1
|
Chauhan SS, Casillas AL, Vizzerra AD, Liou H, Clements AN, Flores CE, Prevost CT, Kashatus DF, Snider AJ, Snider JM, Warfel NA. PIM1 drives lipid droplet accumulation to promote proliferation and survival in prostate cancer. Oncogene 2024; 43:406-419. [PMID: 38097734 PMCID: PMC10837079 DOI: 10.1038/s41388-023-02914-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 02/04/2024]
Abstract
Lipid droplets (LDs) are dynamic organelles with a neutral lipid core surrounded by a phospholipid monolayer. Solid tumors exhibit LD accumulation, and it is believed that LDs promote cell survival by providing an energy source during energy deprivation. However, the precise mechanisms controlling LD accumulation and utilization in prostate cancer are not well known. Here, we show peroxisome proliferator-activated receptor α (PPARα) acts downstream of PIM1 kinase to accelerate LD accumulation and promote cell proliferation in prostate cancer. Mechanistically, PIM1 inactivates glycogen synthase kinase 3 beta (GSK3β) via serine 9 phosphorylation. GSK3β inhibition stabilizes PPARα and enhances the transcription of genes linked to peroxisomal biogenesis (PEX3 and PEX5) and LD growth (Tip47). The effects of PIM1 on LD accumulation are abrogated with GW6471, a specific inhibitor for PPARα. Notably, LD accumulation downstream of PIM1 provides a significant survival advantage for prostate cancer cells during nutrient stress, such as glucose depletion. Inhibiting PIM reduces LD accumulation in vivo alongside slow tumor growth and proliferation. Furthermore, TKO mice, lacking PIM isoforms, exhibit suppression in circulating triglycerides. Overall, our findings establish PIM1 as an important regulator of LD accumulation through GSK3β-PPARα signaling axis to promote cell proliferation and survival during nutrient stress.
Collapse
Affiliation(s)
- Shailender S Chauhan
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, 85724, USA.
| | - Andrea L Casillas
- Cancer Biology Graduate Program, University of Arizona, Tucson, AZ, 85721, USA
| | - Andres D Vizzerra
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Hope Liou
- Cancer Biology Graduate Program, University of Arizona, Tucson, AZ, 85721, USA
| | - Amber N Clements
- Cancer Biology Graduate Program, University of Arizona, Tucson, AZ, 85721, USA
| | - Caitlyn E Flores
- Cancer Biology Graduate Program, University of Arizona, Tucson, AZ, 85721, USA
| | - Christopher T Prevost
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - David F Kashatus
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Ashley J Snider
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Justin M Snider
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Noel A Warfel
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, 85724, USA.
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, 85724, USA.
| |
Collapse
|
2
|
Shang G, Han L, Wang Z, Song M, Wang D, Tan Y, Li Y, Li Y, Zhang W, Zhong M. Pim1 knockout alleviates sarcopenia in aging mice via reducing adipogenic differentiation of PDGFRα + mesenchymal progenitors. J Cachexia Sarcopenia Muscle 2021; 12:1741-1756. [PMID: 34435457 PMCID: PMC8718082 DOI: 10.1002/jcsm.12770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/01/2021] [Accepted: 07/10/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Sarcopenia widely exists in elderly people and triggers numerous age-related events. The essential pathologic change lies in the increased intramuscular adipose tissue after aging with no exception to non-obese objects. Pim1 appears to be associated with adipogenic differentiation in recent studies, inspiring us to explore whether it regulates adipogenesis in aging muscles and affects sarcopenia. METHODS Wild-type and Pim1 knockout C57/BL6J mice were randomized into young and old groups. Histo-pathological and molecular biological methods were applied to assess the intramuscular adipose tissue content, the atrophy and regeneration, and the expressions of Pim1 and adipogenic transcription factors. PDGFRα+ mesenchymal progenitors were separated and their replicative aging model were established. Different time of adipogenic induction and different amounts of Pim1 inhibitor were applied, after which the adipogenic potency were evaluated. The expressions of Pim1 