1
|
Mamachan M, Sharun K, Banu SA, Muthu S, Pawde AM, Abualigah L, Maiti SK. Mesenchymal stem cells for cartilage regeneration: Insights into molecular mechanism and therapeutic strategies. Tissue Cell 2024; 88:102380. [PMID: 38615643 DOI: 10.1016/j.tice.2024.102380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/15/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
The use of mesenchymal stem cells (MSCs) in cartilage regeneration has gained significant attention in regenerative medicine. This paper reviews the molecular mechanisms underlying MSC-based cartilage regeneration and explores various therapeutic strategies to enhance the efficacy of MSCs in this context. MSCs exhibit multipotent capabilities and can differentiate into various cell lineages under specific microenvironmental cues. Chondrogenic differentiation, a complex process involving signaling pathways, transcription factors, and growth factors, plays a pivotal role in the successful regeneration of cartilage tissue. The chondrogenic differentiation of MSCs is tightly regulated by growth factors and signaling pathways such as TGF-β, BMP, Wnt/β-catenin, RhoA/ROCK, NOTCH, and IHH (Indian hedgehog). Understanding the intricate balance between these pathways is crucial for directing lineage-specific differentiation and preventing undesirable chondrocyte hypertrophy. Additionally, paracrine effects of MSCs, mediated by the secretion of bioactive factors, contribute significantly to immunomodulation, recruitment of endogenous stem cells, and maintenance of chondrocyte phenotype. Pre-treatment strategies utilized to potentiate MSCs, such as hypoxic conditions, low-intensity ultrasound, kartogenin treatment, and gene editing, are also discussed for their potential to enhance MSC survival, differentiation, and paracrine effects. In conclusion, this paper provides a comprehensive overview of the molecular mechanisms involved in MSC-based cartilage regeneration and outlines promising therapeutic strategies. The insights presented contribute to the ongoing efforts in optimizing MSC-based therapies for effective cartilage repair.
Collapse
Affiliation(s)
- Merlin Mamachan
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India; Graduate Institute of Medicine, Yuan Ze University, Taoyuan, Taiwan.
| | - S Amitha Banu
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Sathish Muthu
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India; Orthopaedic Research Group, Coimbatore, Tamil Nadu, India; Department of Orthopaedics, Government Medical College, Kaur, Tamil Nadu, India
| | - Abhijit M Pawde
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Laith Abualigah
- Artificial Intelligence and Sensing Technologies (AIST) Research Center, University of Tabuk, Tabuk 71491, Saudi Arabia; Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman 19328, Jordan; Computer Science Department, Al al-Bayt University, Mafraq 25113, Jordan; MEU Research Unit, Middle East University, Amman 11831, Jordan; Department of Electrical and Computer Engineering, Lebanese American University, Byblos 13-5053, Lebanon; Applied Science Research Center, Applied Science Private University, Amman 11931, Jordan; School of Engineering and Technology, Sunway University Malaysia, Petaling Jaya 27500, Malaysia
| | - Swapan Kumar Maiti
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
2
|
Furukawa T, Mimami K, Nagata T, Yamamoto M, Sato M, Tanimoto A. Approach to Functions of BHLHE41/DEC2 in Non-Small Lung Cancer Development. Int J Mol Sci 2023; 24:11731. [PMID: 37511489 PMCID: PMC10380948 DOI: 10.3390/ijms241411731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
The circadian rhythm-related genes BHLHE40/DEC1 and BHLHE41/DEC2 have various functions under different cell and tissue conditions. BHLHE41/DEC2 has been reported to be both a cancer-suppressive and an oncogenic gene during cancer development. The effects of BHLHE41/DEC2 on differentiation have been examined using Bhlhe41/Dec2 knockout mice and/or in vitro differentiation models, and research has been conducted using genetic analysis of tumor cells, in vitro analysis of cancer cell lines, and immunohistochemical studies of the clinical samples. We summarize some of these studies, detail several problems, and consider possible reasons for contradictory results and the needs for further research.
