1
|
Deng W, Zhong L, Ye S, Luo J, Ren G, Huang J, Zhuang X. Mir22hg facilitates ferritinophagy-mediated ferroptosis in sepsis by recruiting the m6A reader YTHDC1 and enhancing Angptl4 mRNA stability. J Bioenerg Biomembr 2024; 56:405-418. [PMID: 38842666 PMCID: PMC11217081 DOI: 10.1007/s10863-024-10022-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Ferritinophagy-mediated ferroptosis plays a crucial role in fighting pathogen aggression. The long non-coding RNA Mir22hg is involved in the regulation of ferroptosis and aberrantly overexpression in lipopolysaccharide (LPS)-induced sepsis mice, but whether it regulates sepsis through ferritinophagy-mediated ferroptosis is unclear. METHODS Mir22hg was screened by bioinformatics analysis. Ferroptosis was assessed by assaying malondialdehyde (MDA), reactive oxygen species (ROS), and Fe2+ levels, glutathione (GSH) activity, as well as ferroptosis-related proteins GPX4 and SLC3A2 by using matched kits and performing western blot. Ferritinophagy was assessed by Lyso tracker staining and FerroOrange staining, immunofluorescence analysis of Ferritin and LC-3, and western blot analysis of LC-3II/I, p62, FTH1, and NCOA4. The bind of YTH domain containing 1 (YTHDC1) to Mir22hg or angiopoietin-like-4 (Angptl4) was verified by RNA pull-down and/or immunoprecipitation (RIP) assays. RESULTS Mir22hg silencing lightened ferroptosis and ferritinophagy in LPS-induced MLE-12 cells and sepsis mouse models, as presented by the downregulated MDA, ROS, Fe2+, NCOA4, and SLC3A2 levels, upregulated GPX4, GSH, and FTH1 levels, along with a decrease in autophagy. Mir22hg could bind to the m6A reader YTHDC1 without affecting its expression. Mechanistically, Mir22hg enhanced Angptl4 mRNA stability through recruiting the m6A reader YTHDC1. Furthermore, Angptl4 overexpression partly overturned Mir22hg inhibition-mediated effects on ferroptosis and ferritinophagy in LPS-induced MLE-12 cells. CONCLUSION Mir22hg contributed to in ferritinophagy-mediated ferroptosis in sepsis via recruiting the m6A reader YTHDC1 and strengthening Angptl4 mRNA stability, highlighting that Mir22hg may be a potential target for sepsis treatment based on ferroptosis.
Collapse
Affiliation(s)
- Wenlong Deng
- Emergency of Department, SSL Central Hospital of Dongguan City, No.1 Xianglong Road, Shilong Town, Dongguan, 523326, China.
| | - Liang Zhong
- Emergency of Department, SSL Central Hospital of Dongguan City, No.1 Xianglong Road, Shilong Town, Dongguan, 523326, China
| | - Shupei Ye
- Emergency of Department, SSL Central Hospital of Dongguan City, No.1 Xianglong Road, Shilong Town, Dongguan, 523326, China
| | - Jiajing Luo
- Emergency of Department, SSL Central Hospital of Dongguan City, No.1 Xianglong Road, Shilong Town, Dongguan, 523326, China
| | - Guobin Ren
- Emergency of Department, SSL Central Hospital of Dongguan City, No.1 Xianglong Road, Shilong Town, Dongguan, 523326, China
| | - Junhao Huang
- Emergency of Department, SSL Central Hospital of Dongguan City, No.1 Xianglong Road, Shilong Town, Dongguan, 523326, China
| | - Xiaolei Zhuang
- Emergency of Department, SSL Central Hospital of Dongguan City, No.1 Xianglong Road, Shilong Town, Dongguan, 523326, China
| |
Collapse
|
2
|
Sun B, Bai L, Li Q, Sun Y, Li M, Wang J, Shi X, Zhao M. Knockdown of angiopoietin-like 4 suppresses sepsis-induced acute lung injury by blocking the NF-κB pathway activation and hindering macrophage M1 polarization and pyroptosis. Toxicol In Vitro 2024; 94:105709. [PMID: 37820748 DOI: 10.1016/j.tiv.2023.105709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/27/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
