of these findings, we found increased levels of galectin-1 in aqueous humor from patients with proliferative diabetic retinopathy and neovascular glaucoma. Thus, using an OIR model and human samples, we identified a role for galectin-1 accompanying vascular and non-vascular retinal alterations in neovascular retinopathies.
Collapse
|
12
|
Zhang TH, Huang CM, Gao X, Wang JW, Hao LL, Ji Q. Gastrodin inhibits high glucose‑induced human retinal endothelial cell apoptosis by regulating the SIRT1/TLR4/NF‑κBp65 signaling pathway. Mol Med Rep 2018; 17:7774-7780. [PMID: 29620267 DOI: 10.3892/mmr.2018.8841] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 03/06/2018] [Indexed: 11/05/2022] Open
Abstract
Diabetic retinopathy (DR), one of the most common complications of late‑phase diabetes, is associated with the ectopic apoptosis of microvascular cells. Gastrodin, a phenolic glucoside derived from Gastrodia elata Blume, has been reported to have antioxidant and anti‑inflammation activities. The aim of the present study was to investigate the effects of gastrodin on high glucose (HG)‑induced human retinal endothelial cell (HREC) injury and its underlying mechanism. The results demonstrated that HG induced cell apoptosis in HRECs, which was accompanied by increased levels of reactive oxygen species production. Gastrodin treatment significantly alleviated HG‑induced apoptosis and oxidative stress. Furthermore, HG stimulation decreased the levels of SIRT1, which was accompanied by an increase in Toll‑like receptor 4 (TLR4) expression and the levels of phosphorylated nuclear factor (NF)‑κBp65. However, the administration of gastrodin significantly inhibited the activation of the sirtuin 1 (SIRT1)/TLR4/NF‑κBp65 signaling pathway in HRECs exposed to HG. Collectively, the present study demonstrated that gastrodin may be effective against HG‑induced apoptosis and its action may be exerted through the regulation of the SIRT1/TLR4/NF‑κBp65 signaling pathway.
Collapse
Affiliation(s)
- Tong-He Zhang
- Department of Ophthalmology, The Second People's Hospital of Jinan, Jinan, Shandong 250001, P.R. China
| | - Chun-Mei Huang
- Department of Ophthalmology, The Second People's Hospital of Jinan, Jinan, Shandong 250001, P.R. China
| | - Xue Gao
- Department of Ophthalmology, The Second Hospital of Shandong University, Jinan, Shandong 250031, P.R. China
| | - Jia-Wei Wang
- Department of Ophthalmology, The Second Hospital of Shandong University, Jinan, Shandong 250031, P.R. China
| | - Lin-Lin Hao
- Department of Ophthalmology, The Second Hospital of Shandong University, Jinan, Shandong 250031, P.R. China
| | - Qiang Ji
- Department of Ophthalmology, The Second People's Hospital of Jinan, Jinan, Shandong 250001, P.R. China
| |
Collapse
|
13
|
O-Linked β- N-acetylglucosamine (O-GlcNAc) modification: a new pathway to decode pathogenesis of diabetic retinopathy. Clin Sci (Lond) 2018; 132:185-198. [PMID: 29352075 DOI: 10.1042/cs20171454] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 01/08/2023]
Abstract
The incidence of diabetes continues to rise among all ages and ethnic groups worldwide. Diabetic retinopathy (DR) is a complication of diabetes that affects the retinal neurovasculature causing serious vision problems, including blindness. Its pathogenesis and severity is directly linked to the chronic exposure to high glucose conditions. No treatments are currently available to stop the development and progression of DR. To develop new and effective therapeutic approaches, it is critical to better understand how hyperglycemia contributes to the pathogenesis of DR at the cellular and molecular levels. We propose alterations in O-GlcNAc modification of target proteins during diabetes contribute to the development and progression of DR. The O-GlcNAc modification is regulated through hexosamine biosynthetic pathway. We showed this pathway is differentially activated in various retinal vascular cells under high glucose conditions perhaps due to their selective metabolic activity. O-GlcNAc modification can alter protein stability, activity, interactions, and localization. By targeting the same amino acid residues (serine and threonine) as phosphorylation, O-GlcNAc modification can either compete or cooperate with phosphorylation. Here we will summarize the effects of hyperglycemia-induced O-GlcNAc modification on the retinal neurovasculature in a cell-specific manner, providing new insight into the role of O-GlcNAc modification in early loss of retinal pericytes and the pathogenesis of DR.