Collapse
Affiliation(s)
- Tatsuhiko Furukawa
- Department of Pathology, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Kentaro Mimami
- Department of Pharmacy, University of Miyazaki Hospital, 5200 Kihara Kiyotake cho, Miyazaki 889-1692, Japan
| | - Toshiyuki Nagata
- Department of General Thoracic Surgery, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Masatasu Yamamoto
- Department of Molecular Oncology, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Masami Sato
- Department of General Thoracic Surgery, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Akihide Tanimoto
- Department of Pathology, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| |
Collapse
|
3
|
Iwata T, Kaneda-Ikeda E, Takahashi K, Takeda K, Nagahara T, Kajiya M, Sasaki S, Ishida S, Yoshioka M, Matsuda S, Ouhara K, Fujita T, Kurihara H, Mizuno N. Regulation of osteogenesis in bone marrow-derived mesenchymal stem cells via histone deacetylase 1 and 2 co-cultured with human gingival fibroblasts and periodontal ligament cells. J Periodontal Res 2023; 58:83-96. [PMID: 36346011 DOI: 10.1111/jre.13070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 10/04/2022] [Accepted: 10/21/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVE This study aimed to determine the regulatory mechanism of bone marrow-derived mesenchymal stem cell (BM-MSC) differentiation mediated by humoral factors derived from human periodontal ligament (HPL) cells and human gingival fibroblasts (HGFs). We analyzed histone deacetylase (HDAC) expression and activity involved in BM-MSC differentiation and determined their regulatory effects in co-cultures of BM-MSCs with HPL cells or HGFs. BACKGROUND BM-MSCs can differentiate into various cell types and can, thus, be used in periodontal regenerative therapy. However, the mechanism underlying their differentiation remains unclear. Transplanted BM-MSCs are affected by periodontal cells via direct contact or secretion of humoral factors. Therefore, their activity is regulated by humoral factors derived from HPL cells or HGFs. METHODS BM-MSCs were indirectly co-cultured with HPL cells or HGFs under osteogenic or growth conditions and then analyzed for osteogenesis, HDAC1 and HDAC2 expression and activity, and histone H3 acetylation. BM-MSCs were treated with trichostatin A, or their HDAC1 or HDAC2 expression was silenced or overexpressed during osteogenesis. Subsequently, they were evaluated for osteogenesis or the effects of HDAC activity. RESULTS BM-MSCs co-cultured with HPL cells or HGFs showed suppressed osteogenesis, HDAC1 and HDAC2 expression, and HDAC phosphorylation; however, histone H3 acetylation was enhanced. Trichostatin A treatment remarkably suppressed osteogenesis, decreasing HDAC expression and enhancing histone H3 acetylation. HDAC1 and HDAC2 silencing negatively regulated osteogenesis in BM-MSCs to the same extent as that achieved by indirect co-culture with HPL cells or HGFs. Conversely, their overexpression positively regulated osteogenesis in BM-MSCs. CONCLUSION The suppressive effects of HPL cells and HGFs on BM-MSC osteogenesis were regulated by HDAC expression and histone H3 acetylation to a greater extent than that mediated by HDAC activity. Therefore, regulation of HDAC expression has prospects in clinical applications for effective periodontal regeneration, mainly, bone regeneration.
