1
|
Mafi A, Khoshnazar SM, Shahpar A, Nabavi N, Hedayati N, Alimohammadi M, Hashemi M, Taheriazam A, Farahani N. Mechanistic insights into circRNA-mediated regulation of PI3K signaling pathway in glioma progression. Pathol Res Pract 2024; 260:155442. [PMID: 38991456 DOI: 10.1016/j.prp.2024.155442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/22/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
Circular RNAs (CircRNAs) are non-coding RNAs (ncRNAs) characterized by a stable circular structure that regulates gene expression at both transcriptional and post-transcriptional levels. They play diverse roles, including protein interactions, DNA methylation modification, protein-coding potential, pseudogene creation, and miRNA sponging, all of which influence various physiological processes. CircRNAs are often highly expressed in brain tissues, and their levels vary with neural development, suggesting their significance in nervous system diseases such as gliomas. Research has shown that circRNA expression related to the PI3K pathway correlates with various clinical features of gliomas. There is an interact between circRNAs and the PI3K pathway to regulate glioma cell processes such as proliferation, differentiation, apoptosis, inflammation, angiogenesis, and treatment resistance. Additionally, PI3K pathway-associated circRNAs hold potential as biomarkers for cancer diagnosis, prognosis, and treatment. In this study, we reviewed the latest advances in the expression and cellular roles of PI3K-mediated circRNAs and their connections to glioma carcinogenesis and progression. We also highlighted the significance of circRNAs as diagnostic and prognostic biomarkers and therapeutic targets in glioma.
Collapse
Affiliation(s)
- Alireza Mafi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Amirhossein Shahpar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, Canada
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran.
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
2
|
Zhong Y, Yang S, Wang X, Sun C. Research progress of ZIC5 for tumor metastasis. Biochem Soc Trans 2024; 52:1363-1372. [PMID: 38747731 DOI: 10.1042/bst20231263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 06/27/2024]
Abstract
The zinc finger protein of the cerebellum (ZIC) family comprises five members (ZIC1-5), homologous with the odd-paired (OPA) gene in Drosophila melanogila. These transcription factors contain five Cys2His zinc finger domains, constituting one of the most abundant transcription factor families in human cells. ZIC proteins significantly contribute to transcriptional regulation and chromatin remodeling. As a member of the ZIC family, ZIC5 is essential for animal growth and development. Numerous studies have investigated the connection between ZIC proteins and cancer as well as tumor metastases in recent years. Many studies have found that within tumor tissues, the transcription and translation processes increase the expression of ZIC5 which is linked to tumor aggressiveness. This review aims to provide an objective summary of the impact of ZIC5 on tumor metastasis and consider the potential application of ZIC5 targets in both tumor therapy and the early detection of cancer.
Collapse
Affiliation(s)
- Yiming Zhong
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shangzhi Yang
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xianli Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chuanyu Sun
- Department of Urology, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai 200040, China
| |
Collapse
|
3
|
Ma X, Zhao LL, Yu YC, Cheng Y. Engrailed: Pathological and physiological effects of a multifunctional developmental gene. Genesis 2024; 62:e23557. [PMID: 37830136 DOI: 10.1002/dvg.23557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023]
Abstract
Engrailed-1 (EN1) is a developmental gene that encodes En1, a highly conserved transcription factor involved in regionalization during early embryogenesis and in the later maintenance of normal neurons. After birth, EN1 still plays a role in the development and physiology of the body; for example, it exerts a protective effect on midbrain dopaminergic (mDA) neurons, and loss of EN1 causes mDA neurons in the ventral midbrain to gradually die approximately 6 weeks after birth, resulting in motor and nonmotor symptoms similar to those observed in Parkinson's disease. Notably, EN1 has been identified as a possible susceptibility gene for idiopathic Parkinson's disease in humans. EN1 is involved in the processes of wound-healing scar production and tissue and organ fibrosis. Additionally, EN1 can lead to tumorigenesis and thus provides a target for the treatment of some tumors. In this review, we summarize the effects of EN1 on embryonic organ development, describe the consequences of the deletion or overexpression of the EN1 gene, and discuss the pathways in which EN1 is involved. We hope to clarify the role of EN1 as a developmental gene and present potential therapeutic targets for diseases involving the EN1 gene.
