1
|
Jia S, Si R, Liu G, Zhong Q. Diosgenin protects against cationic bovine serum albumin-induced membranous glomerulonephritis by attenuating oxidative stress and renal inflammation via the NF-κB pathway. PHARMACEUTICAL BIOLOGY 2024; 62:285-295. [PMID: 38516898 PMCID: PMC10962310 DOI: 10.1080/13880209.2024.2330602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
CONTEXT Membranous glomerulonephritis (MGN) is a leading cause of nephrotic syndrome in adults. Diosgenin (DG) has been reported to exert antioxidative and anti-inflammatory effects. OBJECTIVE To investigate the renoprotective activity of DG in a cationic bovine serum albumin-induced rat model of MGN. MATERIALS AND METHODS Fourty male Sprague-Dawley rats were randomized into four groups. The MGN model was established and treated with a DG dose (10 mg/kg) and a positive control (TPCA1, 10 mg/kg), while normal control and MGN groups received distilled water by gavage for four consecutive weeks. At the end of the experiment, 24 h urinary protein, biochemical indices, oxidation and antioxidant levels, inflammatory parameters, histopathological examination, immunohistochemistry and immunoblotting were evaluated. RESULTS DG significantly ameliorated kidney dysfunction by decreasing urinary protein (0.56-fold), serum creatinine (SCr) (0.78-fold), BUN (0.71-fold), TC (0.66-fold) and TG (0.73-fold) levels, and increasing ALB (1.44-fold). DG also reduced MDA (0.82-fold) and NO (0.83-fold) levels while increasing the activity of SOD (1.56-fold), CAT (1.25-fold), glutathione peroxidase (GPx) (1.55-fold) and GSH (1.81-fold). Furthermore, DG reduced Keap1 (0.76-fold) expression, Nrf2 nuclear translocation (0.79-fold), and induced NQO1 (1.25-fold) and HO-1 (1.46-fold) expression. Additionally, DG decreased IL-2 (0.55-fold), TNF-α (0.80-fold) and IL-6 (0.75-fold) levels, and reduced protein expression of NF-κB p65 (0.80-fold), IKKβ (0.93-fold), p-IKKβ (0.89-fold), ICAM-1 (0.88-fold), VCAM-1 (0.91-fold), MCP-1 (0.88-fold) and E-selectin (0.87-fold), and also inhibited the nuclear translocation of NF-κB p65 (0.64-fold). DISCUSSION AND CONCLUSIONS The results suggest a potential therapeutic benefit of DG against MGN due to the inhibition of the NF-κB pathway, supporting the need for further clinical trials.
Collapse
Affiliation(s)
- Shiyan Jia
- Department of Anesthesiology, Anesthesia and Trauma Research Unit, Hebei Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Cangzhou, China
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, China
- Department of Nephrology, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, China
| | - Ruihua Si
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, China
- Department of Nephrology, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, China
| | - Guangzhen Liu
- Department of Nephrology, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, China
| | - Qiming Zhong
- Department of Nephrology, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, China
| |
Collapse
|
2
|
Zhou L, Wang X, Sun Z, Bao X, Xue L, Xu Z, Dong P, Xia J. Study on the mechanism of Shenkang injection in the treatment of chronic renal failure based on the strategy of "Network pharmacology-Molecular docking-Key target validation". PLoS One 2023; 18:e0291621. [PMID: 37796994 PMCID: PMC10553805 DOI: 10.1371/journal.pone.0291621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 09/02/2023] [Indexed: 10/07/2023] Open
Abstract
OBJECTIVE To explore the potential mechanism of Shenkang injection (SKI) in the treatment of chronic renal failure based on network pharmacology and molecular docking technology, and to verify the core targets and key pathways by using the renal failure model. METHODS The active components and targets of Shenkang injection were retrieved by TCMSP database, and the disease related targets were obtained by OMIM, GeneCards and other databases. Then, the intersection was obtained, and were imported into String database for PPI analysis. After further screening of core targets, GO and KEGG analysis were performed. Autodock software was used to predict the molecular docking and binding ability of the selected active ingredients and core targets. Chronic renal failure (CRF) model was established by adenine induction in rats, and the pathological observation of renal tissues was conducted. Meanwhile, the effects of Shenkang injection and its active components on core targets and pathways of renal tissues were verified. RESULTS The results of network pharmacology showed that the main components of Shenkang injection might be hydroxysafflor yellow A (HSYA)、tanshinol、rheum emodin、Astragaloside IV. Through enrichment analysis of core targets, it was found that Shenkang injection may play an anti-chronic renal failure effect through PI3K-Akt signaling pathway. Molecular docking results showed that the above pharmacodynamic components had strong binding ability with the target proteins PI3K and Akt. The results of animal experiments showed that renal function indexes of Shenkang injection group and pharmacodynamic component group were significantly improved compared with model group. HE staining results showed that the pathological status of the kidney was significantly improved in SKI and pharmacodynamic component treatment groups. Immunohistochemical results showed that the renal fibrosis status was significantly reduced in SKI and pharmacodynamic component treatment groups. q-RTPCR and WB results showed that the expression levels of PI3K and Akt were significantly decreased in the treatment groups (P< 0.05). CONCLUSIONS Shenkang injection may inhibit PI3K-Akt signaling pathway to play an anti-chronic renal failure role through the pharmacodynamic component hydroxysafflor yellow A (HSYA), tanshinol, rheum emodin, Astragaloside IV.
