1
|
Omar HS, Ibrahim OA, Sayed MG, Faruk EM, Fouad H, Safwat M. Non-coding RNA genes modulate PI3K/AKT signaling pathway in polycystic ovary syndrome. Mol Biol Rep 2023; 50:8361-8372. [PMID: 37620736 DOI: 10.1007/s11033-023-08604-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/16/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND The PI3K protein kinase B (PI3K/AKT) signaling pathway has crucial roles in insulin signaling and other endocrine disorders. The purpose of this study is to validate the association of PCOS with PI3K/AKT pathway target genes, miRNA486-5p, and miRNA483-5p as well as to evaluate the outcome of metformin on the pathogenesis of PCOS. METHODS: This case-controlled study included 3 subject groups: twenty healthy females (control group), twenty PCOS females before treatment, and twenty PCOS females treated with metformin at a dose (500 mg 3 times per day for 3 months). The following gene expressions were assessed by real-time PCR: PI3K, AKT, ERK, GLUT4, miRNA486-5p, and miRNA483-5p in the whole blood. RESULTS There was a significant decrease in miRNA486-5p and miRNA483-5p in the PCOS group with a significant negative correlation between miRNA486-5p and PI3K and a significant negative correlation between miRNA483-5p and ERK. Metformin treatment resulted in significant elevation of the studied miRNA, significant downregulation of PI3K/AKT target genes, and significant amelioration of the gonadotrophic hormonal imbalance and insulin resistance markers: fasting blood glucose, HBA1C, fasting insulin, and GLUT4 gene expression. CONCLUSIONS miRNA486 and miRNA483 downregulation may contribute to the etiology of PCOS, influence glucose metabolism, and result in IR in PCOS. Metformin's upregulation of those miRNAs affects glucose metabolism by controlling the expression of GLUT4, ameliorates PCOS-related insulin resistance, and improves PCOS-related hormonal imbalance by controlling the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Heba S Omar
- Medical Biochemistry and Molecular Biology Department, Kasr Al Ainy School of Medicine, Cairo University, Kasr Al Ainy St., El Manial, Cairo, 11562, Egypt
| | - Osama Ahmed Ibrahim
- Obstetrics and Gynecology Department, Faculty of Medicine, Minia University, Minya, Egypt
| | - Maha Gomaa Sayed
- Medical Biochemistry & Molecular Biology Department, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Eman Mohammed Faruk
- Anatomy Department, College of Medicine, Umm Al-Qura University, Makkah, 24382, Saudi Arabia.
| | - Hanan Fouad
- Medical Biochemistry and Molecular Biology Department, Kasr Al Ainy School of Medicine, Cairo University, Kasr Al Ainy St., El Manial, Cairo, 11562, Egypt
- Faculty of Medicine, Galala University, POB 43711, Attaka, Egypt
| | - Miriam Safwat
- Medical Biochemistry and Molecular Biology Department, Kasr Al Ainy School of Medicine, Cairo University, Kasr Al Ainy St., El Manial, Cairo, 11562, Egypt
| |
Collapse
|
2
|
Giuliani A, Sabbatinelli J, Amatori S, Graciotti L, Silvestrini A, Matacchione G, Ramini D, Mensà E, Prattichizzo F, Babini L, Mattiucci D, Busilacchi EM, Bacalini MG, Espinosa E, Lattanzio F, Procopio AD, Olivieri F, Poloni A, Fanelli M, Rippo MR. MiR-422a promotes adipogenesis via MeCP2 downregulation in human bone marrow mesenchymal stem cells. Cell Mol Life Sci 2023; 80:75. [PMID: 36847916 PMCID: PMC9971129 DOI: 10.1007/s00018-023-04719-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 12/16/2022] [Accepted: 01/22/2023] [Indexed: 03/01/2023]
Abstract
Methyl-CpG binding protein 2 (MeCP2) is a ubiquitous transcriptional regulator. The study of this protein has been mainly focused on the central nervous system because alterations of its expression are associated with neurological disorders such as Rett syndrome. However, young patients with Rett syndrome also suffer from osteoporosis, suggesting a role of MeCP2 in the differentiation of human bone marrow mesenchymal stromal cells (hBMSCs), the precursors of osteoblasts and adipocytes. Here, we report an in vitro downregulation of MeCP2 in hBMSCs undergoing adipogenic differentiation (AD) and in adipocytes of human and rat bone marrow tissue samples. This modulation does not depend on MeCP2 DNA methylation nor on mRNA levels but on differentially expressed miRNAs during AD. MiRNA profiling revealed