Collapse
Affiliation(s)
- Xiang Ma
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Liang-Liang Zhao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Yi-Chun Yu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Yan Cheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| |
Collapse
|
4
|
Jia Q, Song J, Xu T, Liu J, Chai J, Yang Y, Li L, Li M, Yang X. ZIC5 promotes aggressiveness and cancer stemness in cervical squamous cell carcinoma. Pathol Res Pract 2023; 241:154268. [PMID: 36495760 DOI: 10.1016/j.prp.2022.154268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/27/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cervical cancer is one of the major malignancies causing morbidity and mortality in women in developing countries. ZIC5 has been found to be associated with a variety of cancers, yet the expression and molecular function of ZIC5 in cervical squamous cell carcinoma (CESC) is unknown. METHODS We examined the expression of ZIC5 in tumors and normal tissues of CESC patients using immunohistochemistry, immunoblotting and fluorescent quantitative PCR, and used statistical methods to explore its relationship with clinical manifestations. Next, we constructed ZIC5 knockdown and overexpression CESC cell lines to observe the effect of ZIC5 on the proliferation and metastasis of CESC cells. Finally, we applied a nude mouse xenograft tumor model to observe the effect of ZIC5 on tumorigenesis in vivo. RESULTS Our results showed that the expression of ZIC5 was higher in cancer tissues than in normal tissues. Prognostic analysis showed that ZIC5 expression level was an independent prognostic factor in CESC patients, and the results of Transwell, CCK-8 and wound healing assays confirmed that overexpression of ZIC5 could promote the proliferation and migration of CESC cells. A nude mouse xenograft tumor model showed that knockdown of ZIC5 inhibited tumor growth in vivo. Database, immunoblotting assay and in vitro sphere-forming assay confirmed that ZIC5 could promote the stemness of CESC cells. CONCLUSION ZIC5 is a factor that indicates a poor prognosis of CESC patients and promotes stemness in CESC cells. ZIC5 may be a potential biomarker and therapeutic target for CESC patients.
Collapse
Affiliation(s)
- Qingge Jia
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Junyang Song
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Tianqi Xu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jin Liu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jia Chai
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yanru Yang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Lingfei Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Mingyang Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Xinyuan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
5
|
Tyrrell VJ, Ali F, Boeglin WE, Andrews R, Burston J, Birchall JC, Ingram JR, Murphy RC, Piguet V, Brash AR, O'Donnell VB, Thomas CP. Lipidomic and transcriptional analysis of the linoleoyl-omega-hydroxyceramide biosynthetic pathway in human psoriatic lesions. J Lipid Res 2021; 62:100094. [PMID: 34171322 PMCID: PMC8326207 DOI: 10.1016/j.jlr.2021.100094] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/27/2022] Open
Abstract
A complex assembly of lipids including fatty acids, cholesterol, and ceramides is vital to the integrity of the mammalian epidermal barrier. The formation of this barrier requires oxidation of the substrate fatty acid, linoleic acid (LA), which is initiated by the enzyme 12R-lipoxygenase (LOX). In the epidermis, unoxidized LA is primarily found in long-chain acylceramides termed esterified omega-hydroxy sphingosine (EOS)/phytosphingosine/hydroxysphingosine (collectively EOx). The precise structure and localization of LOX-oxidized EOx in the human epidermis is unknown, as is their regulation in diseases such as psoriasis, one of the most common inflammatory diseases affecting the skin. Here, using precursor LC/MS/MS, we characterized multiple intermediates of EOx, including 9-HODE, 9,10-epoxy-13-HOME, and 9,10,13-TriHOME, in healthy human epidermis likely to be formed via the epidermal LOX pathways. The top layers of the skin contained more LA, 9-HODE, and 9,10,13-TriHOME EOSs, whereas 9,10-epoxy-13-HOME EOS was more prevalent deeper in the stratum corneum. In psoriatic lesions, levels of native EOx and free HODEs and HOMEs were significantly elevated, whereas oxidized species were generally reduced. A transcriptional network analysis of human psoriatic lesions identified significantly elevated expression of the entire biosynthetic/metabolic pathway for oxygenated ceramides, suggesting a regulatory function for EOx lipids in reconstituting epidermal integrity. The role of these new lipids in progression or resolution of psoriasis is currently unknown. We also discovered the central coordinated role of the zinc finger protein transcription factor, ZIC1, in driving the phenotype of this disease. In summary, long-chain oxygenated ceramide metabolism is dysregulated at the lipidomic level in psoriasis, likely driven by the transcriptional differences also observed, and we identified ZIC1 as a potential regulatory target for future therapeutic interventions.