Collapse
Affiliation(s)
- Lin Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaohui Wang
- Department of Ultrasound, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhi Sun
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyue Bao
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lianping Xue
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhanmei Xu
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengfei Dong
- Department of Chinese Medicine, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinlan Xia
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| |
Collapse
|
3
|
Qu Z, Wang B, Jin Y, Xiao Q, Zhao Y, Zhao D, Yang L. Shenkang protects renal function in diabetic rats by preserving nephrin expression. BMC Complement Med Ther 2023; 23:244. [PMID: 37460931 PMCID: PMC10353195 DOI: 10.1186/s12906-023-04078-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/09/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Shenkang injection has been used clinically to lower creatinine levels. This study explored the mechanism of Shenkang injection on protecting kidney function from hyperglycemia-mediated damage. METHODS This study utilized a STreptoZotocin (STZ)-induced rat model of diabetes. In total, 60 rats were randomized into either the control group (n = 15) injected with vehicle or treatment group (n = 45) injected with STZ to induce hyperglycemia. Eight weeks after diabetes onset, diabetic rats were further randomized to receive different treatments for 4 consecutive weeks, including vehicle (diabetic nephropathy group, n = 15), Shenkang (n = 15), or Valsartan (n = 15). At 12 weeks, a series of urine and blood measures were examined and damage to the kidney tissue was examined using histology. Expression of nephrin and transforming growth factor-β1 (TGF-β1) were characterized using immunohistochemistry and Western blot. RESULTS Compared to the control group, rats in the diabetic nephropathy group showed significant kidney damage demonstrated by high kidneyindex, high levels of urinary albumin, albumin/creatinine ratio (ACR), blood urea nitrogen as well as histological evidence. Shenkang injection significantly improved kidney function in the diabetic rats by decreasing kidney index, ACR, and serum creatinine. Shenkang treatment also mitigated kidney damage, improved nephrin expression, and decreased TGF-β1 expression in the kidneys. CONCLUSIONS Shenkang treatment protected renal function in diabetic rats by increasing nephrin expression, which protects diabetic rats from hyperglycemia-mediated kidney damage.
Collapse
Affiliation(s)
- Zhihui Qu
- Department of Nephrology, The First Hospital of Jilin University, No.3302, Jilin Road, Changchun City, Jilin Province, P.R. China
| | - Biyao Wang
- Department of Clinical, Educational and Health Psychology, University College London, 26 Bedford Way, London, WC1H 0AP, UK
| | - Yingli Jin
- Department of Pharmacology, College of Basic Medical Science, Jilin University, Changchun, 130021, P.R. China
| | - Qingfei Xiao
- Department of Nephrology, The First Hospital of Jilin University, No.3302, Jilin Road, Changchun City, Jilin Province, P.R. China
| | - Ying Zhao
- Department of Nephrology, The First Hospital of Jilin University, No.3302, Jilin Road, Changchun City, Jilin Province, P.R. China
| | - Danning Zhao
- Department of Medical Informatics, School of Public Health, Jilin University, Changchun, 130021, P.R. China
| | - Liming Yang
- Department of Nephrology, The First Hospital of Jilin University, No.3302, Jilin Road, Changchun City, Jilin Province, P.R. China.
| |
Collapse
|
4
|
Chen Z, Ying TC, Chen J, Wang Y, Wu C, Su Z. Assessment of Renal Fibrosis in Patients With Chronic Kidney Disease Using Shear Wave Elastography and Clinical Features: A Random Forest Approach. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1665-1671. [PMID: 37105772 DOI: 10.1016/j.ultrasmedbio.2023.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023]
Abstract
OBJECTIVE Renal fibrosis is the common pathological hallmark of chronic kidney disease (CKD) progression. In this study, a random forest (RF) classifier based on 2-D shear wave elastography (SWE) and clinical features for the differential severity of renal fibrosis in patients with CKD is proposed. METHODS A total of 162 patients diagnosed with CKD who underwent 2-D SWE and renal biopsy were prospectively enrolled from April 2019 to December 2021 and then randomized into training (n = 114) and validation (n = 48) cohorts at a ratio of 7:3. The least absolute shrinkage and selection operator (LASSO) regression and recursive feature elimination for support vector machines (SVM-RFE) algorithm were employed to select renal fibrosis-related features from clinical information and elastosonographic findings. An RF model was subsequently constructed using the aforementioned informative parameters in the training cohort and evaluated in terms of discrimination, calibration and clinical utility in both cohorts. RESULTS The LASSO and SVM-RFE analyses revealed that age, sex, blood urea nitrogen, renal resistive index, hypertension and the 2D-SWE value were independent risk variables associated with renal fibrosis severity. The established RF model incorporating these six variables exhibited fine discrimination in both the derivation (area under the curve [AUC]: 0.84, 95% confidence interval [CI]: 0.76-0.91) and validation (AUC: 0.88, 95% CI: 0.77-0.98) cohorts. Moreover, the calibration curve revealed satisfactory predictive accuracy, and the decision curve analysis revealed a significant clinical net benefit. CONCLUSION The developed RF model, via a combination of the 2-D SWE value and clinical information, indicated satisfactory diagnostic performance and clinical practicality toward differentiating moderate-severe from mild renal fibrosis, which may provide critical insight into risk stratification for patients with CKD.