that miR-422a and miR-483-5p are upregulated in hBMSC-derived adipocytes compared to their precursors. MiR-483-5p, but not miR-422a, is also up-regulated in hBMSC-derived osteoblasts, suggesting a specific role of the latter in the adipogenic process. Experimental modulation of intracellular levels of miR-422a and miR-483-5p affected MeCP2 expression through direct interaction with its 3' UTR elements, and the adipogenic process. Accordingly, the knockdown of MeCP2 in hBMSCs through MeCP2-targeting shRNA lentiviral vectors increased the levels of adipogenesis-related genes. Finally, since adipocytes released a higher amount of miR-422a in culture medium compared to hBMSCs we analyzed the levels of circulating miR-422a in patients with osteoporosis-a condition characterized by increased marrow adiposity-demonstrating that its levels are negatively correlated with T- and Z-scores. Overall, our findings suggest that miR-422a has a role in hBMSC adipogenesis by downregulating MeCP2 and its circulating levels are associated with bone mass loss in primary osteoporosis.
Collapse
Affiliation(s)
- Angelica Giuliani
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy.
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy.,SOD Medicina di Laboratorio, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | - Stefano Amatori
- Department of Biomolecular Sciences, Molecular Pathology Laboratory "PaoLa", University of Urbino Carlo Bo, Fano, PU, Italy
| | - Laura Graciotti
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy.,Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Andrea Silvestrini
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy
| | - Giulia Matacchione
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy
| | - Deborah Ramini
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | - Emanuela Mensà
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy
| | | | - Lucia Babini
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy
| | - Domenico Mattiucci
- Section of Hematology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Elena Marinelli Busilacchi
- Section of Hematology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Maria Giulia Bacalini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Laboratorio Brain Aging, Bologna, Italy
| | - Emma Espinosa
- Geriatrics, Santa Croce Hospital, Azienda Ospedaliera Ospedali Riuniti Marche Nord, Fano, Italy
| | | | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy.,Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy.,Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | - Antonella Poloni
- Section of Hematology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Mirco Fanelli
- Department of Biomolecular Sciences, Molecular Pathology Laboratory "PaoLa", University of Urbino Carlo Bo, Fano, PU, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy.
| |
Collapse
|
3
|
Schoonejans JM, Blackmore HL, Ashmore TJ, Pantaleão LC, Pellegrini Pisani L, Dearden L, Tadross JA, Aiken CE, Fernandez-Twinn DS, Ozanne SE. Sex-specific effects of maternal metformin intervention during glucose-intolerant obese pregnancy on body composition and metabolic health in aged mouse offspring. Diabetologia 2022; 65:2132-2145. [PMID: 36112170 PMCID: PMC9630251 DOI: 10.1007/s00125-022-05789-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 07/15/2022] [Indexed: 02/02/2023]
Abstract
AIMS/HYPOTHESIS Metformin is increasingly used to treat gestational diabetes (GDM) and pregnancies complicated by pregestational type 2 diabetes or polycystic ovary syndrome but data regarding long-term offspring outcome are lacking in both human studies and animal models. Using a mouse model, this study investigated the effects of maternal metformin intervention during obese glucose-intolerant pregnancy on adiposity, hepatic steatosis and markers of metabolic health of male and female offspring up to the age of 12 months. METHODS C57BL/6J female mice were weaned onto either a control diet (Con) or, to induce pre-conception obesity, an obesogenic diet (Ob). The respective diets were maintained throughout pregnancy and lactation. These obese dams were then randomised to the untreated group or to receive 300 mg/kg oral metformin hydrochloride treatment (Ob-Met) daily during pregnancy. In male and female offspring, body weights and