OBJECTIVE Sepsis-induced acute lung injury (ALI) is a life-threatening disease. Macrophage pyroptosis has been reported to exert function in ALI. We aimed to investigate the mechanisms of ANGPTL4-mediated cell pyroptosis in sepsis-induced ALI, thus providing new insights into the pathogenesis and prevention and treatment measures of sepsis-induced ALI. METHODS In vivo animal models and in vitro cell models were established by cecal ligation and puncture (CLP) method and lipopolysaccharide-induced macrophages RAW264.7. ANGPTL4 was silenced in CLP mice or macrophages, followed by the determination of ANGPTL4 expression in bronchoalveolar lavage fluid (BALF) or macrophages. Lung histopathology was observed by H&E staining, with pathological injury scores evaluated and lung wet and dry weight ratio recorded. M1/M2 macrophage marker levels (iNOS/CD86/Arg1), inflammatory factor (TNF-α/IL-6/IL-1β/iNOS) expression in BALF, cell death and pyroptosis, NLRP3 inflammasome, cell pyroptosis-related protein (NLRP3/Cleaved-caspase-1/caspase-1/GSDMD-N) levels, NF-κB pathway activation were assessed by RT-qPCR/ELISA/flow cytometry/Western blot, respectively. RESULTS ANGPTL4 was highly expressed in mice with sepsis-induced ALI, and ANGPTL4 silencing ameliorated sepsis-induced ALI in mice. In vivo, ANGPTL4 silencing repressed M1 macrophage polarization and macrophage pyroptosis in mice with sepsis-induced ALI. In vitro, ANGPTL4 knockout impeded LPS-induced activation and pyroptosis of M1 macrophages and hindered LPS-induced activation of the NF-κB pathway in macrophages. CONCLUSION Knockdown of ANGPTL4 blocks the NF-κB pathway activation, hinders macrophage M1 polarization and pyroptosis, thereby suppressing sepsis-induced ALI.
Collapse
Affiliation(s)
- Baisheng Sun
- Medical School of Chinese PLA, Beijing, China; Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Lina Bai
- Department of Emergency, The Fifth Medical Centre of PLA General Hospital, Beijing, China
| | - Qinglin Li
- Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yubo Sun
- The Third Sanatorium, Dalian Rehabilitation and Recuperation Center of Joint Logistic Support Force, Dalian, China
| | - Mei Li
- Department of Radiography, General Hospital of Central Theater Command, PLA, Wuhan 430070, China
| | - Jiazhi Wang
- The 63650 Brigade Hospital, Chinese People's Liberation Army, Xinjiang, China
| | - Xiaoli Shi
- The 63650 Brigade Hospital, Chinese People's Liberation Army, Xinjiang, China
| | - Meng Zhao
- Department of Infection Control, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Jiang H, Dou Z, Chen G, Zhang G, Du W. Insignificant Difference in Early Post-injury Gene Expression Between Patients with Burns Only and Those with Inhalation Injury: A Bioinformatics Analysis. J Burn Care Res 2023; 44:1509-1518. [PMID: 37306053 DOI: 10.1093/jbcr/irad085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 06/13/2023]
Abstract
Airway obstruction is fatal but common among burn patients in the early period after inhalation injury, during which most tracheotomies are performed within 48 h post-injury. Inflammation is common in laryngoscopy; however, the related gene expression has rarely been studied. In this study, we obtained the data of healthy control and patient samples collected within 8-48 hours post-injury from the Gene Expression Omnibus database and classified them into 10 inhalation-injury patients, 6 burn-only, and 10 healthy controls. Differential gene expression was identified between the patient groups; however, principal component analysis and cluster analysis indicated a similarity between groups. Furthermore, enrichment analysis, Kyoto Encyclopedia of Genes and Genomes, and gene set enrichment analyses showed no significant differences in immune regulation and cell adjustment between the patient groups; but differences were shown when comparing either patient group to the healthy control group, including prominent regulation in inflammatory cells, infection, and cell adjustment. Thus, the gene expression in inhalation injury and burn-only patients does not significantly differ in the early period after injury, especially in inflammation, indicating the absence of specific diagnostic markers or anti-inflammatory treatment in inhalation injury patients, with the potential to identify more subtle differences. Further research is warranted.