Collapse
Affiliation(s)
- Ziman Chen
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Tin Cheung Ying
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Jiaxin Chen
- Department of Ultrasound, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yingli Wang
- Ultrasound Department, EDAN Instruments, Inc., Shenzhen, China
| | - Chaoqun Wu
- Department of Ultrasound, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Zhongzhen Su
- Department of Ultrasound, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.
| |
Collapse
|
5
|
Qin T, Wu Y, Liu T, Wu L. Effect of Shenkang on renal fibrosis and activation of renal interstitial fibroblasts through the JAK2/STAT3 pathway. BMC Complement Med Ther 2021; 21:12. [PMID: 33407391 PMCID: PMC7789243 DOI: 10.1186/s12906-020-03180-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Activation of renal fibroblasts is a critical mechanism in the process of renal fibrosis. As a commonly used herbal formula, Shenkang (SK) has been found to attenuate renal fibrosis and renal parenchyma destruction. However, the effect of SK on renal fibroblast activation in unilateral ureteral obstruction (UUO) mice and its molecular mechanism remain undetermined. The present study was performed to elucidate the effect of SK on renal fibroblast activation and renal fibrosis, as well as the potential underlying mechanism, in both NRK-49F cells and UUO mice. METHODS NRK-49F cells were stimulated with 10 ng/ml TGF-β1 for 48 h. After SK treatment, the CCK-8 method was used to evaluate cell viability. Thirty-six C57BL/6 mice were randomly divided into the sham group, UUO group, angiotensin receptor blocker (ARB) group, and SK high-, moderate- and low-dose groups. UUO was induced in mice except those in the sham group. Drugs were administered 1 day later. On the 13th day, the fractional anisotropy (FA) value was determined by MRI to evaluate the degree of renal fibrosis. After 14 days, serum indexes were assessed. Hematoxylin and eosin (HE) and Sirius red staining were used to observe pathological morphology and the degree of fibrosis of the affected kidney. Western blotting and PCR were used to assess the expression of related molecules in both cells and animals at the protein and gene levels. RESULTS Our results showed that SK reduced extracellular matrix (ECM) and α-smooth muscle actin (α-SMA) expression both in vitro and in vivo and attenuated renal fibrosis and the pathological lesion degree after UUO, suppressing JAK2/STAT3 activation. Furthermore, we found that SK regulated the JAK2/STAT3 pathway regulators peroxiredoxin 5 (Prdx5) in vitro and suppressor of cytokine signaling protein 1 (SOCS1) and SOCS3 in vivo. CONCLUSIONS These results indicated that SK inhibited fibroblast activation by regulating the JAK2/STAT3 pathway, which may be a mechanism underlying its protective action in renal fibrosis.
Collapse
Affiliation(s)
- Tianyu Qin
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - You Wu
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Tonghua Liu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Lili Wu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100029, China
| |
Collapse
|
6
|
Wang Y, Li M, Li C, Xu S, Wu J, Zhang G, Cai Y. Efficacy and safety of Shenkang injection as adjuvant therapy in patients with diabetic nephropathy: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e23821. [PMID: 33350769 PMCID: PMC7769367 DOI: 10.1097/md.0000000000023821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Diabetic nephropathy is a frequent microvascular complication of diabetes mellitus that causes end-stage renal disease most of the time. In China, Shenkang injection is one of widely used traditional Chinese medicine for treating chronic kidney disease, but its efficacy and safety have not yet been clarified. We will systematically review the current randomized controlled trial (RCT) evidence to summarize the efficacy and safety of Shenkang injection in treating diabetic nephropathy. METHODS We will search 7 literature databases including PubMed, EMBASE, Cochrane Library, Sinomed, Chinese National Knowledge Infrastructure, Wanfang, and VIP. Two trial registry platforms will also be searched. The time frame of the search will be from the inceptions of the databases to December 31, 2020. RCTs assessing Shenkang injection combined with basic treatments versus basic treatments alone for treating diabetic nephropathy will be included. The risk of bias within the individual RCTs will be evaluated using criteria proposed by the Cochrane Handbook 5.1.0. The primary outcomes to be investigated are glomerular filtration rate and serum creatinine; the secondary outcome will include 24-hour urine albumin excretion rate, blood urea nitrogen, fasting blood glucose, postprandial blood glucose, hemoglobin A1c, total cholesterol, triglyceride, response to treatment, and incidence of adverse events. The effect data of individual RCTs by performing random-effects model meta-analysis. Statistical heterogeneity will be measured by the Cochran Q test and I-squared statistics. Three subgroup analyses, set based on clinical experience, will be performed to explore the sources of heterogeneity. Sensitivity analyses excluding RCTs with high risk of bias and using fixed effect model will be done to test the robustness of the meta-analytic results. Publication bias across included RCTs will be evaluated by funnel plots and Egger test. RESULTS This study will provide systematic review on the efficacy and safety of Shenkang Injection as adjuvant therapy in patients with diabetic nephropathy by rigorous quality assessment and reasonable data synthesis. The results will be submitted to a peer-reviewed journal for publication. CONCLUSION This systematic review will provide the best evidence currently on Shenkang Injection as adjuvant therapy in patients with diabetic nephropathy. INPLASY REGISTRATION NUMBER INPLASY2020110014.