body composition were measured from 1 month until 12 months of age, when serum and tissues were collected for investigation of adipocyte cellularity (histology), adipose tissue inflammation (histology and quantitative RT-PCR), and hepatic steatosis and fibrosis (histochemistry and modified Folch assay). RESULTS At 12 months of age, male Ob and Ob-Met offspring showed increased adiposity, adipocyte hypertrophy, elevated expression of proinflammatory genes, hyperleptinaemia and hepatic lipid accumulation compared with Con offspring. Male Ob-Met offspring failed to show hyperplasia between 8 weeks and 12 months, indicative of restricted adipose tissue expansion, resulting in increased immune cell infiltration and ectopic lipid deposition. Female Ob offspring were relatively protected from these phenotypes but Ob-Met female offspring showed increased adiposity, adipose tissue inflammation, hepatic lipid accumulation, hyperleptinaemia and hyperinsulinaemia compared with Con female offspring. CONCLUSIONS/INTERPRETATION Maternal metformin treatment of obese dams increased offspring metabolic risk factors in a sex- and age-dependent manner. These observations highlight the importance of following up offspring of both sexes beyond early adulthood after interventions during pregnancy. Our findings illustrate the complexity of balancing short-term benefits to mother and child vs any potential long-term metabolic effects on the offspring when prescribing therapeutic agents that cross the placenta.
Collapse
Affiliation(s)
- Josca M Schoonejans
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, UK.
- Department of Women and Children's Health, King's College London, London, UK.
| | - Heather L Blackmore
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Thomas J Ashmore
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Lucas C Pantaleão
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Luciana Pellegrini Pisani
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
- Department of Bioscience, Laboratory of Nutrition and Endocrine Physiology, Federal University of São Paulo, Santos, Brazil
| | - Laura Dearden
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - John A Tadross
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Catherine E Aiken
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK
| | - Denise S Fernandez-Twinn
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Susan E Ozanne
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
4
|
The role of MicroRNA networks in tissue-specific direct and indirect effects of metformin and its application. Biomed Pharmacother 2022; 151:113130. [PMID: 35598373 DOI: 10.1016/j.biopha.2022.113130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 11/20/2022] Open
Abstract
Metformin is a first-line oral antidiabetic agent that results in clear benefits in relation to glucose metabolism and diabetes-related complications. The specific regulatory details and mechanisms underlying these benefits are still unclear and require further investigation. There is recent mounting evidence that metformin has pleiotropic effects on the target tissue development in metabolic organs, including adipose tissue, the gastrointestinal tract and the liver. The mechanism of actions of metformin are divided into direct effects on target tissues and indirect effects via non-targeted tissues. MicroRNAs (miRNAs) are a class of endogenous, noncoding, negative gene regulators that have emerged as important regulators of a number of diseases, including type 2 diabetes mellitus (T2DM). Metformin is involved in many aspects of miRNA regulation, and metformin treatment in T2DM should be associated with other miRNA targets. A large number of miRNAs regulation by metformin in target tissues with either direct or indirect effects has gradually been revealed in the context of numerous diseases and has gradually received increasing attention. This paper thoroughly reviews the current knowledge about the role of miRNA networks in the tissue-specific direct and indirect effects of metformin. Furthermore, this knowledge provides a novel theoretical basis and suggests therapeutic targets for the clinical treatment of metformin and miRNA regulators in the prevention and treatment of cancer, cardiovascular disorders, diabetes and its complications.