Collapse
Affiliation(s)
- Victoria J Tyrrell
- Institute of Infection and Immunity and Systems Immunity Research Institute, School of Medicine, Cardiff University, Nashville, TN, USA
| | - Faraz Ali
- Department of Dermatology and Wound Healing, University Hospital of Wales, Nashville, TN, USA
| | - William E Boeglin
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Robert Andrews
- Institute of Infection and Immunity and Systems Immunity Research Institute, School of Medicine, Cardiff University, Nashville, TN, USA
| | - James Burston
- Institute of Infection and Immunity and Systems Immunity Research Institute, School of Medicine, Cardiff University, Nashville, TN, USA
| | - James C Birchall
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Aurora, CO, USA
| | - John R Ingram
- Department of Dermatology and Wound Healing, University Hospital of Wales, Nashville, TN, USA
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado Denver, Aurora, CO, USA
| | - Vincent Piguet
- Department of Dermatology and Wound Healing, University Hospital of Wales, Nashville, TN, USA; Division of Dermatology, Department of Medicine, University of Toronto, Toronto, ON, Canada; Division of Dermatology, Department of Medicine, Women's College Hospital, Toronto, ON, Canada
| | - Alan R Brash
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Valerie B O'Donnell
- Institute of Infection and Immunity and Systems Immunity Research Institute, School of Medicine, Cardiff University, Nashville, TN, USA
| | - Christopher P Thomas
- Institute of Infection and Immunity and Systems Immunity Research Institute, School of Medicine, Cardiff University, Nashville, TN, USA; School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Aurora, CO, USA.
| |
Collapse
|
6
|
Hou Y, Chen K, Liao R, Li Y, Yang H, Gong J. LINC01419-mediated epigenetic silencing of ZIC1 promotes metastasis in hepatocellular carcinoma through the PI3K/Akt signaling pathway. J Transl Med 2021; 101:570-587. [PMID: 33772101 DOI: 10.1038/s41374-021-00539-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a rapidly growing tumor characterized by a high potential for vascular invasion and metastasis. The purpose of our study is to explore the regulation mechanism of long noncoding RNA (lncRNA) LINC01419 on cell-cycle distribution and metastasis in hepatocellular carcinoma (HCC) by regulating zinc finger of the cerebellum (ZIC1) through PI3K/Akt signaling pathway. Bioinformatics analysis and dual-luciferase reporter assay were used to analyze LINC01419 and related genes in HCC, and their expression in HCC tissues and adjacent normal tissues were determined by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot. Then, HCC cell lines were subjected to the construction of LINC01419/ZIC1 overexpression/knockdown cells utilizing lentiviral vectors. RIP and ChIP assays were applied to identify the LINC01419-binding protein. BSP and MSP assays were used to determine gene methylation. According to the results, LINC01419 was highly expressed in HCC tissues and cells, while ZIC1 was poorly expressed. LINC01419 targeted and downregulated ZIC1 expression. Furthermore, LINC01419 increased the methylation of ZIC1 promoter and repressed ZIC1 expression. PI3K/Akt signaling pathway was activated by LINC01419 overexpression and ZIC1 knockdown, under which conditions, the HCC cell self-renewal and proliferation were promoted while cell apoptosis was attenuated, accompanied by accelerated formation and metastasis of xenografted tumors in mice. In conclusion, LINC01419 enhances the methylation of ZIC1 promoter, inhibits ZIC1 expression, and activates the PI3K/Akt signaling pathway, thereby enhancing the malignant phenotypes of HCC cells in vitro as well as tumor formation and metastasis in vivo.
Collapse
Affiliation(s)
- Yifu Hou
- Organ Transplant Center and Third Department of Hepatobiliary and Pancreatic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, PR China
| | - Kai Chen
- Organ Transplant Center and Third Department of Hepatobiliary and Pancreatic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, PR China
| | - Rui Liao
- Department of Hepatobiliary, Southwest Medical University, Luzhou, PR China
| | - Youzan Li
- Department of Hepatobiliary, Southwest Medical University, Luzhou, PR China
| | - Hongji Yang
- Organ Transplant Center and Third Department of Hepatobiliary and Pancreatic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China.
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, PR China.
| | - Jun Gong
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, PR China.