Collapse
Affiliation(s)
- Yanping Wang
- Evidence-based Medicine Research Center, Jiangxi University of Traditional Chinese Medicine, Jiangxi
| | - Mingzhu Li
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Chenyun Li
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangdong
| | - Sheng Xu
- Evidence-based Medicine Research Center, Jiangxi University of Traditional Chinese Medicine, Jiangxi
| | | | - Gaochuan Zhang
- Institute for Advanced Study, Jiangxi University of Traditional Chinese Medicine, Jiangxi, China
| | - Yuanyuan Cai
- Institute for Advanced Study, Jiangxi University of Traditional Chinese Medicine, Jiangxi, China
| |
Collapse
|
7
|
Tian C, Lin X, Saetan W, Huang Y, Shi H, Jiang D, Chen H, Deng S, Wu T, Zhang Y, Li G, Zhu C. Transcriptome analysis of liver provides insight into metabolic and translation changes under hypoxia and reoxygenation stress in silver sillago (Sillago sihama). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100715. [PMID: 32798959 DOI: 10.1016/j.cbd.2020.100715] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022]
Abstract
Hypoxia can lead to adverse effects on growth, reproduction, behavioral activities and survival in fish, and is one of the most critical factors in the aquatic environment. The liver is an important target organ for reducing toxin accumulation and hypoxia in fish. In this study, silver sillago (Sillago sihama) was exposed to normoxia (dissolved oxygen, DO = 8.0 mg/L), hypoxia for 1 h (hypoxia 1 h, DO = 1.5 mg/L), hypoxia for 4 h (hypoxia 4 h, DO = 1.5 mg/L) and reoxygenation for 4 h after hypoxia 4 h (reoxygenation 4 h, DO = 8.0 mg/L). Results showed that the expression of 506, 1721, and 1230 differentially expressed genes (DEGs) (|log2(fold change) > 1.0| and padj < 0.05) were identified at hypoxia 1 h, hypoxia 4 h, and reoxygenation 4 h in the liver, respectively. The enrichment analysis showed that the DEGs were significantly enriched in metabolic and translation changes pathways, including mapk signaling pathway, p53 signaling pathway, fatty acid metabolism, protein export, ribosome biogenesis in eukaryotes. The DEGs of 17 genes validated the RNA-seq results by quantitative real-time PCR (qRT-PCR). This study provides a comprehensive understanding of the transcriptional changes that occur in different hypoxia and insights into the mechanisms of hypoxia adaptation of the liver in S. sihama.
Collapse
Affiliation(s)
- Changxu Tian
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524088, China.
| | - Xinghua Lin
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524088, China.
| | - Wanida Saetan
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524088, China.
| | - Yang Huang
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524088, China.
| | - Hongjuan Shi
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524088, China.
| | - Dongneng Jiang
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524088, China.
| | - Huapu Chen
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524088, China.
| | - Siping Deng
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524088, China.
| | - Tianli Wu
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524088, China.
| | - Yulei Zhang
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524088, China.
| | - Guangli Li
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524088, China.
| | - Chunhua Zhu
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524088, China.
| |
Collapse
|
8
|
Jiang X, Zhou L, Zuo L, Wang X, Shi Y, Du X, Zhang J, Liu L, Li Z, Xue L, Liu X, Sun Z. Pharmacokinetics and Metabolism Research of Shenkang Injection in Rats Based on UHPLC-MS/MS and UHPLC-Q-Orbitrap HRMS. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1837-1850. [PMID: 32494125 PMCID: PMC7231776 DOI: 10.2147/dddt.s235646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/21/2020] [Indexed: 11/23/2022]
Abstract
Purpose Shenkang injection, a traditional Chinese herbal prescription, had been widely used in renal disease due to its perfect curative effect. In this research, a novel, sensitive, accurate and rapid liquid chromatography-tandem mass spectrometric method was developed to simultaneously detect the seven active ingredients in rat plasma of Shenkang injection and investigate its pharmacokinetic behaviors with metabolism profiling meanwhile. Methods For accurate pharmacokinetic quantitation, a WATERS ACQUITY UPLC® BEH C18 column was used to perform a separation and acetonitrile-water (0.1% formic acid) was selected as mobile phase for gradient elution with a flow rate of 0.20 mL/min. A heated electrospray ionization with selective reaction monitoring mode was used to monitor the precursor-product ion transitions for all the analytes and IS. Results They all showed good linearity over a wide concentration range (r>0.996 3) and the lower limit of quantification (LLOQ) was 0.1–1.0 ng/mL for analytes. The validation parameters were all within the acceptable limits. Furthermore, for metabolism profiling study, metabolites of the seven ingredients were identified from the rat plasma based on the accurate mass and fragment ions. The metabolic pathways mainly focus on reduction, dehydration and conjugation. Conclusion This study provided an overview of disposition of Shenkang injection, which is highly instructive for better understanding the effectiveness and toxicity of this drug.