Collapse
|
5
|
Choi S, Engelke R, Goswami N, Schmidt F. Proteomic profiling of metformin effects in 3T3-L1 adipocytes by SILAC-based quantification. Proteomics 2022; 22:e2100196. [PMID: 35275438 DOI: 10.1002/pmic.202100196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 11/12/2022]
Abstract
Metformin is a common and generally the first medication prescribed for treatment of type 2 diabetes. Its mechanism involves affecting pathways that regulate glucose and lipid metabolism in metabolic cells such as that of muscle and liver cells. In spite of various studies exploring its effects, the proteome changes in adipocytes in response to metformin remains poorly understood. In this study, we performed SILAC-based quantitative proteomic profiling to study the effects of metformin specifically on 3T3-L1 adipocytes. We define proteins that exhibited altered levels with metformin treatment, 400 of them showing statistically significant changes in our study. Our results suggest that metformin affects not only the PPARγ signaling pathway, as well as glucose and lipid metabolism, but also protein folding, endoplasmic reticulum stress, negative regulation of appetite, and one-carbon folate metabolism in adipocytes. This proteomic investigation provides important insight into effects of metformin in adipocytes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sunkyu Choi
- Proteomics Core, Weill Cornell Medicine-Qatar, Qatar Foundation - Education City, Doha, PO 24144, Qatar
| | - Rudolf Engelke
- Proteomics Core, Weill Cornell Medicine-Qatar, Qatar Foundation - Education City, Doha, PO 24144, Qatar
| | - Neha Goswami
- Proteomics Core, Weill Cornell Medicine-Qatar, Qatar Foundation - Education City, Doha, PO 24144, Qatar
| | - Frank Schmidt
- Proteomics Core, Weill Cornell Medicine-Qatar, Qatar Foundation - Education City, Doha, PO 24144, Qatar
| |
Collapse
|
6
|
Alimoradi N, Firouzabadi N, Fatehi R. Metformin and insulin-resistant related diseases: Emphasis on the role of microRNAs. Biomed Pharmacother 2021; 139:111662. [PMID: 34243629 DOI: 10.1016/j.biopha.2021.111662] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
Metformin is one of the most prescribed drugs in type II diabetes (T2DM) which has recently found new applications in the prevention and treatment of various illnesses, from metabolic disorders to cardiovascular and age-related diseases. Metformin improves insulin resistance (IR) by modulating metabolic mechanisms and mitochondrial biogenesis. Alternation of microRNAs (miRs) in the treatment of IR-related illnesses has been observed by metformin therapy. MiRs are small non-coding RNAs that play important roles in RNA silencing, targeting the 3'untranslated region (3'UTR) of most mRNAs and inhibiting the translation of related proteins. As a result, their dysregulation is associated with many diseases. Metformin may alter miRs levels in the treatment of various diseases by AMPK-dependent or AMPK-independent mechanisms. Here, we summarized the therapeutic role of metformin by modifying the aberrant expression of miRs as potential biomarkers or therapeutic targets in diseases in which IR plays a key role.
Collapse
Affiliation(s)
- Nahid Alimoradi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reihaneh Fatehi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Tuning Adipogenic Differentiation in ADSCs by Metformin and Vitamin D: Involvement of miRNAs. Int J Mol Sci 2020; 21:ijms21176181. [PMID: 32867201 PMCID: PMC7504286 DOI: 10.3390/ijms21176181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/23/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
Fat tissue represents an important source of adipose-derived stem cells (ADSCs), which can differentiate towards several phenotypes under certain stimuli. Definite molecules as vitamin D are able to influence stem cell fate, acting on the expression of specific genes. In addition, miRNAs are important modulating factors in obesity and numerous diseases. We previously identified specific conditioned media able to commit stem cells towards defined cellular phenotypes. In the present paper, we aimed at evaluating the role of metformin on ADSCs differentiation. In particular, ADSCs were cultured in a specific adipogenic conditioned medium (MD), in the presence of metformin, alone or in combination with vitamin D. Our results showed that the combination of the two compounds is able to counteract the appearance of an adipogenic phenotype, indicating a feedforward regulation on vitamin D metabolism by metformin, acting on CYP27B1 and CYP3A4. We then evaluated the role of specific epigenetic modulating genes and miRNAs in controlling stem cell adipogenesis. The combination of the two molecules was able to influence stem cell fate, by modulating the adipogenic phenotype, suggesting their possible application in clinical practice in counteracting uncontrolled lipogenesis and obesity-related diseases.