and adipogenic transcription factors were measured through western blotting. RESULTS The aging mice demonstrated decreased forelimb grip strength (P = 0.0003), hanging impulse (P < 0.0001), exhaustive running time (P < 0.0001), tetanic force (P = 0.0298), lean mass (P = 0.0008), and percentage of gastrocnemius weight in body weight (P < 0.0001), which were improved by Pim1 knockout (P = 0.0015, P = 0.0222, P < 0.0001, P = 0.0444, P = 0.0004, and P = 0.0003, respectively). To elucidate the mechanisms, analyses showed that Pim1 knockout decreased the fat mass (P = 0.0005) and reduced the intramuscular adipose tissue content (P = 0.0008) by inhibiting the C/EBPδ pathway (P = 0.0067) in aging mice, resulting in increased cross-sectional area of all and fast muscle fibres (P = 0.0017 and 0.0024 respectively), decreased levels of MuRF 1 and atrogin 1 (P = 0.0001 and 0.0329 respectively), and decreased content of Pax7 at the basal state (P = 0.0055). In vitro, senescent PDGFRα+ mesenchymal progenitors showed significantly increased the intracellular adipose tissue content (OD510) compared with young cells after 6 days of adipogenic induction (P < 0.0001). The Pim1 expression was elevated during adipogenic differentiation, and Pim1 inhibition significantly reduced the OD510 in senescent cells (P = 0.0040) by inhibiting the C/EBPδ pathway (P = 0.0047). CONCLUSIONS Pim1 knockout exerted protective effects in sarcopenia by inhibiting the adipogenic differentiation of PDGFRα+ mesenchymal progenitors induced by C/EBPδ activation and thus reducing the intramuscular adipose tissue content in aging mice. These results provide a potential target for the treatment of sarcopenia.
Collapse
Affiliation(s)
- Guo‐kai Shang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Lu Han
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Department of General Practice, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Zhi‐hao Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of MedicineShandong University; Shandong key Laboratory of Cardiovascular ProteomicsJinanShandongChina
| | - Ming Song
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Di Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Yan‐min Tan
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Yi‐hui Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Yu‐lin Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Wei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Ming Zhong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| |
Collapse
|
3
|
Jakkawanpitak C, Inafuku M, Oku H, Hutadilok-Towatana N, Bunkrongcheap R, Sermwittayawong N, Aiemchareon P, Sermwittayawong D. Mechanism of the fungal-like particles in the inhibition of adipogenesis in 3T3-L1 adipocytes. Sci Rep 2021; 11:18869. [PMID: 34552185 PMCID: PMC8458348 DOI: 10.1038/s41598-021-98385-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023] Open
Abstract
The dynamic ability of adipocytes in adipose tissue to store lipid in response to changes in the nutritional input and inflammatory elicitors has a major impact on human health. Previously, we established laminarin-coated beads or LCB as an inflammatory elicitor for adipocytes. However, it was not clear whether LCB inhibits lipid accumulation in adipocytes. Here, we show that LCB acts in the early stage of adipogenesis through both interleukin-1 receptor-associated kinases (IRAK) and spleen tyrosine kinase (SYK) pathways, resulting in the activation of the AMP-activated protein kinase (AMPK) and nuclear factor-κB (NF-κB) complexes, which subsequently cause cell cycle arrest, downregulation of the key transcription factors and enzymes responsible for adipogenesis, inhibition of adipogenesis, and stimulation of an inflammatory response. While LCB could effectively block lipid accumulation during the early stage of adipogenesis, it could stimulate an inflammatory response at any stage of differentiation. Additionally, our results raise a possibility that toll-like receptor 2 (TLR2) and C-type lectin domain family 7 member A (CLEC7A/Dectin-1) might be potential β-glucan receptors on the fat cells. Together, we present the mechanism of LCB, as fungal-like particles, that elicits an inflammatory response and inhibits adipogenesis at the early stage of differentiation.