Collapse
Affiliation(s)
- Xiaofang Jiang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, People's Republic of China
| | - Lin Zhou
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, People's Republic of China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, Henan Province 450052, People's Republic of China
| | - Lihua Zuo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, People's Republic of China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, Henan Province 450052, People's Republic of China
| | - Xiaohui Wang
- Department of Ultrasonography, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, People's Republic of China
| | - Yingying Shi
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, People's Republic of China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, Henan Province 450052, People's Republic of China
| | - Xiangyu Du
- School of Basic Medical Science, Henan University, Kaifeng, Henan Province 475001, People's Republic of China
| | - Jun Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, People's Republic of China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, Henan Province 450052, People's Republic of China
| | - Liwei Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, People's Republic of China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, Henan Province 450052, People's Republic of China
| | - Zhuolun Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, People's Republic of China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, Henan Province 450052, People's Republic of China
| | - Lianping Xue
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, People's Republic of China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, Henan Province 450052, People's Republic of China
| | - Xin Liu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, People's Republic of China
| | - Zhi Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, People's Republic of China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, Henan Province 450052, People's Republic of China
| |
Collapse
|
9
|
Qin T, Wu L, Hua Q, Song Z, Pan Y, Liu T. Prediction of the mechanisms of action of Shenkang in chronic kidney disease: A network pharmacology study and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2020; 246:112128. [PMID: 31386888 DOI: 10.1016/j.jep.2019.112128] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 05/29/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine provides a unique curative treatment of complex chronic diseases, including chronic kidney disease (CKD), which is not effectively treated with the current therapies. The pharmacological mechanisms of Shenkang (SK), a herbal medicine containing rhubarb (Rheum palmatum L. or R. tanguticum Maxim. ex Balf.), red sage (Salvia miltiorrhiza Bunge), safflower (Carthamus tinctorius L.), and astragalus (Astragalus mongholicus Bunge), widely used to treat CKD in China, are still unclear. AIM OF THE STUDY In this study, the comprehensive approach used for elucidating the pharmacological mechanisms of SK included the identification of the effective constituents, target prediction and network analysis, by investigating the interacting pathways between these molecules in the context of CKD. These results were validated by performing an in vivo study and by comparison with literature reviews. MATERIALS AND METHODS This approach involved the following main steps: first, we constructed a molecular database for SK and screened for active molecules by conducting drug-likeness and drug half-life evaluations; second, we used a weighted ensemble similarity drug-targeting model to accurately identify the direct drug targets of the bioactive constituents; third, we constructed compound-target, target-pathway, and target-disease networks using the Cytoscape 3.2 software and determined the distribution of the targets in tissues and organs according to the BioGPS database. Finally, the resulting drug-target mechanisms were compared with those proposed by previous research on SK and validated in a mouse model of CKD. RESULTS By using Network analysis, 88 potential bioactive compounds in the four component herbs of SK and 85 CKD-related targets were identified, including pathways that involve the nuclear factor-κB, mitogen-activated protein kinase, transient receptor potential, and vascular endothelial growth factor, which were categorized as inflammation, proliferation, migration, and permeability modules. The results also included different tissues (kidneys, liver, lungs, and heart) and different disease types (urogenital, metabolic, endocrine, cardiovascular, and immune diseases as well as pathological processes) closely related to CKD. These findings agreed with those reported in the literature. However, our findings with the network pharmacology prediction did not account for all the effects reported for SK found in the literature, such as regulation of the hemodynamics, inhibition of oxidative stress and apoptosis, and the involvement of the transforming growth factor-β/SMAD3, sirtuin/forkhead box protein O (SIRT/FOXO) and B-cell lymphoma-2-associated X protein pathways. The in vivo validation experiment revealed that SK ameliorated CKD through antifibrosis and anti-inflammatory effects, by downregulating the levels of vascular cell adhesion protein 1, vitamin D receptor, cyclooxygenase-2, and matrix metalloproteinase 9 proteins in the unilateral ureteral obstruction mouse model. This was consistent with the predicted target and pathway networks. CONCLUSIONS SK exerted a curative effect on CKD and CKD-related diseases by targeting different organs, regulating inflammation and proliferation processes, and inhibiting abnormal extracellular matrix accumulation. Thus, pharmacological network analysis with in vivo validation explained the potential effects and mechanisms of SK in the treatment of CKD. However, these findings need to be further confirmed with clinical studies.