Collapse
|
8
|
Macartney-Coxson D, Danielson K, Clapham J, Benton MC, Johnston A, Jones A, Shaw O, Hagan RD, Hoffman EP, Hayes M, Harper J, Langston MA, Stubbs RS. MicroRNA Profiling in Adipose Before and After Weight Loss Highlights the Role of miR-223-3p and the NLRP3 Inflammasome. Obesity (Silver Spring) 2020; 28:570-580. [PMID: 32090515 PMCID: PMC7046053 DOI: 10.1002/oby.22722] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 10/20/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Adipose tissue plays a key role in obesity-related metabolic dysfunction. MicroRNA (miRNA) are gene regulatory molecules involved in intercellular and inter-organ communication. It was hypothesized that miRNA levels in adipose tissue would change after gastric bypass surgery and that this would provide insights into their role in obesity-induced metabolic dysregulation. METHODS miRNA profiling (Affymetrix GeneChip miRNA 2.0 Array) of omental and subcutaneous adipose (n = 15 females) before and after gastric bypass surgery was performed. RESULTS One omental and thirteen subcutaneous adipose miRNAs were significantly differentially expressed after gastric bypass, including downregulation of miR-223-3p and its antisense relative miR-223-5p in both adipose tissues. mRNA levels of miR-223-3p targets NLRP3 and GLUT4 were decreased and increased, respectively, following gastric bypass in both adipose tissues. Significantly more NLRP3 protein was observed in omental adipose after gastric bypass (P = 0.02). Significant hypomethlyation of NLRP3 and hypermethylation of miR-223 were observed in both adipose tissues after gastric bypass. In subcutaneous adipose, significant correlations were observed between both miR-223-3p and miR-223-5p and glucose and between NLRP3 mRNA and protein levels and blood lipids. CONCLUSIONS This is the first report detailing genome-wide miRNA profiling of omental adipose before and after gastric bypass, and it further highlights the association of miR-223-3p and the NLRP3 inflammasome with obesity.
Collapse
Affiliation(s)
- Donia Macartney-Coxson
- Human Genomics, Institute of Environmental Science and
Research (ESR), Wellington, New Zealand
- corresponding author. Contact Info:
Donia Macartney-Coxson, Human Genomics, Institute of Environmental Science and
Research (ESR), Wellington, 5022, New Zealand. Telephone: +64 4 917 5931, Fax:
+64 4 914 0770,
| | - Kirsty Danielson
- Department of Surgery and Anaesthesia, University of Otago
Wellington, Wellington, New Zealand
| | - Jane Clapham
- Human Genomics, Institute of Environmental Science and
Research (ESR), Wellington, New Zealand
| | - Miles C Benton
- Human Genomics, Institute of Environmental Science and
Research (ESR), Wellington, New Zealand
| | - Alice Johnston
- Human Genomics, Institute of Environmental Science and
Research (ESR), Wellington, New Zealand
| | - Angela Jones
- Human Genomics, Institute of Environmental Science and
Research (ESR), Wellington, New Zealand
| | - Odette Shaw
- Arthritis and Inflammation Group, The Malaghan Institute of
Medical Research, Victoria University of Wellington, New Zealand
| | - Ronald D Hagan
- Department of Electrical Engineering & Computer
Science, University of Tennessee, Knoxville, USA
| | - Eric P Hoffman
- Department of Pharmaceutical Sciences, School of Pharmacy
and Pharmaceutical Sciences, Binghamton University - SUNY, Binghamton, NY,
USA
| | - Mark Hayes
- The Wakefield Biomedical Research Unit, Wellington, New
Zealand
| | - Jacquie Harper
- Arthritis and Inflammation Group, The Malaghan Institute of
Medical Research, Victoria University of Wellington, New Zealand
| | - Michael A Langston
- Department of Electrical Engineering & Computer
Science, University of Tennessee, Knoxville, USA
| | | |
Collapse
|
9
|
Yuan Y, Cao X, Hu J, Li J, Shen D, You L, Cui X, Wang X, Zhou Y, Gao Y, Zhu L, Xu P, Ji C, Guo X, Wen J. The role and possible mechanism of lncRNA AC092159.2 in modulating adipocyte differentiation. J Mol Endocrinol 2019; 62:137-148. [PMID: 30753134 DOI: 10.1530/jme-18-0215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/11/2019] [Indexed: 01/06/2023]
Abstract