Collapse
Affiliation(s)
- Tomoyuki Iwata
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Eri Kaneda-Ikeda
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Keita Takahashi
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Katsuhiro Takeda
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.,Department of Biological Endodontics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Takayoshi Nagahara
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Mikihito Kajiya
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.,Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima, Japan
| | - Shinya Sasaki
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Shu Ishida
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Minami Yoshioka
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Shinji Matsuda
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Tsuyoshi Fujita
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hidemi Kurihara
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Noriyoshi Mizuno
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
4
|
Iaquinta MR, Lanzillotti C, Mazziotta C, Bononi I, Frontini F, Mazzoni E, Oton-Gonzalez L, Rotondo JC, Torreggiani E, Tognon M, Martini F. The role of microRNAs in the osteogenic and chondrogenic differentiation of mesenchymal stem cells and bone pathologies. Theranostics 2021; 11:6573-6591. [PMID: 33995677 PMCID: PMC8120225 DOI: 10.7150/thno.55664] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been identified in many adult tissues. MSCs can regenerate through cell division or differentiate into adipocytes, osteoblasts and chondrocytes. As a result, MSCs have become an important source of cells in tissue engineering and regenerative medicine for bone tissue and cartilage. Several epigenetic factors are believed to play a role in MSCs differentiation. Among these, microRNA (miRNA) regulation is involved in the fine modulation of gene expression during osteogenic/chondrogenic differentiation. It has been reported that miRNAs are involved in bone homeostasis by modulating osteoblast gene expression. In addition, countless evidence has demonstrated that miRNAs dysregulation is involved in the development of osteoporosis and bone fractures. The deregulation of miRNAs expression has also been associated with several malignancies including bone cancer. In this context, bone-associated circulating miRNAs may be useful biomarkers for determining the predisposition, onset and development of osteoporosis, as well as in clinical applications to improve the diagnosis, follow-up and treatment of cancer and metastases. Overall, this review will provide an overview of how miRNAs activities participate in osteogenic/chondrogenic differentiation, while addressing the role of miRNA regulatory effects on target genes. Finally, the role of miRNAs in pathologies and therapies will be presented.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Fernanda Martini
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara. Ferrara, Italy
| |
Collapse
|
5
|
Huilgol D, Venkataramani P, Nandi S, Bhattacharjee S. Transcription Factors That Govern Development and Disease: An Achilles Heel in Cancer. Genes (Basel) 2019; 10:E794. [PMID: 31614829 PMCID: PMC6826716 DOI: 10.3390/genes10100794] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022] Open
Abstract
Development requires the careful orchestration of several biological events in order to create any structure and, eventually, to build an entire organism. On the other hand, the fate transformation of terminally differentiated cells is a consequence of erroneous development, and ultimately leads to cancer. In this review, we elaborate how development and cancer share several biological processes, including molecular controls. Transcription factors (TF) are at the helm of both these processes, among many others, and are evolutionarily conserved, ranging from yeast to humans. Here, we discuss four families of TFs that play a pivotal role and have been studied extensively in both embryonic development and cancer-high mobility group box (HMG), GATA, paired box (PAX) and basic helix-loop-helix (bHLH) in the context of their role in development, cancer, and their conservation across several species. Finally, we review TFs as possible therapeutic targets for cancer and reflect on the importance of natural resistance against cancer in certain organisms, yielding knowledge regarding TF function and cancer biology.
Collapse
Affiliation(s)
- Dhananjay Huilgol
- Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA.
| | | | - Saikat Nandi
- Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA.
| | - Sonali Bhattacharjee
- Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA.
| |
Collapse
|
6
|
Single cell RNA-sequencing identified Dec2 as a suppressive factor for spermatogonial differentiation by inhibiting Sohlh1 expression. Sci Rep 2019; 9:6063. [PMID: 30988352 PMCID: PMC6465314 DOI: 10.1038/s41598-019-42578-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/03/2019] [Indexed: 12/31/2022] Open
Abstract
Gonocyte-to-spermatogonia transition is a critical fate determination process to initiate sperm production throughout the lifecycle. However, the molecular dynamics of this process has not been fully elucidated mainly due to the asynchronized differentiation stages of neonatal germ cells. In this study, we employed single cell RNA sequencing analyses of P1.5–5.5 germ cells to clarify the temporal dynamics of gene expression during gonocyte-to-spermatogonia transition. The analyses identified transcriptional modules, one of which regulates spermatogonial gene network in neonatal germ cells. Among them, we identified Dec2, a bHLH-type transcription factor, as a transcriptional repressor for a spermatogonial differentiation factor Sohlh1. Deficiency of Dec2 in mice induces significant reduction of undifferentiated spermatogonia, and transplantation assay using Dec2-depleted cells also demonstrated the impaired efficiency of engraftment, suggesting its role in maintaining spermatogonial stem cells (SSCs). Collectively, this study revealed the intrinsic role of a new SSC factor Dec2, which protects germ cells from inadequate differentiation during neonatal testis development.