Collapse
Affiliation(s)
- Tianyu Qin
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Lili Wu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Qian Hua
- Academy of Basic Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Zilin Song
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yajing Pan
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Tonghua Liu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
10
|
Zhang LY, Jin J, Luo K, Piao SG, Zheng HL, Jin JZ, Lim SW, Choi BS, Yang CW, Li C. Shen-Kang protects against tacrolimus-induced renal injury. Korean J Intern Med 2019; 34:1078-1090. [PMID: 29432674 PMCID: PMC6718754 DOI: 10.3904/kjim.2017.276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/23/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND/AIMS Evidence suggests that Shen-Kang (SK), a traditional Chinese herbal medicine, protects against various types of renal injury. In this study, we evaluated whether SK treatment confers renoprotection in a rat model of chronic tacrolimus (TAC) nephropathy. METHODS Rats were treated daily with TAC (1.5mg/kg, subcutaneously) and SK (450 mg/kg, intravenously) for 4 weeks. The effects of SK on TAC-induced renal injury were assessed by measuring renal function, urine albumin excretion, histopathology, inflammatory cell infiltration, expression of profibrotic (transforming growth factor β1 [TGF-β1] and TGF-β inducible gene-h3 [βig-h3]) and proinflammatory cytokines, oxidative stress, and apoptotic cell death. RESULTS Administration of SK preserved glomerular integrity (fractional mesangial area and Wilms tumor 1-positive glomeruli), attenuated tubulointerstitial fibrosis, and reduced the number of ectodermal dysplasia 1-positive cells, and this was paralleled by improved urine albumin excretion and renal dysfunction. At the molecular level, SK treatment suppressed expression of TGF-β1/Smad2/3, βig-h3, and proinflammatory cytokines. Oxidative stress and apoptotic cell death were significantly decreased with SK treatment, and apoptosis-related genes were regulated toward cell survival (active caspase-3 and the B-cell lymphoma-2/Bcl2-associated X [Bcl-2/Bax] ratio). CONCLUSION SK protects against TAC-induced renal injury.
Collapse
Affiliation(s)
- Long Ye Zhang
- Department of Nephrology, Yanbian University Hospital, Yanbian, China
| | - Jian Jin
- Department of Nephrology, Yanbian University Hospital, Yanbian, China
- Transplantation Research Center, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
- Convergent Research Consortium for Immunologic Disease, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Kang Luo
- Department of Nephrology, Yanbian University Hospital, Yanbian, China
- Transplantation Research Center, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
- Convergent Research Consortium for Immunologic Disease, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Shang Guo Piao
- Department of Nephrology, Yanbian University Hospital, Yanbian, China
| | - Hai Lan Zheng
- Department of Nephrology, Yanbian University Hospital, Yanbian, China
| | - Ji Zhe Jin
- Department of Nephrology, Yanbian University Hospital, Yanbian, China
| | - Sun Woo Lim
- Transplantation Research Center, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
- Convergent Research Consortium for Immunologic Disease, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Bum Soon Choi
- Transplantation Research Center, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
- Convergent Research Consortium for Immunologic Disease, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Chul Woo Yang
- Transplantation Research Center, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
- Convergent Research Consortium for Immunologic Disease, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Can Li
- Department of Nephrology, Yanbian University Hospital, Yanbian, China
- Correspondence to Can Li, M.D. Department of Nephrology, Yanbian University Hospital, #1327 Juzi St, Yanji 133000, Jilin Prov., Yanbian, China Tel: +86-188-4333-0302 Fax: +86-433-251-3610 E-mail:
| |
Collapse
|
11
|
Lu T, Fan Z, Hou J, Qi X, Guo M, Ju J, Yang Y, Gu C. Loquat leaf polysaccharides improve glomerular injury in rats with anti-Thy 1 nephritis via peroxisome proliferator-activated receptor alpha pathway. Am J Transl Res 2019; 11:3531-3542. [PMID: 31312364 PMCID: PMC6614611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/06/2019] [Indexed: 06/10/2023]
Abstract
Chronic glomerulonephritis frequently develops into renal failure that cannot be completely cured. Based on the success of anti-inflammatory Chinese herbs in treating chronic nephritis, our goal was to investigate the therapeutic effects and mechanism of action of loquat leaf polysaccharides (LLPS) on chronic anti-Thy-1 nephritis. A rat model of glomerulonephritis was used to study the effects of 8 weeks of enalapril or LLPS treatment. Twenty-four-hour rat urinary protein excretions were measured every week for 8 weeks. Then, all animals were sacrificed, renal-related biochemical parameters were analyzed, and histology and electron microscopy examinations of renal tissue samples were conducted. Renal cortex tissue was used to detect markers of renal fibrosis. RNA sequencing (RNA-seq) and in vitro experiments explored the signaling pathway involved in LLPS treatment effects. Compared with the disease control group, LLPS treatment significantly decreased the levels of serum creatinine and blood urea nitrogen, reduced urinary protein excretion, glomerular mesangial cell proliferation, and extracellular matrix hyperplasia, and attenuated the expression of proteins associated with podocyte injury and renal fibrosis. RNA-seq results showed that peroxisome proliferator-activated receptor (PPAR) is a potential signaling pathway involved in LLPS treatment of chronic glomerulonephritis. Increases in PPARα and plasminogen activator inhibitor-1 (PAI-1) caused by glomerulonephritis were inhibited by LLPS in vitro. Furthermore, when an agonist of PPARα (BMS-687453) was used to stimulate PPARα activity, LLPS treatment suppressed the expression of fibrosis factor PAI-1 partially via PPARα inhibition. These findings demonstrate that LLPS improved glomerular injury in rats with anti-Thy 1 nephritis via the PPARα pathway.