Collapse
|
14
|
The Role of Stress-Induced O-GlcNAc Protein Modification in the Regulation of Membrane Transport. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1308692. [PMID: 29456783 PMCID: PMC5804373 DOI: 10.1155/2017/1308692] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/03/2017] [Indexed: 02/06/2023]
Abstract
O-linked N-acetylglucosamine (O-GlcNAc) is a posttranslational modification that is increasingly recognized as a signal transduction mechanism. Unlike other glycans, O-GlcNAc is a highly dynamic and reversible process that involves the addition and removal of a single N-acetylglucosamine molecule to Ser/Thr residues of proteins. UDP-GlcNAc—the direct substrate for O-GlcNAc modification—is controlled by the rate of cellular metabolism, and thus O-GlcNAc is dependent on substrate availability. Serving as a feedback mechanism, O-GlcNAc influences the regulation of insulin signaling and glucose transport. Besides nutrient sensing, O-GlcNAc was also implicated in the regulation of various physiological and pathophysiological processes. Due to improvements of mass spectrometry techniques, more than one thousand proteins were detected to carry the O-GlcNAc moiety; many of them are known to participate in the regulation of metabolites, ions, or protein transport across biological membranes. Recent studies also indicated that O-GlcNAc is involved in stress adaptation; overwhelming evidences suggest that O-GlcNAc levels increase upon stress. O-GlcNAc elevation is generally considered to be beneficial during stress, although the exact nature of its protective effect is not understood. In this review, we summarize the current data regarding the oxidative stress-related changes of O-GlcNAc levels and discuss the implications related to membrane trafficking.
Collapse
|
15
|
Hu J, Xue P, Mao X, Xie L, Li G, You Z. SUMO1/UBC9‑decreased Nox1 activity inhibits reactive oxygen species generation and apoptosis in diabetic retinopathy. Mol Med Rep 2017; 17:1690-1698. [PMID: 29138839 PMCID: PMC5780112 DOI: 10.3892/mmr.2017.8037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 08/14/2017] [Indexed: 01/19/2023] Open
Abstract
Diabetic retinopathy (DR) is an increasing global health concern that causes vision loss and blindness. Reactive oxygen species (ROS) are considered to be a principal cause of DR. An important source of ROS is the oxidization of NADPH. In the present study, NADPH oxidase 1 (Nox1)-expressing human retinal epithelial cell (HREC) lines were generated and infected with small ubiquitin-like modifier 1 (SUMO1) and/or ubiquitin conjugating enzyme E2 I (UBC9) lentiviral pGMLV constructs. The viabilities, apoptotic capacities and ROS production levels of the HREC lines were quantified using Hoechst 33258, annexin V/propidium iodide and dichlorodihydrofluorescein diacetate assays, respectively. Additionally, rat DR models were established. From these models, the apoptotic capacities of retinal tissues were visualized using terminal deoxynucleotidyl transferase dUTP nick end labeling assays, and the pathologies were evaluated. The mRNA and protein expression levels of SUMO1, UBC9 and Nox1 were analyzed using reverse transcription-quantitative polymerase chain reaction and western blot analyses, respectively. Compared with controls, the relative mRNA levels of SUMO1 and UBC9 were significantly upregulated, and the Nox1 levels significantly downregulated, in cells infected with SUMO1 or UBC9 alone or in combination. The ROS production and apoptosis rates of cells and retinal tissues were decreased. In addition, pathological symptoms in DR tissues improved when they were simultaneously transfected with SUMO1 and UBC9 via intraocular injection. In conclusion, the SUMO1/UBC9 axis may regulate Nox1-mediated DR by inhibiting ROS generation and apoptosis in rat and cellular model systems.