Collapse
Affiliation(s)
- Chanawee Jakkawanpitak
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Masashi Inafuku
- Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Hirosuke Oku
- Molecular Biotechnology Group, Center of Molecular Biosciences, Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Nongporn Hutadilok-Towatana
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Ruthaiwan Bunkrongcheap
- College of Innovation and Management, Songkhla Rajabhat University, Muang District, Songkhla, 90000, Thailand
| | - Natthawan Sermwittayawong
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Piyapat Aiemchareon
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
- Functional Food and Nutrition Program, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Decha Sermwittayawong
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand.
| |
Collapse
|
4
|
Zhang S, Yan L, Kim SM. Vanadium-protein complex inhibits human adipocyte differentiation through the activation of β-catenin and LKB1/AMPK signaling pathway. PLoS One 2020; 15:e0239547. [PMID: 32970728 PMCID: PMC7514027 DOI: 10.1371/journal.pone.0239547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/09/2020] [Indexed: 01/03/2023] Open
Abstract
Obesity is a common disease over the world and is tightly associated with diabetes mellitus, cardiovascular and cancer disease. Although our previous study showed that the synthetic vanadium-protein (V-P) complex had a better effect on antioxidant and antidiabetic, the relative molecular mechanisms are still entirely unknown. Hence, we investigated the effect of the synthetic V-P complex on adipocyte differentiation (adipogenesis) using human preadipocytes to clarify its molecular mechanisms of action. The primary human preadipocytes were cultured with and without V-P complex during adipocyte differentiation. The cell proliferation, lipid accumulation, and the protein expression of transcription factors and related enzymes were determined for the differentiated human preadipocytes. In this study, the 20 μg/mL of V-P complex reduced the lipid and triglyceride (TG) content by 74.47 and 57.39% (p < 0.05), respectively, and down-regulated the protein expressions of peroxisome proliferator-activated receptor-γ (PPARγ), CCAAT/enhancer-binding protein alpha (C/EBPα), sterol regulatory element-binding protein 1 (SREBP-1) and fatty acid synthase (FAS). Additionally, the V-P complex significantly up-regulated the protein levels of total β-catenin (t-β-catenin), nuclear β-catenin (n-β-catenin), phosphorylated adenosine monophosphate-activated protein kinase alpha (p-AMPKα) and liver kinase B1 (p-LKB1). These showed that the inhibitory effect of V-P complex on human adipogenesis was mediated by activating Wnt/β-catenin and LKB1/AMPK-dependent signaling pathway. Therefore, the synthetic V-P complex could be considered as a candidate for prevention and treatment of obesity.
Collapse
Affiliation(s)
- Shuang Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, People’s Republic of China
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon-do, Republic of Korea
| | - Lei Yan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, People’s Republic of China
| | - Sang Moo Kim
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon-do, Republic of Korea
- * E-mail:
| |
Collapse
|
5
|
PIM1 kinase promotes cell proliferation, metastasis and tumor growth of lung adenocarcinoma by potentiating the c-MET signaling pathway. Cancer Lett 2018; 444:116-126. [PMID: 30583073 DOI: 10.1016/j.canlet.2018.12.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/19/2018] [Accepted: 12/07/2018] [Indexed: 12/18/2022]
Abstract
The proto-oncogene PIM1 plays essential roles in proliferation, survival, metastasis and drug resistance in hematopoietic and solid tumors. Although PIM1 has been shown to be associated with lymph node metastasis and poor prognosis in non-small cell lung cancer, its underlying molecular mechanisms in this context are still unclear. Here we show that PIM1 is frequently overexpressed in lung adenocarcinomas, and its expression level is associated with c-MET expression and poor clinical outcome. We further demonstrate that PIM1 may regulate c-MET expression via phosphorylation of eukaryotic translation initiation factor 4B (eIF4B) on S406. Depletion of PIM1 decreased cell proliferation, migration, invasion and colony formation in vitro, as well as reduced tumor growth in vivo. And these effects were partially abrogated by restoring of c-MET expression. Our study implicates a promising therapeutic approach in lung adenocarcinoma patients with PIM1 and c-MET overexpression.