Collapse
|
7
|
Hayakawa K, Li YS, Shinton SA, Bandi SR, Formica AM, Brill-Dashoff J, Hardy RR. Crucial Role of Increased Arid3a at the Pre-B and Immature B Cell Stages for B1a Cell Generation. Front Immunol 2019; 10:457. [PMID: 30930899 PMCID: PMC6428705 DOI: 10.3389/fimmu.2019.00457] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/20/2019] [Indexed: 02/03/2023] Open
Abstract
The Lin28b+Let7− axis in fetal/neonatal development plays a role in promoting CD5+ B1a cell generation as a B-1 B cell developmental outcome. Here we identify the Let7 target, Arid3a, as a crucial molecular effector of the B-1 cell developmental program. Arid3a expression is increased at pro-B cell stage and markedly increased at pre-B and immature B cell stages in the fetal/neonatal liver B-1 development relative to that in the Lin28b−Let7+ adult bone marrow (BM) B-2 cell development. Analysis of B-lineage restricted Lin28b transgenic (Tg) mice, Arid3a knockout and Arid3a Tg mice, confirmed that increased Arid3a allows B cell generation without requiring surrogate light chain (SLC) associated pre-BCR stage, and prevents MHC class II cell expression at the pre-B and newly generated immature B cell stages, distinct from pre-BCR dependent B development with MHC class II in adult BM. Moreover, Arid3a plays a crucial role in supporting B1a cell generation. The increased Arid3a leads higher Myc and Bhlhe41, and lower Siglec-G and CD72 at the pre-B and immature B cell stages than normal adult BM, to allow BCR signaling induced B1a cell generation. Arid3a-deficiency selectively blocks the development of B1a cells, while having no detectable effect on CD5− B1b, MZ B, and FO B cell generation resembling B-2 development outcome. Conversely, enforced expression of Arid3a by transgene is sufficient to promote the development of B1a cells from adult BM. Under the environment change between birth to adult, altered BCR repertoire in increased B1a cells occurred generated from adult BM. However, crossed with B1a-restricted VH/D/J IgH knock-in mice allowed to confirm that SLC-unassociated B1a cell increase and CLL/lymphoma generation can occur in aged from Arid3a increased adult BM. These results confirmed that in fetal/neonatal normal mice, increased Arid3a at the pre-B cell and immature B cell stages is crucial for generating B1a cells together with the environment for self-ligand reactive BCR selection, B1a cell maintenance, and potential for development of CLL/Lymphoma in aged mice.