Collapse
Affiliation(s)
- Jiaoli Hu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Pengcheng Xue
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xinbang Mao
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lin Xie
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Guodong Li
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhipeng You
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
16
|
Han JW, Valdez JL, Ho DV, Lee CS, Kim HM, Wang X, Huang L, Chan JY. Nuclear factor-erythroid-2 related transcription factor-1 (Nrf1) is regulated by O-GlcNAc transferase. Free Radic Biol Med 2017. [PMID: 28625484 DOI: 10.1016/j.freeradbiomed.2017.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Nrf1 (Nuclear factor E2-related factor 1) transcription factor performs a critical role in regulating cellular homeostasis. Using a proteomic approach, we identified Host Cell Factor-1 (HCF1), a co-regulator of transcription, and O-GlcNAc transferase (OGT), the enzyme that mediates protein O-GlcNAcylation, as cellular partners of Nrf1a, an isoform of Nrf1. Nrf1a directly interacts with HCF1 through the HCF1 binding motif (HBM), while interaction with OGT is mediated through HCF1. Overexpression of HCF1 and OGT leads to increased Nrf1a protein stability. Addition of O-GlcNAc decreases ubiquitination and degradation of Nrf1a. Transcriptional activation by Nrf1a is increased by OGT overexpression and treatment with PUGNAc. Together, these data suggest that OGT can act as a regulator of Nrf1a.
Collapse
Affiliation(s)
- Jeong Woo Han
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, CA 92697, USA
| | - Joshua L Valdez
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, CA 92697, USA
| | - Daniel V Ho
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, CA 92697, USA
| | - Candy S Lee
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, CA 92697, USA
| | - Hyun Min Kim
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, CA 92697, USA
| | - Xiaorong Wang
- Departments of Physiology and Biophysics, University of California, Irvine, D440 Medical Sciences, Irvine, CA 92697, USA
| | - Lan Huang
- Departments of Physiology and Biophysics, University of California, Irvine, D440 Medical Sciences, Irvine, CA 92697, USA
| | - Jefferson Y Chan
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, CA 92697, USA.
| |
Collapse
|
17
|
Lin CH, Cheng YC, Nicol CJ, Lin KH, Yen CH, Chiang MC. Activation of AMPK is neuroprotective in the oxidative stress by advanced glycosylation end products in human neural stem cells. Exp Cell Res 2017; 359:367-373. [PMID: 28821394 DOI: 10.1016/j.yexcr.2017.08.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/09/2017] [Accepted: 08/12/2017] [Indexed: 12/16/2022]
Abstract
Advanced glycosylation end products (AGEs) formation is correlated with the pathogenesis of diabetic neuronal damage, but its links with oxidative stress are still not well understood. Metformin, one of the most widely used anti-diabetic drugs, exerts its effects in part by activation of AMP-activated protein kinase (AMPK). Once activated, AMPK regulates many pathways central to metabolism and energy balance including, glucose uptake, glycolysis and fatty acid oxidation. AMPK is also present in neurons, but its role remains unclear. Here, we show that AGE exposure decreases cell viability of human neural stem cells (hNSCs), and that the AMPK agonist metformin reverses this effect, via AMPK-dependent downregulation of RAGE levels. Importantly, hNSCs co-treated with metformin were significantly rescued from AGE-induced oxidative stress, as reflected by the normalization in levels of reactive oxygen species. In addition, compared to AGE-treated hNSCs, metformin co-treatment significantly reversed the activity and mRNA transcript level changes of SOD1/2 and Gpx. Furthermore, hNSCs exposed to AGEs had significantly lower mRNA levels among other components of normal cellular oxidative defenses (GSH, Catalase and HO-1), which were all rescued by co-treatment with metformin. This metformin-mediated protective effect on hNSCs for of both oxidative stress and oxidative defense genes by co-treatment with metformin was blocked by the addition of an AMPK antagonist (Compound C). These findings unveil the protective role of AMPK-dependent metformin signaling during AGE mediated oxidative stress in hNSCs, and suggests patients undergoing AGE-mediated neurodegeneration may benefit from the novel therapeutic use of metformin.