Collapse
Affiliation(s)
- Huihao Jiang
- Department of Burns, Beijing Jishuitan Hospital, Beijing City, PR China
| | - Zhe Dou
- Department of Burns, Beijing Jishuitan Hospital, Beijing City, PR China
- Peking University Fourth School of Clinical Medicine, Beijing City, PR China
| | - Guangyu Chen
- Department of Breast Surgery, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Guoan Zhang
- Department of Burns, Beijing Jishuitan Hospital, Beijing City, PR China
- Peking University Fourth School of Clinical Medicine, Beijing City, PR China
| | - Weili Du
- Department of Burns, Beijing Jishuitan Hospital, Beijing City, PR China
- Peking University Fourth School of Clinical Medicine, Beijing City, PR China
| |
Collapse
|
4
|
Increased EHHADH Expression Predicting Poor Survival of Osteosarcoma by Integrating Weighted Gene Coexpression Network Analysis and Experimental Validation. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9917060. [PMID: 33997049 PMCID: PMC8112926 DOI: 10.1155/2021/9917060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/02/2022]
Abstract
Enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase (EHHADH), a member of the 3-hydroxyacyl-CoA dehydrogenase family, were previously demonstrated to be involved in the tumorigenesis of various cancer types. This study is aimed at determining of the diagnostic and prognostic value of EHHADH in osteosarcoma (OS). The overexpression of EHHADH was found both in OS and also other sarcoma types, and according to the retrospective cohort study, the EHHADH level was related to the overall survival and disease-free survival of the OS patients. Furthermore, knockdown of EHHADH under the influence of EHHADH small interfering RNA significantly suppressed the proliferation ability of the tumor cells. Moreover, EHHADH overexpressed was found in human OS tissues. In summary, the progression of OS could be enhanced by EHHADH, which may be a potential diagnostic and prognostic biomarker for OS patients.
Collapse
|
5
|
Zhou DY, Mou X, Liu K, Liu WH, Xu YQ, Zhou D. In silico prediction and validation of potential therapeutic genes in pancreatic β-cells associated with type 2 diabetes. Exp Ther Med 2020; 20:60. [PMID: 32952650 PMCID: PMC7485321 DOI: 10.3892/etm.2020.9188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 03/24/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus is becoming a major health burden worldwide. Pancreatic β-cell death is a characteristic of type 2 diabetes (T2D), but the underlying mechanisms of pancreatic β-cell death remain unknown. Therefore, the aim of the present study was to identify potential targets in the pancreatic islet of T2D. The GSE20966 dataset was obtained from the Gene Expression Omnibus (GEO) database, and differentially expressed genes (DEGs) were identified by using the GEO2R tool. The Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes Pathway enrichment analysis of DEGs were further assessed using the Database for Annotation, Visualization and Integrated Discovery. Furthermore, protein-protein interaction (PPI) networks were constructed for the up- and downregulated genes using STRING databases and were then visualized with Cytoscape. The body weight, fasting blood glucose (FBG), pancreatic index and biochemistry parameters were measured in db/db mice. Moreover, the morphology of the pancreas was detected by hematoxylin and eosin staining, and hub genes were assessed using reverse transcription-quantitative PCR (RT-qPCR) and western blot analysis. In total, 570 DEGs were screened, including 376 upregulated and 194 downregulated genes, which were associated with 'complement activation, classical pathway', 'proteolysis', 'complement activation' and 'pancreatic secretion pathway'. It was found that the body weight, FBG, alanine aminotransferase, aspartate aminotransferase, total cholesterol, triglycerides, blood urea nitrogen, creatinine, fasting serum insulin, glucagon and low-density lipoprotein cholesterol levels were significantly higher in db/db mice, while high-density lipoprotein cholesterol levels and the pancreatic index were significantly decreased. Furthermore, albumin, interleukin-8, CD44, C-C motif chemokine ligand 2, hepatocyte growth factor, cystic fibrosis transmembrane conductance regulator, histone cluster 1 H2B family member n, mitogen-activated protein kinase 11 and neurotrophic receptor tyrosine kinase 2 were identified as hub genes in PPI network. RT-qPCR and western blotting results demonstrated the same expression trend in hub genes as found by the bioinformatics analysis. Therefore, the present study identified a series of hub genes involved in the progression of pancreatic β-cell, which may help to develop effective therapeutic strategy for T2D.