Obesity is a major risk factor for metabolic diseases, while adipocyte differentiation is closely related to obesity occurrence. Long noncoding RNAs (lncRNAs) are a unique class of transcripts in regulation of various biological processes. Using lncRNA microarray, we found lncRNA AC092159.2 was highly expressed in differentiated HPA-v and located ~247 bp upstream of the TMEM18, which was associated with BMI and obesity. We aimed to explore the role of AC092159.2 in adipogenesis and the underlying mechanisms. The effects of AC092159.2 gain- and loss-of-function on HPA-v adipogenesis were determined with lentivirus and siRNA-mediated cell transduction, respectively. Lipid accumulation was evaluated by oil red O staining; the expression of AC092159.2, TMEM18 and several adipogenesis makers in HPA-v were analyzed by qPCR/Western blot. We found that the expression of AC092159.2 gradually increased during HPA-v differentiation, and its expression in omental adipose tissue was positively related with BMI among 48 human subjects. Overexpression of AC092159.2 promoted adipocytes differentiation while knockdown of it led to an adipogenic defect. Moreover, the expression of AC092159.2 and TMEM18 were positively correlated during adipogenic differentiation. AC092159.2 overexpression boosted TMEM18 expression while AC092159.2 knockdown restrained TMEM18 expression. Further rescue experiments showed that TMEM18 knockdown partially restrained adipogenic differentiation in AC092159.2 overexpressed HPA-v and adipogenic defect caused by AC092159.2 knockdown could be rescued by TMEM18 overexpression. Luciferase reporter assays revealed that AC092159.2 had a transcriptional activation effect on TMEM18. We concluded that lncRNA AC092159.2 promoted human adipocytes differentiation possibly by regulating TMEM18.
Collapse
Affiliation(s)
- Yingdi Yuan
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
- Department of Pediatrics, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang (Lianyungang Clinical College of Nanjing Medical University), Lianyungang, China
| | - Xinguo Cao
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
- Cancer Care Ontario, Toronto, Canada
| | - Jiaojiao Hu
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jingyun Li
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Dan Shen
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Lianghui You
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xianwei Cui
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xing Wang
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yahui Zhou
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yao Gao
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Lijun Zhu
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Pengfei Xu
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Chenbo Ji
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xirong Guo
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Juan Wen
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| |
Collapse
|
10
|
Hanousková B, Neprašová B, Skálová L, Maletínská L, Zemanová K, Ambrož M, Matoušková P. High-fructose drinks affect microRNAs expression differently in lean and obese mice. J Nutr Biochem 2019; 68:42-50. [PMID: 31030166 DOI: 10.1016/j.jnutbio.2019.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 12/17/2018] [Accepted: 03/08/2019] [Indexed: 12/19/2022]
Abstract
High fructose intake from soft drinks and sweets is assumed to have a negative impact on human health. Yet in spite of intensive research, the molecular mechanisms of these effects have not been fully elucidated yet, for example, the effect of high fructose intake could be different in normal and obese individuals. Four groups of mice were used in this study: control groups of lean mice and mice with obesity induced by a high-fat diet, then both of these groups with or without fructose administration in drinks. In plasma of each group, triacylglycerol, cholesterol, free fatty acids, alanine aminotransferase, insulin and adiponectin were measured. The expression levels of selected microRNAs (miRNAs) in plasma, the liver, white adipose tissue, brown adipose tissue and subcutaneous adipose tissue were quantified. In both lean and obese mice, high fructose intake increased cholesterol amount in the liver, up-regulated hepatic miR-27a, down-regulated miR-33a in white adipose tissue and increased plasmatic level of miR-21. The effect of high fructose intake on other miRNAs in the liver, plasma and adipose tissues differed in normal and obese mice. Fructose intake led to hepatic hypercholesterolemia and aberrant expression of several miRNAs participating in lipid metabolism, adipocytes differentiation and nonalcoholic fatty liver disease promotion. The effect of fructose on miRNAs expression differed in normal and obese mice. Nevertheless, plasmatic miR-21, which was induced by fructose in both lean and obese mice, may be considered as a potential biomarker of excessive fructose intake.