Collapse
Affiliation(s)
- Kyoko Hayakawa
- Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Yue-Sheng Li
- Fox Chase Cancer Center, Philadelphia, PA, United States
| | | | | | | | | | | |
Collapse
|
8
|
Lolli A, Colella F, De Bari C, van Osch GJVM. Targeting anti-chondrogenic factors for the stimulation of chondrogenesis: A new paradigm in cartilage repair. J Orthop Res 2019; 37:12-22. [PMID: 30175861 DOI: 10.1002/jor.24136] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/09/2018] [Indexed: 02/04/2023]
Abstract
Trauma and age-related cartilage disorders represent a major global cause of morbidity, resulting in chronic pain and disability in patients. A lack of effective therapies, together with a rapidly aging population, creates an impressive clinical and economic burden on healthcare systems. In this scenario, experimental therapies based on transplantation or in situ stimulation of skeletal Mesenchymal Stem/progenitor Cells (MSCs) have raised great interest for cartilage repair. Nevertheless, the challenge of guiding MSC differentiation and preventing cartilage hypertrophy and calcification still needs to be overcome. While research has mostly focused on the stimulation of cartilage anabolism using growth factors, several issues remain unresolved prompting the field to search for novel solutions. Recently, inhibition of anti-chondrogenic regulators has emerged as an intriguing opportunity. Anti-chondrogenic regulators include extracellular proteins as well as intracellular transcription factors and microRNAs that act as potent inhibitors of pro-chondrogenic signals. Suppression of these inhibitors can enhance MSC chondrogenesis and production of cartilage matrix. We here review the current knowledge concerning different types of anti-chondrogenic regulators. We aim to highlight novel therapeutic targets for cartilage repair and discuss suitable tools for suppressing their anti-chondrogenic functions. Further effort is needed to unveil the therapeutic perspectives of this approach and pave the way for effective treatment of cartilage injuries in patients. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- Andrea Lolli
- Department of Orthopaedics, Erasmus MC, University Medical Center, Wytemaweg 80, 3015CN Rotterdam, the Netherlands
| | - Fabio Colella
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Cosimo De Bari
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Gerjo J V M van Osch
- Department of Orthopaedics, Erasmus MC, University Medical Center, Wytemaweg 80, 3015CN Rotterdam, the Netherlands.,Department of Otorhinolaryngology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
9
|
Fujii S, Fujimoto K, Goto N, Abiko Y, Imaoka A, Shao J, Kitayama K, Kanawa M, Sosiawan A, Suardita K, Nishimura F, Kato Y. Characterization of human dental pulp cells grown in chemically defined serum-free medium. Biomed Rep 2018; 8:350-358. [PMID: 29556382 PMCID: PMC5844140 DOI: 10.3892/br.2018.1066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/08/2018] [Indexed: 01/09/2023] Open
Abstract
Dental pulp cells (DPCs) are promising candidates for use as transplantable cells in regenerative medicine. However, ex vivo expansion of these cells typically requires culture media containing fetal bovine serum, which may cause infection and immunological reaction following transplantation. In addition, the proliferation and differentiation of DPCs markedly depend upon serum batches. Therefore, the present study examined whether DPCs could be expanded under serum-free conditions. DPCs obtained from four donors were identified to proliferate actively in the serum-free medium, STK2, when compared with those cells in control medium (Dulbecco's modified Eagle's medium containing 10% serum). The high proliferative potential with STK2 was maintained through multiple successive culture passages. DNA microarray analyses demonstrated that the gene expression profile of DPCs grown in STK2 was similar to that of cells grown in the control medium; however, a number of genes related to cell proliferation, including placental growth factor and inhibin-βE, were upregulated in the STK2 cultures. Following induction of osteogenesis, DPCs grown in STK2 induced alkaline phosphatase activity and calcification at higher levels compared with the control medium cultures, indicating maintenance of differentiation potential in STK2. This serum-free culture system with DPCs may have applications in further experimental studies and as a clinical strategy in regenerative medicine.
Collapse
Affiliation(s)
- Sakiko Fujii
- Department of Dental Science for Health Promotion, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Katsumi Fujimoto
- Department of Dental and Medical Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan.,Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Noriko Goto
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yoshimitsu Abiko
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba 271-8587, Japan
| | - Asayo Imaoka
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba 271-8587, Japan
| | | | - Kazuko Kitayama
- Department of Dental and Medical Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Masami Kanawa
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima 734-8553, Japan
| | - Agung Sosiawan
- Department of Dental Public Health, Faculty of Dental Medicine, Airlangga University, Surabaya, East Java 60132, Indonesia
| | - Ketut Suardita
- Department of Conservative Dentistry, Faculty of Dental Medicine, Airlangga University, Surabaya, East Java 60132, Indonesia
| | - Fusanori Nishimura
- Department of Dental Science for Health Promotion, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yukio Kato
- Department of Dental and Medical Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan.,Two Cells Co., Ltd., Hiroshima 734-0816, Japan
| |
Collapse
|