Collapse
Affiliation(s)
- Ting Lu
- School of Medicine and Life Sciences, Nanjing University of Chinese MedicineNanjing 210023, China
| | - Zhimin Fan
- The Third Affiliated Hospital of Nanjing University of Chinese MedicineNanjing 210001, China
| | - Jianhao Hou
- School of Medicine and Life Sciences, Nanjing University of Chinese MedicineNanjing 210023, China
| | - Xiaohong Qi
- Department of Pathophysiology, Nanjing Medical UniversityNanjing 211166, China
| | - Mengjie Guo
- School of Medicine and Life Sciences, Nanjing University of Chinese MedicineNanjing 210023, China
| | - Jianming Ju
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing, China
| | - Ye Yang
- School of Medicine and Life Sciences, Nanjing University of Chinese MedicineNanjing 210023, China
- School of Holistic Integrative Medicine, Nanjing University of Chinese MedicineNanjing 210023, China
| | - Chunyan Gu
- School of Medicine and Life Sciences, Nanjing University of Chinese MedicineNanjing 210023, China
- The Third Affiliated Hospital of Nanjing University of Chinese MedicineNanjing 210001, China
| |
Collapse
|
12
|
Liu Y, Shi G, Yee H, Wang W, Han W, Liu B, Wu W, Tu Y, Ma Q, Huo D, Wan Z, Cao D, Wan Y. Shenkang injection, a modern preparation of Chinese patent medicine, diminishes tubulointerstitial fibrosis in obstructive nephropathy via targeting pericyte-myofibroblast transition. Am J Transl Res 2019; 11:1980-1996. [PMID: 31105812 PMCID: PMC6511788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/26/2019] [Indexed: 06/09/2023]
Abstract
Shenkang injection (SKI), a modern preparation of Chinese patent medicine, has been widely applied to clinical therapy in the chronic renal failure patients. However, it remains elusive whether SKI can ameliorate tubulointerstitial fibrosis (TIF) in vivo. Recently, pericyte-myofibroblast transition (PMT) plays an important role in the pathogenesis of TIF in obstructive nephropathy (ON). This report thus aims to demonstrate the therapeutic mechanisms of the dose-effects of SKI on TIF by targeting PMT and its signaling activation, compared with imatinib. All rats were divided into 5 groups, the sham-operated group, the vehicle-intervened group, the high dose of SKI-treated group, the low dose of SKI-treated group and the imatinib-treated group. The ON model rats were induced by unilateral ureteral obstruction (UUO), and administered with either the different doses of SKI or imatinib before and after modeling and for a period of 4 weeks. The changes before and after drugs intervention in TIF and PMT markers, and in platelet-derived growth factor receptor (PDGFR) and vascular endothelial growth factor receptor (VEGFR) signaling pathways activation in the kidneys were analyzed, respectively. As a result, PMT trigger was persistently accompanied with TIF exasperation in the obstructed kidneys after UUO, and that SKI definitely targeted PMT and significantly diminished TIF in vivo. In addition, the high dose of SKI, superior to imatinib, specifically blocked PMT through inhibiting the activation of PDGFR and VEGFR signaling in the kidneys of the UUO model rats. Overall, these findings may further suggest that targeting PMT can provide new strategies for ON treatment.
Collapse
Affiliation(s)
- Yinglu Liu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing 210008, China
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjing 210008, China
| | - Ge Shi
- Department of Nephrology, Wuhan First HospitalWuhan 430022, China
| | - Hongyun Yee
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing 210008, China
| | - Wenwen Wang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing 210008, China
| | - Wenbei Han
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing 210008, China
| | - Buhui Liu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing 210008, China
| | - Wei Wu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjing 210008, China
| | - Yue Tu
- Department of TCM Health Preservation, Second Clinic Medical School, Nanjing University of Chinese MedicineNanjing 210023, China
| | - Qian Ma
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjing 210008, China
| | - Dongqin Huo
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjing 210008, China
| | - Ziyue Wan
- Department of Social Work, Meiji Gakuin UniversityTokyo 108-8636, Japan
| | - Dongwei Cao
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjing 210008, China
| | - Yigang Wan
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjing 210008, China
| |
Collapse
|
13
|
Salvianolic Acid A Protects the Kidney against Oxidative Stress by Activating the Akt/GSK-3 β/Nrf2 Signaling Pathway and Inhibiting the NF- κB Signaling Pathway in 5/6 Nephrectomized Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2853534. [PMID: 31011401 PMCID: PMC6442489 DOI: 10.1155/2019/2853534] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/12/2018] [Indexed: 12/12/2022]
Abstract
Salvianolic acid A (SAA) is a bioactive polyphenol extracted from Salviae miltiorrhizae Bunge, which possesses a variety of pharmacological activities. In our previous study, we have demonstrated that SAA effectively attenuates kidney injury and inflammation in an established animal model of 5/6 nephrectomized (5/6Nx) rats. However, there has been limited research regarding the antioxidative effects of SAA on chronic kidney disease (CKD). Here, we examined the antioxidative effects and underlying mechanisms of SAA in 5/6Nx rats. The rats were injected with SAA (2.5, 5, and 10 mg·kg−1·d−1, ip) for 28 days. Biochemical, flow cytometry, and Western blot analyses showed that SAA significantly increased the activities of total superoxide dismutase (T-SOD), glutathione peroxidase (GPx), and catalase (CAT) and lowered the levels of malondialdehyde (MDA), reactive oxygen species (ROS), and NADPH oxidase 4 (NOX-4) in a dose-dependent manner in 5/6Nx rats and in H2O2-induced HK-2 cells in vitro. Moreover, SAA enhanced the activation of the protein kinase B/glycogen synthase kinase-3β/nuclear factor-erythroid-2-related factor 2 (Akt/GSK-3β/Nrf2) signaling pathway in a dose-dependent manner and subsequently increased the expression of heme oxygenase-1 (HO-1) in the kidney of 5/6Nx rats, which were consistent with those obtained in H2O2-induced HK-2 cells in vitro shown by Western blot analysis. Furthermore, SAA significantly increased the expression of intranuclear Nrf2 and HO-1 proteins compared to HK-2 cells stimulated by LPS on the one hand, which can be enhanced by QNZ to some extent; on the other hand, SAA significantly lowered the expression of p-NF-κB p65 and ICAM-1 proteins compared to HK-2 cells stimulated by H2O2, which can be abrogated by ML385 to some extent. In conclusion, our results demonstrated that SAA effectively protects the kidney against oxidative stress in 5/6Nx rats. One of the pivotal mechanisms for the protective effects of SAA on kidney injury was mainly related with its antioxidative roles by activating the Akt/GSK-3β/Nrf2 signaling pathway and inhibiting the NF-κB signaling pathway.