Collapse
Affiliation(s)
- Chien-Hung Lin
- Department of Pediatrics, Taipei City Hospital Zhongxing Branch, Taipei 103, Taiwan
| | - Yi-Chuan Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Christopher J Nicol
- Departments of Pathology & Molecular Medicine and Biomedical & Molecular Sciences, and Division of Cancer Biology & Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | - Kuan-Hung Lin
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei 111, Taiwan
| | - Chia-Hui Yen
- Department of International Business, Ming Chuan University, Taipei 111, Taiwan
| | - Ming-Chang Chiang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242, Taiwan.
| |
Collapse
|
18
|
Stress-induced O-GlcNAcylation: an adaptive process of injured cells. Biochem Soc Trans 2017; 45:237-249. [PMID: 28202678 DOI: 10.1042/bst20160153] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/30/2016] [Accepted: 12/14/2016] [Indexed: 02/07/2023]
Abstract
In the 30 years, since the discovery of nucleocytoplasmic glycosylation, O-GlcNAc has been implicated in regulating cellular processes as diverse as protein folding, localization, degradation, activity, post-translational modifications, and interactions. The cell co-ordinates these molecular events, on thousands of cellular proteins, in concert with environmental and physiological cues to fine-tune epigenetics, transcription, translation, signal transduction, cell cycle, and metabolism. The cellular stress response is no exception: diverse forms of injury result in dynamic changes to the O-GlcNAc subproteome that promote survival. In this review, we discuss the biosynthesis of O-GlcNAc, the mechanisms by which O-GlcNAc promotes cytoprotection, and the clinical significance of these data.
Collapse
|
19
|
Koike S, Yano S, Tanaka S, Sheikh AM, Nagai A, Sugimoto T. Advanced Glycation End-Products Induce Apoptosis of Vascular Smooth Muscle Cells: A Mechanism for Vascular Calcification. Int J Mol Sci 2016; 17:ijms17091567. [PMID: 27649164 PMCID: PMC5037835 DOI: 10.3390/ijms17091567] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/27/2016] [Accepted: 09/08/2016] [Indexed: 02/08/2023] Open
Abstract
Vascular calcification, especially medial artery calcification, is associated with cardiovascular death in patients with diabetes mellitus and chronic kidney disease (CKD). To determine the underlying mechanism of vascular calcification, we have demonstrated in our previous report that advanced glycation end-products (AGEs) stimulated calcium deposition in vascular smooth muscle cells (VSMCs) through excessive oxidative stress and phenotypic transition into osteoblastic cells. Since AGEs can induce apoptosis, in this study we investigated its role on VSMC apoptosis, focusing mainly on the underlying mechanisms. A rat VSMC line (A7r5) was cultured, and treated with glycolaldehyde-derived AGE-bovine serum albumin (AGE3-BSA). Apoptotic cells were identified by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. To quantify apoptosis, an enzyme-linked immunosorbent assay (ELISA) for histone-complexed DNA fragments was employed. Real-time PCR was performed to determine the mRNA levels. Treatment of A7r5 cells with AGE3-BSA from 100 µg/mL concentration markedly increased apoptosis, which was suppressed by Nox inhibitors. AGE3-BSA significantly increased the mRNA expression of NAD(P)H oxidase components including Nox4 and p22phox, and these findings were confirmed by protein levels using immunofluorescence. Dihydroethidisum assay showed that compared with cBSA, AGE3-BSA increased reactive oxygen species level in A7r5 cells. Furthermore, AGE3-induced apoptosis was significantly inhibited by siRNA-mediated knockdown of Nox4 or p22phox. Double knockdown of Nox4 and p22phox showed a similar inhibitory effect on apoptosis as single gene silencing. Thus, our results demonstrated that NAD(P)H oxidase-derived oxidative stress are involved in AGEs-induced apoptosis of VSMCs. These findings might be important to understand the pathogenesis of vascular calcification in diabetes and CKD.
Collapse
Affiliation(s)
- Sayo Koike
- Department of Internal Medicine 1, Shimane University Faculty of Medicine, Shimane 693-8501, Japan.
| | - Shozo Yano
- Department of Laboratory Medicine, Shimane University Faculty of Medicine, Shimane 693-8501, Japan.
| | - Sayuri Tanaka
- Department of Internal Medicine 1, Shimane University Faculty of Medicine, Shimane 693-8501, Japan.
| | - Abdullah M Sheikh
- Department of Laboratory Medicine, Shimane University Faculty of Medicine, Shimane 693-8501, Japan.
| | - Atsushi Nagai
- Department of Laboratory Medicine, Shimane University Faculty of Medicine, Shimane 693-8501, Japan.
| | - Toshitsugu Sugimoto
- Department of Internal Medicine 1, Shimane University Faculty of Medicine, Shimane 693-8501, Japan.
| |
Collapse
|