Collapse
Affiliation(s)
- Di Yi Zhou
- Department of Endocrinology, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Xin Mou
- Department of Endocrinology, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Kaiyuan Liu
- Department of Endocrinology, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Wen Hong Liu
- College of The Second Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, P.R. China
| | - Ya Qing Xu
- Department of Endocrinology, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Danyang Zhou
- Department of Endocrinology, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
6
|
Yanan W, Wenyong Z, Ze L, Jingxia G, Lei M, Shengjie O, Bingjie Z, Xiaohu D, Weidong L, Guoyang L. Identification of genes and pathways in human antigen-presenting cell subsets in response to polio vaccine by bioinformatical analysis. J Med Virol 2019; 91:1729-1736. [PMID: 31187886 DOI: 10.1002/jmv.25514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/11/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Polio eradication has been achieved in the world except for three countries due to the widespread use of the inactivated poliovirus vaccine (IPV) and the live-attenuated oral poliovirus vaccine. Following polio eradication, the IPV would be the only polio vaccine available. However, the mechanisms of the interactions between IPV and human antigen-presenting cells (APCs) remain largely unclear. METHODS To investigate the involvement of the IPV in human monocytes, we downloaded the gene chip GSE44721 from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified using the GEO2R analysis tool. Functional and pathway enrichment analyses were performed for DEGs using the Metascape database. DEG-associated protein-protein-interactions (PPIs) were established by the Search Tool for the Retrieval of Interacting Genes website and visualized by Cytoscape. RESULTS There were 240 DEGs (51 upregulated and 189 downregulated genes) identified from the GSE44721 data set, and they were significantly enriched in several biological processes, including antigen processing and presentation of lipid antigen via MHC class Ib, adaptive immune response, and response to interferon-gamma. One hundred thirty-six nodes were screened from the DEG PPI network. There were six significant hub proteins (WDR36, MRTO4, RPF2, PPAN, CD40, and BMS1) that regulated the IPV in human monocytes. CONCLUSIONS In summary, using bioinformatical analysis, we have information for the immunization activated by the IPV in monocytes. Moreover, hormones and cytokines regulate the activation of APCs.