- Second Department of Hepatobiliary and Pancreatic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China.
| |
Collapse
|
7
|
Correlation of zinc finger protein 2, a prognostic biomarker, with immune infiltrates in liver cancer. Biosci Rep 2021; 41:227574. [PMID: 33439969 PMCID: PMC7823187 DOI: 10.1042/bsr20203115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/25/2020] [Accepted: 01/12/2021] [Indexed: 12/26/2022] Open
Abstract
Purpose: The expression and clinical value of zinc finger protein 2 gene (ZIC2) in hepatocellular carcinoma (HCC) were analyzed by mining gene information from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Methods: Gene chip data sets were retrieved from GEO and TCGA and screened for differentially expressed genes in HCC. Gene expression profile interaction analysis (GEPIA) and Kaplan–Meier curves were used to analyze the relationship between differentially expressed genes (DEGs) and survival and prognosis in patients with HCC. Moreover, the Genecards database was used to extract ZIC2-related proteins and to analyze the physiological process of protein enrichment. Furthermore, the relationships between ZIC2 gene and tumor cell immune invasion and that between immune cell infiltration and the 5-year survival rate were studied using the tumor immune evaluation resource (TIMER) database. Results: Datasets from GEO and TCGA revealed that ZIC2 was differentially expressed in HCC tissues and normal tissues (P<0.05). High ZIC2 expression was associated with overall survival (OS) and progress-free survival in HCC patients. Overall, 25 ZIC2 related proteins, including Gli3, PRKDC, and rnf180 were identified and protein enrichment analysis indicated these were associated with four types of cell components, six types of cell functions, and eight types of biological processes. ZIC2 was positively correlated with immune infiltration cells in patients with HCC, and higher expression of ZIC2 mRNA CD4+T cells is associated with a better 5-year survival. Conclusion: ZIC2 gene may be used as an immune response marker in liver cancer to predict the prognosis of HCC.
Collapse
|
8
|
Ahmed JN, Diamand KEM, Bellchambers HM, Arkell RM. Systematized reporter assays reveal ZIC protein regulatory abilities are Subclass-specific and dependent upon transcription factor binding site context. Sci Rep 2020; 10:13130. [PMID: 32753700 PMCID: PMC7403390 DOI: 10.1038/s41598-020-69917-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/21/2020] [Indexed: 11/09/2022] Open
Abstract
The ZIC proteins are a family of transcription regulators with a well-defined zinc finger DNA-binding domain and there is evidence that they elicit functional DNA binding at a ZIC DNA binding site. Little is known, however, regarding domains within ZIC proteins that confer trans-activation or -repression. To address this question, a new cell-based trans-activation assay system suitable for ZIC proteins in HEK293T cells was constructed. This identified two previously unannotated evolutionarily conserved regions of ZIC3 that are necessary for trans-activation. These domains are found in all Subclass A ZIC proteins, but not in the Subclass B proteins. Additionally, the Subclass B proteins fail to elicit functional binding at a multimerised ZIC DNA binding site. All ZIC proteins, however, exhibit functional binding when the ZIC DNA binding site is embedded in a multiple transcription factor locus derived from ZIC target genes in the mouse genome. This ability is due to several domains, some of which are found in all ZIC proteins, that exhibit context dependent trans-activation or -repression activity. This knowledge is valuable for assessing the likely pathogenicity of variant ZIC proteins associated with human disorders and for determining factors that influence functional transcription factor binding.
Collapse
Affiliation(s)
- Jehangir N Ahmed
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Koula E M Diamand
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Helen M Bellchambers
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ruth M Arkell
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
9
|
Chen D, Fan Y, Wan F. LncRNA IGBP1-AS1/miR-24-1/ZIC3 loop regulates the proliferation and invasion ability in breast cancer. Cancer Cell Int 2020; 20:153. [PMID: 32390766 PMCID: PMC7203854 DOI: 10.1186/s12935-020-01214-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 04/16/2020] [Indexed: 01/27/2023] Open
Abstract
Background Breast cancer (BC) is one of the malignant solid tumors with the highest morbidity in the world. Currently, the therapeutic outcome of different types of treatment can be unsatisfactory. Novel lncRNA biomarkers in BC remains to be further explored. Methods Different expression of lncRNAs among BC tissues and adjacent normal tissues were identified with microarray analyses. A series of in vivo and in vitro gain-of-function laboratory procedures were conducted to study the biological functions of IGBP1-AS1. The prognostic effects on IGBP1-AS1 survival were evaluated by using in situ hybridization and survival analysis. In addition, other experiments including RNA pull down analysis, RNA immunoprecipitation, luciferase reporter assays, and chromatin immunoprecipitation as well as validating assays conducted in vivo were applied to identify the target and regulatory mechanisms of IGBP1-AS1. Results Significant down-regulation of IGBP1-AS1 was discovered in the cell lines and tissues of BC. With respect to its biological function, overexpression of IGBP1-AS1 had inhibitory effects on the invasion and proliferation of BC cells in vivo as well as in vitro. Analysis of the samples obtained from BC patients indicated a positive effect of IGBP1-AS1 on survival outcomes. LncRNA IGBP1-AS1/miR-24-1/ZIC3 axis as a loop can regulate the proliferation and invasion of BC cells. Conclusions IGBP1-AS1 could have inhibitory impact on the invasion and proliferation of BC and may serve as a promising biomarker for BC.