Collapse
|
6
|
Park YK, Obiang-Obounou BW, Lee KB, Choi JS, Jang BC. AZD1208, a pan-Pim kinase inhibitor, inhibits adipogenesis and induces lipolysis in 3T3-L1 adipocytes. J Cell Mol Med 2018; 22:2488-2497. [PMID: 29441719 PMCID: PMC5867077 DOI: 10.1111/jcmm.13559] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 01/06/2018] [Indexed: 01/14/2023] Open
Abstract
The proviral integration moloney murine leukaemia virus (Pim) kinases, consisting of Pim-1, Pim-2 and Pim-3, are involved in the control of cell growth, metabolism and differentiation. Pim kinases are emerging as important mediators of adipocyte differentiation. AZD1208 is a pan-Pim kinase inhibitor and is known for its anti-cancer activity. In this study, we investigated the effect of AZD1208 on adipogenesis and lipolysis in 3T3-L1 cells, a murine preadipocyte cell line. AZD1208 markedly suppressed lipid accumulation and reduced triglyceride contents in differentiating 3T3-L1 cells, suggesting the drug's anti-adipogenic effect. On mechanistic levels, AZD1208 reduced not only the expressions of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC) and perilipin A but also the phosphorylation of signal transducer and activator of transcription-3 (STAT-3) in differentiating 3T3-L1 cells. Remarkably, AZD1208 increased cAMP-activated protein kinase (AMPK) and LKB-1 phosphorylation while decreased intracellular ATP contents in differentiating 3T3-L1 cells. Furthermore, in differentiated 3T3-L1 adipocytes, AZD1208 also partially promoted lipolysis and enhanced the phosphorylation of hormone-sensitive lipase (HSL), a key lipolytic enzyme, indicating the drug's HSL-dependent lipolysis. In summary, the findings show that AZD1208 has anti-adipogenic and lipolytic effects on 3T3-L1 adipocytes. These effects are mediated by the expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS, ACC, perilipin A, STAT-3, AMPK and HSL.
Collapse
Affiliation(s)
- Yu-Kyoung Park
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu, Korea
| | | | - Kyung-Bok Lee
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Daejeon, Korea
| | - Jong-Soon Choi
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Daejeon, Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Korea
| | - Byeong-Churl Jang
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu, Korea
| |
Collapse
|
7
|
Liu J, Qu X, Shao L, Hu Y, Yu X, Lan P, Guo Q, Han Q, Zhang J, Zhang C. Pim-3 enhances melanoma cell migration and invasion by promoting STAT3 phosphorylation. Cancer Biol Ther 2018; 19:160-168. [PMID: 29370558 DOI: 10.1080/15384047.2017.1414756] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Melanoma is the deadliest form of commonly encountered skin cancer, and has fast propagating and highly invasive characteristics. Pim-3, a highly expressed oncogene in melanoma, is a highly conserved serine/threonine kinase with various biological activities, such as proliferation-accelerating and anti-apoptosis effects on cancer progression. However, whether Pim-3 regulates melanoma metastasis has not been determined. Here, we constructed a Pim-3-silencing short hairpin RNA (sh-Pim-3), a TLR7-stimulating ssRNA and a dual-function vector containing a sh-Pim-3 and a ssRNA, and transfected them into the B16F10 melanoma cell line to investigate the effects of Pim-3 on migration and invasion in melanoma. We found that sh-Pim-3 inhibited B16F10 cell migration and invasion in vitro. In a tumor-bearing mouse model, sh-Pim-3 significantly downregulated pulmonary metastasis of B16F10 melanoma cell in vivo. Mechanistically, sh-Pim-3 inhibited metastasis by regulating the expression of genes related to epithelial-mesenchymal transition (EMT). Further study revealed that by promoting the phosphorylation of STAT3 (signal transducer and activator of transcription 3), Pim-3 induced the expression of Slug, Snail, and ZEB1, which enhanced EMT-related changes and induced melanoma migration and invasion. Our study suggests that Pim-3 is a potential effective target for melanoma therapy.
Collapse
Affiliation(s)
- Jing Liu
- a Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University , Jinan , Shandong , China
| | - Xinyu Qu
- a Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University , Jinan , Shandong , China
| | - Liwei Shao
- a Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University , Jinan , Shandong , China
| | - Yuan Hu
- a Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University , Jinan , Shandong , China
| | - Xin Yu
- a Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University , Jinan , Shandong , China
| | - Peixiang Lan
- a Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University , Jinan , Shandong , China
| | - Qie Guo
- a Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University , Jinan , Shandong , China
| | - Qiuju Han
- a Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University , Jinan , Shandong , China
| | - Jian Zhang
- a Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University , Jinan , Shandong , China
| | - Cai Zhang
- a Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University , Jinan , Shandong , China
| |
Collapse
|