Collapse
Affiliation(s)
- Wu Yanan
- The Fifth Department of Biological Products, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Zhu Wenyong
- The Fifth Department of Biological Products, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Liu Ze
- The Fifth Department of Biological Products, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Gao Jingxia
- The Fifth Department of Biological Products, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Ma Lei
- The Fifth Department of Biological Products, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Ouyang Shengjie
- The Fifth Department of Biological Products, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Zhang Bingjie
- The Fifth Department of Biological Products, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Dai Xiaohu
- The Fifth Department of Biological Products, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Li Weidong
- The Department of Production Administration, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Liao Guoyang
- The Fifth Department of Biological Products, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| |
Collapse
|
7
|
From traditional biochemical signals to molecular markers for detection of sepsis after burn injuries. Burns 2019; 45:16-31. [DOI: 10.1016/j.burns.2018.04.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/28/2018] [Accepted: 04/24/2018] [Indexed: 12/22/2022]
|
8
|
Hu WQ, Wang W, Fang DL, Yin XF. Identification of Biological Targets of Therapeutic Intervention for Hepatocellular Carcinoma by Integrated Bioinformatical Analysis. Med Sci Monit 2018; 24:3450-3461. [PMID: 29795057 PMCID: PMC5996840 DOI: 10.12659/msm.909290] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/02/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND We screened the potential molecular targets and investigated the molecular mechanisms of hepatocellular carcinoma (HCC). MATERIAL AND METHODS Microarray data of GSE47786, including the 40 μM berberine-treated HepG2 human hepatoma cell line and 0.08% DMSO-treated as control cells samples, was downloaded from the GEO database. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses were performed; the protein-protein interaction (PPI) networks were constructed using STRING database and Cytoscape; the genetic alteration, neighboring genes networks, and survival analysis of hub genes were explored by cBio portal; and the expression of mRNA level of hub genes was obtained from the Oncomine databases. RESULTS A total of 56 upregulated and 8 downregulated DEGs were identified. The GO analysis results were significantly enriched in cell-cycle arrest, regulation of transcription, DNA-dependent, protein amino acid phosphorylation, cell cycle, and apoptosis. The KEGG pathway analysis showed that DEGs were enriched in MAPK signaling pathway, ErbB signaling pathway, and p53 signaling pathway. JUN, EGR1, MYC, and CDKN1A were identified as hub genes in PPI networks. The genetic alteration of hub genes was mainly concentrated in amplification. TP53, NDRG1, and MAPK15 were found in neighboring genes networks. Altered genes had worse overall survival and disease-free survival than unaltered genes. The expressions of EGR1, MYC, and CDKN1A were significantly increased, but expression of JUN was not, in the Roessler Liver datasets. CONCLUSIONS We found that JUN, EGR1, MYC, and CDKN1A might be used as diagnostic and therapeutic molecular biomarkers and broaden our understanding of the molecular mechanisms of HCC.
Collapse
|
9
|
Rump K, Adamzik M. Function of aquaporins in sepsis: a systematic review. Cell Biosci 2018; 8:10. [PMID: 29449936 PMCID: PMC5807818 DOI: 10.1186/s13578-018-0211-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 02/02/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Sepsis is a common cause of death in intensive care units worldwide. Due to the high complexity of this immunological syndrome development of novel therapeutic strategies is urgent. Promising drug targets or biomarkers may depict aquaporins (AQPs) as they regulate crucial key mechanisms of sepsis. MAIN BODY Here we report on base of the current literature that several AQPs are involved in different physiological processes of sepsis. In immune system mainly AQPs 3, 5 and 9 seem to be important, as they regulate the migration of different immune cells. Several studies showed that AQP3 is essential for T cell function and macrophage migration and that AQP5 and AQP9 regulate neutrophil cell migration and impact sepsis survival. Additionally, to the function in immune system AQPs 1 and 5 play a role in sepsis induced lung injury and their downregulation after inflammatory stimuli impair lung injury. By contrast, AQP4 expression is up-regulated during brain inflammation and aggravates brain edema in sepsis. In kidney AQP2 expression is downregulated during sepsis and can cause renal failure. Some studies also suggest a role of AQP1 in cardiac function. CONCLUSION In conclusion, AQPs are involved in many physiological dysfunctions in sepsis and their expressions are differently regulated. Additional research on the regulatory mechanisms of aquaporins may identify potential therapeutic targets.
Collapse
Affiliation(s)
- Katharina Rump
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum-Langendreer, Ruhr-Universität Bochum, In der Schornau 23-25, 45882 Bochum, Germany
| | - Michael Adamzik
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum-Langendreer, Ruhr-Universität Bochum, In der Schornau 23-25, 45882 Bochum, Germany
| |
Collapse
|