Collapse
Affiliation(s)
- Deqin Chen
- Department of Surgery, The Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang China
| | - Yangfan Fan
- Department of Surgery, The Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang China
| | - Fang Wan
- Department of Surgery, The Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang China
| |
Collapse
|
10
|
Whole-Organ Genomic Characterization of Mucosal Field Effects Initiating Bladder Carcinogenesis. Cell Rep 2020; 26:2241-2256.e4. [PMID: 30784602 DOI: 10.1016/j.celrep.2019.01.095] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 12/12/2018] [Accepted: 01/25/2019] [Indexed: 12/13/2022] Open
Abstract
We used whole-organ mapping to study the locoregional molecular changes in a human bladder containing multifocal cancer. Widespread DNA methylation changes were identified in the entire mucosa, representing the initial field effect. The field effect was associated with subclonal low-allele frequency mutations and a small number of DNA copy alterations. A founder mutation in the RNA splicing gene, ACIN1, was identified in normal mucosa and expanded clonally with an additional 21 mutations in progression to carcinoma. The patterns of mutations and copy number changes in carcinoma in situ and foci of carcinoma were almost identical, confirming their clonal origins. The pathways affected by the DNA copy alterations and mutations, including the Kras pathway, were preceded by the field changes in DNA methylation, suggesting that they reinforced mechanisms that had already been initiated by methylation. The results demonstrate that DNA methylation can serve as the initiator of bladder carcinogenesis.
Collapse
|
11
|
Zinc finger of the cerebellum 5 promotes colorectal cancer cell proliferation and cell cycle progression through enhanced CDK1/CDC25c signaling. Arch Med Sci 2019; 17:449-461. [PMID: 33747280 PMCID: PMC7959057 DOI: 10.5114/aoms.2019.89677] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 02/02/2019] [Indexed: 12/14/2022] Open
Abstract
Introduction Colorectal cancer (CRC), mostly caused by external or environmental factors, is the third most common and lethal cancer worldwide. Although a large number of investigations have been carried out to reveal the evolution of CRC, the underlying mechanisms of CRC remain unclear. Material and methods Expression of zinc finger of the cerebellum 5 (ZIC5) in CRC tissues and cell models was measured by qRT-PCR and IHC. Cell transfection was carried out for ZIC5 overexpression or knockdown. The MTT assay was applied to examine the capacity of glioma cell proliferation. Wound healing assay and tumor invasion assay were used to test the capacity of glioma cell migration and invasion respectively. Cell cycle analysis and western blot were used to verify the apoptosis rates of CRC cells upon ZIC5 overexpression or downregulation. A further tumor Xenograft study was used to examine the effects of ZIC5 on tumor malignancy in vivo. Results Cell models using HCT116 and SW620 cells were established to study the ZIC5 function upon ZIC5 overexpression of knockdown. Consistently, we discovered that ZIC5 also significantly increased in Chinese CRC patients. In addition, ZIC5 promoted CRC cell proliferation through increasing the proportion of cells maintained in the S phase. ZIC5 overexpression facilitated the capacity of CRC cell migration and invasion. Inhibition of ZIC5 mitigated such malignant effects. Conclusions Collectively, investigations of the ZIC5 in CRC provided a new insight into CRC diagnosis, treatment, prognosis and next-step translational therapeutic developments from bench to clinic.