Collapse
Affiliation(s)
- Barbora Hanousková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203/8, Hradec Králové, Czech Republic.
| | - Barbora Neprašová
- Czech Academy of Sciences, Institute of Organic Chemistry and Biochemistry, Flemingovo náměstí 542/2, Prague, Czech Republic.
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203/8, Hradec Králové, Czech Republic.
| | - Lenka Maletínská
- Czech Academy of Sciences, Institute of Organic Chemistry and Biochemistry, Flemingovo náměstí 542/2, Prague, Czech Republic.
| | - Kateřina Zemanová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203/8, Hradec Králové, Czech Republic.
| | - Martin Ambrož
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203/8, Hradec Králové, Czech Republic.
| | - Petra Matoušková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203/8, Hradec Králové, Czech Republic.
| |
Collapse
|
11
|
Yu J, Yang X, Yang X, Yang M, Wang P, Yang Y, Yang J, Li W, Xu J. Nonylphenol aggravates non-alcoholic fatty liver disease in high sucrose-high fat diet-treated rats. Sci Rep 2018; 8:3232. [PMID: 29459774 PMCID: PMC5818617 DOI: 10.1038/s41598-018-21725-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/05/2018] [Indexed: 12/19/2022] Open
Abstract
Exposure to environmental endocrine disruptors (EEDs) contributes to the pathogenesis of many metabolic disorders. Here, we have analyzed the effect of the EED-nonylphenol (NP) on the promotion of non-alcoholic fatty liver disease (NAFLD) in rats fed high sucrose-high fat diet (HSHFD). Fifty Sprague-Dawley rats were divided into five groups: controls fed a normal diet (C-ND); HSHFD-fed controls (C-HSHFD); and rats fed a HSHFD combined with NP at doses of 0.02 μg/kg/day (NP-L-HSHFD), 0.2 μg/kg/day (NP-M-HSHFD), and 2 μg/kg/day (NP-H-HSHFD). Subchronic exposure to NP coupled with HSHFD increased daily water and food intake (p < 0.05), hepatic echogenicity and oblique liver diameter (p < 0.05), and plasma levels of alanine aminotransferase, aspartate aminotransferase, total cholesterol, triglycerides, and low density lipoprotein cholesterol (p < 0.05). Combined exposure to NP and HSHFD induced macrovesicular steatosis with dilation and congestion of the central vein, liver inflammatory cell infiltration, and expression of genes regulating lipid metabolism, SREBP-1C, FAS, and Ucp2. These results demonstrate that NP aggravates NAFLD in HSHFD-treated rats by up-regulating lipogenic genes, and that HSHFD increases the toxic effects of NP. Thus subchronic NP exposure may lead to NAFLD, especially when combined with a high-sucrose/high-fat diet.
Collapse
Affiliation(s)
- Jie Yu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563003, P.R. China
| | - Xuesong Yang
- Department of Hospital Infection and Control, The First People's Hospital of Guiyang city, Guiyang, Guizhou, 550002, P.R. China
| | - Xuefeng Yang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, P.R. China
| | - Mengxue Yang
- Department of Endocrinology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563099, P.R. China
| | - Pan Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563099, P.R. China
| | - Yu Yang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563003, P.R. China
| | - Jing Yang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563003, P.R. China
| | - Wenmei Li
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563003, P.R. China
| | - Jie Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563003, P.R. China.