Collapse
|
14
|
Zhu BB, Wang H, Chi YF, Wang YM, Yao XM, Liu S, Qiu H, Fang J, Yin PH, Zhang XM, Peng W. Protective effects of probucol on Ox-LDL-induced epithelial-mesenchymal transition in human renal proximal tubular epithelial cells via LOX‑1/ROS/MAPK signaling. Mol Med Rep 2017; 17:1289-1296. [PMID: 29115480 DOI: 10.3892/mmr.2017.7935] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 09/19/2017] [Indexed: 11/06/2022] Open
Abstract
Oxidized low-density lipoprotein (Ox-LDL), as a strong oxidant, results in renal injury through multiple mechanisms. The aim of the present study was to determine the injury effects of Ox‑LDL and the potential protective effects of the antioxidant reagent probucol on epithelial‑mesenchymal transition (EMT) in human renal proximal tubular epithelial cells (HK‑2) and to further explore the role and interrelation of lectin‑like oxidized low‑density lipoprotein receptor‑1 (LOX‑1), reactive oxygen species (ROS) and mitogen‑activated protein kinase (MAPK) pathway. In the present study, concentrations of 0‑100 µg/ml Ox‑LDL were used to induce HK‑2 cell EMT. Then, probucol (20 µmol/l) and the LOX‑1 inhibitor, polyinosinic acid (250 µg/ml), were also used to pretreat HK‑2 cells. Intracellular ROS activity was evaluated using the specific probe 2',7'‑dichlorodihydrofluorescein diacetate (DCFH‑DA). Concentration of nitric oxide (NO) was determined using a biochemical colorimetric method. Expression of E‑cadherin, α‑smooth muscle actin (SMA), LOX‑1, NADPH oxidase 4 (NOX4), cytochrome b‑245 α chain (p22phox), extracellular signal‑regulated kinase (ERK), and p38 MAPK protein levels were examined by western blotting. The results revealed that Ox‑LDL induced the expression of LOX‑1 and α‑SMA and reduced the expression of E‑cadherin in a dose‑dependent manner, and these effects were inhibited by polyinosinic acid or probucol pretreatment. Stimulation with 50 µg/ml Ox‑LDL induced the expression of NOX4 and p22phox and increased intracellular ROS activity, but NO production in the cell supernatants was not affected. The Ox‑LDL‑mediated increases in Nox4 and p22phox expression and in ROS activity were inhibited by probucol pretreatment. Further investigations into the underlying molecular pathways demonstrated that ERK and p38 MAPK were activated by Ox‑LDL stimulation and then inhibited by probucol pretreatment. The findings of the present study therefore suggest that Ox‑LDL induced EMT in HK‑2 cells, the mechanism of which may be associated with LOX‑1‑related oxidative stress via the ERK and p38 MAPK pathways. Notably, pretreatment with probucol inhibited the Ox‑LDL‑induced oxidative stress by reducing the expression of LOX‑1, and blocked the progression of EMT.
Collapse
Affiliation(s)
- Bing Bing Zhu
- Department of Nephrology, Laboratory of Renal Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Hao Wang
- Department of Nephrology, Laboratory of Renal Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Yang Feng Chi
- Department of Nephrology, Laboratory of Renal Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Yun Man Wang
- Department of Nephrology, Laboratory of Renal Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Xing Mei Yao
- Department of Nephrology, Laboratory of Renal Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Shuang Liu
- Department of Nephrology, Laboratory of Renal Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Huiling Qiu
- Department of Nephrology, Laboratory of Renal Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Ji Fang
- Department of Nephrology, Laboratory of Renal Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Pei Hao Yin
- Department of Nephrology, Laboratory of Renal Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Xue Mei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, P.R. China
| | - Wen Peng
- Department of Nephrology, Laboratory of Renal Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| |
Collapse
|