Collapse
|
12
|
Jiang Z, Zhang Y, Chen X, Wu P, Chen D. Inactivation of the Wnt/β-catenin signaling pathway underlies inhibitory role of microRNA-129-5p in epithelial-mesenchymal transition and angiogenesis of prostate cancer by targeting ZIC2. Cancer Cell Int 2019; 19:271. [PMID: 31649488 PMCID: PMC6805653 DOI: 10.1186/s12935-019-0977-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022] Open
Abstract
Background Prostate cancer (PCa) is a common disease that often occurs among older men and a frequent cause of malignancy associated death in this group. microRNA (miR)-129-5p has been identified as an essential regulator with a significant role in the prognosis of PC. Therefore, this study aimed to investigate roles of miR-129-5p in PCa. Methods Microarray analysis was conducted to identify PCa-related genes. The expression of miR-129-5p and ZIC2 in PCa tissues was investigated. To understand the role of miR-129-5p and ZIC2 in PCa, DU145 cells were transfected with mimic or inhibitor of miR-129-5p, or si-ZIC2 and the expression of Wnt, β-catenin, E-cadherin, vimentin, N-cadherin, vascular endothelial growth factor (VEGF), and CD31, as well as the extent of β-catenin phosphorylation was determined. In addition, cell proliferation, migration, invasion, angiogenesis, apoptosis and tumorigenesis were detected. Results miR-129-5p was poorly expressed and ZIC2 was highly expressed in PCa tissues. Down-regulation of ZIC2 or overexpression of miR-129-5p reduced the expression of ZIC2, Wnt, β-catenin, N-cadherin, vimentin, and β-catenin phosphorylation but increased the expression of E-cadherin. Importantly, miR-129-5p overexpression significantly reduced cell migration, invasion, angiogenesis and tumorigenesis while increasing cell apoptosis. Conclusions The findings of the present study indicated that overexpression of miR-129-5p or silencing of ZIC2 could inhibit epithelial–mesenchymal transition (EMT) and angiogenesis in PCa through blockage of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Zhenming Jiang
- 1Department of Urology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001 Liaoning People's Republic of China
| | - Yuxi Zhang
- 1Department of Urology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001 Liaoning People's Republic of China.,Department of Urology, People's Hospital of Datong Hui and Tu Autonomous County, No. 1, Wenhua Road, Qiaotou Town, Datong Hui and Tu Autonomous County, Xining, 810100 Qinghai People's Republic of China
| | - Xi Chen
- 3Department of Pharmacy, The First Hospital of China Medical University, Shenyang, 110001 People's Republic of China
| | - Pingeng Wu
- 1Department of Urology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001 Liaoning People's Republic of China
| | - Dong Chen
- 4Central Lab, The First Hospital of China Medical University, Shenyang, 110001 People's Republic of China
| |
Collapse
|
13
|
Gu X, Guo XK, Chen BH, Gao XJ, Chen F, Liu Q. Prognostic and clinicopathological value of ZIC1 in patients with cervical squamous cell carcinoma. Oncol Lett 2019; 18:6621-6627. [PMID: 31788119 PMCID: PMC6865731 DOI: 10.3892/ol.2019.11007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/30/2019] [Indexed: 01/05/2023] Open
Abstract
The aim of the present study was to analyze the differences in zinc finger of the cerebellum 1 (ZIC1) expression between cervical cancer tissue, precancer tissue and normal cervical tissue to determine its clinicopathological and prognostic value in cervical squamous cell carcinoma (CSCC). Reverse transcription-quantitative PCR was used to determine the mRNA expression levels of ZIC1 in 569 fresh-frozen biopsy tissues, and immunohistochemistry was performed to detect ZIC1 protein expression in 80 CSCC tissues and 320 cervical intraepithelial neoplasia (CIN) grade III samples. The association of ZIC1 expression with the clinicopathological characteristics of CSCC was then analyzed using Cox regression analysis, and Kaplan-Meier curves were used to analyze the prognostic value. The level of ZIC1 mRNA expression in CSCC was significantly lower compared with normal cervical tissues and CIN I–III tissues (P<0.001). There was a negative correlation between ZIC1 immunoreactivity score (IRS) in CSCC tissue and adjacent noncancerous tissue (R=−0.279; P=0.012); the mean IRS of ZIC1 in CSCC tissue was 5.36±3.48, which was significantly lower compared with the corresponding adjacent noncancerous tissues (11.31±5.68; P<0.001) and CIN III samples (10.42±1.54; P<0.001). In addition, expression of ZIC1 was negatively associated with International Federation of Gynecology and Obstetrics (FIGO) stage (P=0.027) and lymph node metastasis (P<0.001). In Cox regression analysis, ZIC1 expression [hazard ratio (HR), 0.61; 95% confidence interval (CI), 0.40–0.92; P=0.018), FIGO staging (HR, 3.55; 95% CI, 2.35–5.37; P<0.001) and lymph node metastasis (HR, 2.50; 95% CI, 1.62–3.86; P<0.001) were three independent prognostic factors of overall survival. Furthermore, ZIC1 expression was also associated with disease-free survival (P=0.003). These results suggest that ZIC1 expression in CSCC may be lower than in normal cervical tissues or CIN tissues, and high expression of ZIC1 may be negatively associated with FIGO stage and lymph node metastasis. Therefore, ZIC1 may be a promising biomarker for the prognosis of CSCC.
