1
|
Wang X, Tang P, Yang K, Guo S, Tang Y, Zhang H, Wang Q. Regulation of bone homeostasis by traditional Chinese medicine active scaffolds and enhancement for the osteoporosis bone regeneration. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118141. [PMID: 38570149 DOI: 10.1016/j.jep.2024.118141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/18/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The active ingredients of traditional Chinese medicine (TCM), such as naringin (NG), Eucommiol, isopsoralen, icariin, Astragalus polysaccharides, and chondroitin sulfate, contained in Drynariae Rhizoma, Eucommiae Cortex, Psoralea corylifolia, Herba Epimedii, Astragalus radix and deer antler, are considered promising candidates for enhancing the healing of osteoporotic defects due to their outstanding bone homeostasis regulating properties. They are commonly used to activate bone repair scaffolds. AIM OF THE REVIEW Bone repair scaffolds are inadequate to meet the demands of osteoporotic defect healing due to the lack of regulation of bone homeostasis. Therefore, selecting bone scaffolds activated with TCM to improve the therapeutic effect of repairing osteoporotic bone defects. MATERIALS AND METHODS To gather information on bone scaffold activated by traditional Chinese medicine, we conducted a thorough search of several scientific databases, including Google Scholar, Web of Science, Scifinder, Baidu Scholar, PubMed, and China National Knowledge Infrastructure (CNKI). RESULTS This review discusses the mechanism of TCM active ingredients in regulating bone homeostasis, including stimulating bone formation and inhibiting bone resorption process and the healing mechanism of traditional bone repair scaffolds activated by them for osteoporotic defect healing. CONCLUSION In general, the introduction of TCM active ingredients provides a novel therapeutic approach for modulating bone homeostasis and facilitating osteoporotic defect healing, and also offers a new strategy for design of other unconventional bone defect healing materials.
Collapse
Affiliation(s)
- Xi Wang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Pengfei Tang
- Failure Mechanics & Engineering Disaster Prevention and Mitigation, Key Laboratory of Sichuan Province, College of Architecture & Environment, Sichuan University, Chengdu, 610065, China
| | - Kun Yang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Shuangquan Guo
- Chengdu Holy (Group) Industry Co. Ltd., Chengdu, 610041, China
| | - Youhong Tang
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, South Australia 5042, Australia
| | - Hongping Zhang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu, 610106, China.
| | - Qingyuan Wang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu, 610106, China; Failure Mechanics & Engineering Disaster Prevention and Mitigation, Key Laboratory of Sichuan Province, College of Architecture & Environment, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
2
|
Liu D, Ma L, Zheng J, Zhang Z, Zhang N, Han Z, Wang X, Zhao J, Lv S, Cui H. Isopsoralen Improves Glucocorticoid-induced Osteoporosis by Regulating Purine Metabolism and Promoting cGMP/PKG Pathway-mediated Osteoblast Differentiation. Curr Drug Metab 2024; 25:288-297. [PMID: 39005121 DOI: 10.2174/0113892002308141240628071541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/13/2024] [Accepted: 05/30/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND The effects of Isopsoralen (ISO) in promoting osteoblast differentiation and inhibiting osteoclast formation are well-established, but the mechanism underlying ISO's improvement of Glucocorticoid- Induced Osteoporosis (GIOP) by regulating metabolism remains unclear. METHODS This study aims to elucidate the mechanism of ISO treatment for GIOP through non-targeted metabolomics based on ISO's efficacy in GIOP. Initially, we established a GIOP female mouse model and assessed ISO's therapeutic effects using micro-CT detection, biomechanical testing, serum calcium (Ca), and phosphorus (P) level detection, along with histological analyses using hematoxylin and eosin (HE), Masson, and tartrate-resistant acidic phosphatase (TRAP) staining. Subsequently, non-targeted metabolomics was employed to investigate ISO's impact on serum metabolites in GIOP mice. RT-qPCR and Western blot analyses were conducted to measure the levels of enzymes associated with these metabolites. Building on the metabolomic results, we explored the effects of ISO on the cyclic Guanosine Monophosphate (cGMP)/Protein Kinase G (PKG) pathway and its role in mediating osteoblast differentiation. RESULTS Our findings demonstrate that ISO intervention effectively enhances the bone microarchitecture and strength of GIOP mice. It mitigates pathological damage, such as structural damage in bone trabeculae, reduced collagen fibers, and increased osteoclasts, while improving serum Ca and P levels in GIOP mice. Non-- targeted metabolomics revealed purine metabolism as a common pathway between the Control and GIOP groups, as well as between the ISO high-dose (ISOH) group and the GIOP group. ISO intervention upregulated inosine and adenosine levels, downregulated guanosine monophosphate levels, increased Adenosine Deaminase (ADA) expression, and decreased cGMP-specific 3',5'-cyclic phosphodiesterase (PDE5) expression. Additionally, ISO intervention elevated serum cGMP levels, upregulated PKGI and PKGII expression in bone tissues, as well as the expression of Runt-related transcription factor 2 (Runx2) and Osterix, and increased serum Alkaline Phosphatase (ALP) activity. CONCLUSION In summary, ISO was able to enhance the bone microstructure and bone strength of GIOP mice and improve their Ca, P, and ALP levels, which may be related to ISO's regulation of purine metabolism and promotion of osteoblast differentiation mediated by the cGMP/PKG pathway. This suggests that ISO is a potential drug for treating GIOP. However, further research is still needed to explore the specific targets and clinical applications of ISO.