| |
Collapse
|
12
|
Cimino L, Salemi M, Cannarella R, Condorelli RA, Giurato G, Marchese G, La Vignera S, Calogero AE. Decreased miRNA expression in Klinefelter syndrome. Sci Rep 2017; 7:16672. [PMID: 29192217 PMCID: PMC5709391 DOI: 10.1038/s41598-017-16892-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/13/2017] [Indexed: 01/18/2023] Open
Abstract
The widelyvariable phenotypic spectrum and the different severity of symptoms in men with Klinefelter syndrome (KS) suggest a role for epigenetic mediators. Therefore, the aim of this study is to evaluate the possible involvement of miRNAs in the clinical manifestations of KS. To accomplish this, we performed a transcriptome analysis in peripheral blood mononuclear cells (PBMCs) of 10 non-mosaic KS patients, 10 aged-matched healthy men and 10 aged-matched healthy female controls with normal karyotype. After RNA extraction from PBMC and the preparation of RNA libraries, the samples were sequenced using next generation high-throughput sequencing technology. Expression profiling analysis revealed a significant differential expression of 2 miRNAs in KS compared to male controls. In particular, MIR3648 resulted significantly (q-value < 0.0001) down-regulated by -19.084- fold, while MIR3687was strongly down-regulated (q-value < 0.0001) considering KS patients. These results were confirmed by qRT-PCR. The functional analysis of the two transcripts showed that they seem to play a role in breast cancer, hemopoietic abnormalities, immune defects and adipocyte differentiation and fat cell maturation. Therefore, we speculate that both miRNAs may play a role in the immune and metabolic disorders and in the risk of breast cancer development in men with KS.
Collapse
Affiliation(s)
- Laura Cimino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, 95123, Italy
| | - Michele Salemi
- Oasi Institute for Research on Mental Retardation and Brain Aging (IRCCS), Troina, 94018, Italy
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, 95123, Italy
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, 95123, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, 84081, Italy
- Genomix4Life Srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi (SA), 84081, Italy
| | - Giovanna Marchese
- Genomix4Life Srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi (SA), 84081, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, 95123, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, 95123, Italy.
| |
Collapse
|
13
|
Gao Y, Wang X, Huang F, Cui X, Li Y, Wang X, Cao Y, Xu P, Xie K, Tang R, Zhang L, Ji C, You L, Guo X. Identification and characterization of metformin on peptidomic profiling in human visceral adipocytes. J Cell Biochem 2017; 119:1866-1878. [PMID: 28802015 DOI: 10.1002/jcb.26347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 08/11/2017] [Indexed: 12/26/2022]
Abstract
To gain insight into the effect of metformin on losing weight from peptidomic perspective and to screen potential active peptides for reducing fat lipid deposition. After determining the proper concentration of metformin on human primary visceral adipocytes, we constructed a comparative peptidomic profiling between control and metformin treatment group (n = 3) using a stable isobaric labeling strategy involving tandem mass tag reagents, followed by liquid chromatography tandem mass spectrometry. We identified and quantified 3065 non-redundant peptides, 304 of which were differentially expressed after metformin treatment, 206 peptides were up regulated and 98 peptides were down regulated significantly. Gene ontology (GO) enrichment and pathway analysis were performed to study differentially peptides though their precursor proteins. We concluded three peptides located within the functional domains of their precursor proteins could be candidate bioactive peptides for obesity. On one hand, these results confirmed the versatile effects of metformin on adipocyte and advance our current understanding of metformin, on the other hand, these identified peptides might play putative roles in treatment of obesity.
Collapse
Affiliation(s)
- Yao Gao
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - XingYun Wang
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - FangYan Huang
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - XianWei Cui
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yun Li
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Xing Wang
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yan Cao
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - PengFei Xu
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - KaiPeng Xie
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - RanRan Tang
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Le Zhang
- Department of Neonatology, Wuxi Children's Hospital affiliated to Nanjing Medical University, Wuxi, Jiangsu
| | - ChenBo Ji
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - LiangHui You
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - XiRong Guo
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| |
Collapse
|