Collapse
Affiliation(s)
- Xing Gu
- Department of Gynecology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Xue-Ke Guo
- Department of Gynecology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Bi-Hui Chen
- Department of Gynecology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu 215300, P.R. China
| | - Xiao-Jiao Gao
- Department of Pathology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Fang Chen
- Department of Pathology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Qin Liu
- Department of Gynecology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| |
Collapse
|
14
|
Liu L, Hu X, Sun D, Wu Y, Zhao Z. ZIC5 facilitates the growth of hepatocellular carcinoma through activating Wnt/β-catenin pathway. Biochem Biophys Res Commun 2018; 503:2173-2179. [DOI: 10.1016/j.bbrc.2018.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023]
|
15
|
ZIC1 acts a tumor suppressor in breast cancer by targeting survivin. Int J Oncol 2018; 53:937-948. [PMID: 29956756 PMCID: PMC6065452 DOI: 10.3892/ijo.2018.4450] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/01/2018] [Indexed: 12/31/2022] Open
Abstract
In this study, we aimed to identify the tumor suppressive roles of zinc finger of the cerebellum 1 (ZIC1) in patients with malignant breast neoplasms and to examine the association between ZIC1 and survivin expression. For this purpose, 140 invasive breast cancer specimens, 1,075 RNA breast cancer samples from The Cancer Genome Atlas (TCGA), 6 human breast cancer cell lines and MCF-10A normal breast epithelial cells were selected in order to compare the expression level of ZIC1 with that of survivin via immunohistochemistry and western blot analysis. Subsequently, the MDA-MB-231 and SK-BR3 cells with a lower ZIC1 expression were transfected with rLV-Zic1-PGK-Puro lentivirus or rLV-ZsGreen-PGK-Puro lentivirus in order to observe any alterations in cell proliferation and apoptosis through MTT assay, colony formation assay, mitochondrial membrane potential assay and flow cytometric analysis, and to analyze the modulation of molecular mechanisms by western blot analysis. In addition, xenograft mouse models were constructed to explore the role of ZIC1 in the growth of implanted tumors. The results revealed that ZIC1 negatively correlated with survivin in tumors and cells, and a higher ZIC1 RNA expression indicated a better overall survival in the 1,075 TCGA RNA breast cancer samples. In vitro, the overexpression of ZIC1 inhibited cell proliferation, reduced mitochondrial membrane potential and promoted the apoptosis of the MDA-MB-231 and SK-BR3 breast cancer cells by inactivating the Akt/mTOR/P70S6K pathway, suppressing survivin expression, modulating the cell cycle, releasing cytochrome c (Cyto-c) into the cytosol and activating caspase proteins. In vivo, an elevated ZIC1 expression suppressed the growth of implanted tumors and downregulated survivin expression in tumors. On the whole, the findings of this study demonstrate that ZIC1 plays a tumor suppressive role in breast cancer, by targeting surviving, significantly downregulating its expression.
Collapse
|
16
|
Han W, Zhang C, Gao XJ, Wang HB, Chen F, Cao F, Hu YW, Ma J, Gu X, Ding HZ. Clinicopathologic and Prognostic Significance of the Zinc Finger of the Cerebellum Family in Invasive Breast Cancer. J Breast Cancer 2018; 21:51-61. [PMID: 29628984 PMCID: PMC5880966 DOI: 10.4048/jbc.2018.21.1.51] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/07/2018] [Indexed: 01/24/2023] Open
Abstract
Purpose Five members of the zinc finger of the cerebellum (ZIC) family-ZIC1, ZIC2, ZIC3, ZIC4, and ZIC5-have been shown to be involved in various carcinomas. Here, we aimed to explore the clinicopathologic and prognostic roles of ZIC family members in invasive breast cancer patients using immunohistochemical analysis, western blotting analysis, and real-time quantitative polymerase chain reaction (RT-qPCR). Methods A total of 241 female invasive breast cancer patients who underwent radical mastectomy between 2009 and 2011 were enrolled. ZIC proteins in 241 pairs of breast tumors and corresponding normal tissues were investigated using immunohistochemistry and the clinicopathologic roles of proteins were analyzed using Pearson's chi-square test. Kaplan-Meier curves and Cox regression analysis were also used to analyze the prognostic value of the ZIC proteins. In addition, 12 pairs of fresh-frozen breast tumors and matched normal tissues were used in the western blotting analysis and RT-qPCR. Results Only ZIC1 expression in normal tissues was obviously higher than that in tumors (p<0.001). On multivariate analysis, ZIC1 expression (in overall survival analysis: hazard ratio [HR], 0.405, 95% confidence interval [CI], 0.233-0.702, p=0.001; in disease-free survival analysis: HR, 0.395, 95% CI, 0.234-0.669, p=0.001) was identified as a prognostic indicator of invasive breast cancer. Conclusion ZIC1, but not the other proteins, was obviously decreased in breast tumors and associated with clinicopathologic factors. Thus, ZIC1 might be a novel indicator to predict the overall and disease-free survival of invasive breast cancer patients.
Collapse
Affiliation(s)
- Wei Han
- Department of General Surgery, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, China
| | - Cong Zhang
- Department of Pharmacy, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Xiao-Jiao Gao
- Department of Pathology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, China
| | - Hua-Bing Wang
- Department of General Surgery, Luan First People's Hospital, Luan, China
| | - Fang Chen
- Department of Pathology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, China
| | - Fang Cao
- Department of General Surgery, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, China
| | - Yong-Wei Hu
- Department of General Surgery, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, China
| | - Jun Ma
- Department of Urinary Surgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Xing Gu
- Department of Gynecology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, China
| | - Hou-Zhong Ding
- Department of General Surgery, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, China
| |
Collapse
|
17
|
Kim YJ, Sung M, Oh E, Vrancken MV, Song JY, Jung K, Choi YL. Engrailed 1 overexpression as a potential prognostic marker in quintuple-negative breast cancer. Cancer Biol Ther 2018; 19:335-345. [PMID: 29333926 PMCID: PMC5902237 DOI: 10.1080/15384047.2018.1423913] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype characterized by poor patient prognosis and for which no targeted therapies are currently available. TNBC can be further categorized as either basal-like (BLBC) or quintuple-negative breast cancer (QNBC). In the present study, we aimed to identify novel molecular therapeutic targets for TNBC by analyzing the mRNA expression of TNBC-related genes in publicly available microarray data sets. We found that Engrailed 1 (EN1) was significantly overexpressed in TNBC. Using breast cancer cell lines, we found that EN1 was more highly expressed in TNBC than in other breast cancer subtypes. EN1 expression was analyzed in 199 TNBC paraffin-embedded tissue samples by immunohistochemistry. EN1 protein expression was positively associated with reduced overall survival (OS) rate in patients with QNBC, but not those with BLBC. The importance of EN1 expression in QNBC cell viability and tumorigenicity was evaluated using the QNBC cell lines, HCC38 and HCC1395. Based on our data, EN1 may promote the proliferation, migration, and multinucleation of QNBC cells, likely via the transcriptional activation of HDAC8, UTP11L, and ZIC3. We also demonstrated that actinomycin D effectively inhibits EN1 activity in QNBC cells. The results of the present study suggest that EN1 activity is highly clinically relevant to the survival prognosis of patients with QNBC and EN1 is a promising potential therapeutic target for future QNBC treatment.
Collapse
Affiliation(s)
- Yu Jin Kim
- a Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul , Korea
| | - Minjung Sung
- a Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul , Korea
| | - Ensel Oh
- b Department of Health Sciences and Technology , SAIHST, Sungkyunkwan University , Seoul , Korea
| | - Michael Van Vrancken
- a Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul , Korea
| | - Ji-Young Song
- a Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul , Korea
| | - Kyungsoo Jung
- a Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul , Korea.,b Department of Health Sciences and Technology , SAIHST, Sungkyunkwan University , Seoul , Korea
| | - Yoon-La Choi
- a Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul , Korea.,b Department of Health Sciences and Technology , SAIHST, Sungkyunkwan University , Seoul , Korea.,c Department of Pathology , Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul , Korea
| |
Collapse
|