Collapse
Affiliation(s)
- Defeng Liu
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine,Cangzhou, China
| | - Lingyun Ma
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine,Cangzhou, China
| | - Jihui Zheng
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine,Cangzhou, China
| | - Zhenqun Zhang
- Department of Endocrinology, Hebei University of Chinese Medicine,Cangzhou, China
| | - Nana Zhang
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine,Cangzhou, China
| | - Zhongqian Han
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine,Cangzhou, China
| | - Xuejie Wang
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine,Cangzhou, China
| | - Jianyong Zhao
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine,Cangzhou, China
| | - Shuquan Lv
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine,Cangzhou, China
| | - Huantian Cui
- Faculty of Life Sciences, Yunnan University of Chinese Medicine,Kunming, China
| |
Collapse
|
3
|
Zhan W, Ruan B, Dong H, Wang C, Wu S, Yu H, Xu X, Sun H, Cai J. Isopsoralen suppresses receptor activator of nuclear factor kappa- β ligand-induced osteoclastogenesis by inhibiting the NF- κB signaling. PeerJ 2023; 11:e14560. [PMID: 36643647 PMCID: PMC9838210 DOI: 10.7717/peerj.14560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/22/2022] [Indexed: 01/12/2023] Open
Abstract
Osteoporosis is a serious systemic metabolic bone system disease.This study aimed to identify the target genes of isopsoralen and the signaling pathways involved in the differential expression of the genes involved in osteoclast differentiation. We hypothesized that isopsoralen may inhibit osteoclast differentiation by blocking the nuclear factor kappa-B (NF-κB) signaling pathway and verified our hypothesis through basic experiments. The 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay was used to detect the effect of isopsoralen on the proliferation and viability of primary mouse bone marrow monocytes (BMMCs). The effect of isopsoralen on receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclast differentiation was determined by using tartrate-resistant acid phosphatase (TRAP) staining. Quantitative real-time PCR (qRT-PCR) and Western blot were used to detect the expression of the related genes and proteins. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway of isopsoralen target genes were obtained through comprehensive analysis using the STITCH database, Cytoscape 3.8.2, and R-Studio software. Differentially expressed genes (DEGs) were found in osteoclasts induced by RANKL before and after 3 days using R-Studio, following which KEGG analysis was performed. Next, enrichment analysis was performed on the KEGG pathway shared by the target genes of isopsoralen and the differentially expressed genes during osteoclast differentiation to predict the signaling pathway underlying the inhibition of osteoclast differentiation by isopsoralen. Finally, Western blot was used to detect the effect of isopsoralen on the activation of signaling pathways to verify the results of our bioinformatics analysis. Based on the enrichment analysis of isopsoralen target genes and differentially expressed genes during osteoclastogenesis, we believe that isopsoralen can inhibit RANKL-induced osteoclastogenesis by inhibiting the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Wanda Zhan
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, China,Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Binjia Ruan
- Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Hui Dong
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chaoyong Wang
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shuangshi Wu
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hang Yu
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, China,Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaohang Xu
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, China,Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hao Sun
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jun Cai
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
4
|
Li H, Wang C, Jin Y, Cai Y, Yao J, Meng Q, Wu J, Wang H, Sun H, Liu M. Anti-Postmenopausal osteoporosis effects of Isopsoralen: A bioinformatics-integrated experimental study. Phytother Res 2023; 37:231-251. [PMID: 36123318 DOI: 10.1002/ptr.7609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 01/19/2023]
Abstract
Isopsoralen (IPRN), which comes from the fruit of Psoralea corylifolia, has been identified as a kind of phytoestrogen and has been proven to be effective for the treatment of osteoporosis (OP). However, the mechanisms underlying IPRN's anti-OP effects, especially the anti-postmenopausal osteoporosis (PMOP) effects, remain indistinct. Thus, this study aimed to investigate the effects and mechanisms of IPRN's anti-PMOP activity. In this study, the bioinformatics results predicted that IPRN could resist PMOP by targeting EGFR, AKT1, SRC, CCND1, ESR1 (ER-α), AR, PGR, BRCA1, PTGS2, and IGF1R. An ovariectomized (OVX) mice model and a H2 O2 -induced bone marrow mesenchyml stem cells (BMSCs) model confirmed that IPRN could inhibit the bone loss induced by OVX in mice and promote the osteogenic differentiation in H2 O2 -induced BMSCs by inhibiting oxidative stress and apoptosis. Moreover, IPRN could significantly produce the above effects by upregulating ESR1. IPRN might be a therapeutic agent for PMOP by acting as an estrogen replacement agent and a natural antioxidant.
Collapse
Affiliation(s)
- Hao Li
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yue Jin
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yuanqing Cai
- Department of Orthopaedics, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jialin Yao
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Jingjing Wu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Huihan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Mozhen Liu
- Department of Orthopaedics, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
5
|
Han YH, He XM, Lee SJ, Mao YY, Liu XC, Sun HN, Jin MH, Kwon T. Network analysis for the identification of hub genes and related molecules as potential biomarkers associated with the differentiation of bone marrow-derived stem cells into hepatocytes. Aging (Albany NY) 2022; 14:8243-8257. [PMID: 36279394 PMCID: PMC9648814 DOI: 10.18632/aging.204344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/05/2022] [Indexed: 11/26/2022]
Abstract
The incidence of liver diseases has been increasing steadily. However, it has some shortcomings, such as high cost and organ donor scarcity. The application of stem cell research has brought new ideas for the treatment of liver diseases. Therefore, it is particularly important to clarify the molecular and regulatory mechanisms of differentiation of bone marrow-derived stem cells (BMSCs) into liver cells. Herein, we screened differentially expressed genes between hepatocytes and untreated BMSCs to identify the genes responsible for the differentiation of BMSCs into hepatocytes. GSE30419 gene microarray data of BMSCs and GSE72088 gene microarray data of primary hepatocytes were obtained from the Gene Expression Omnibus database. Transcriptome Analysis Console software showed that 1896 genes were upregulated and 2506 were downregulated in hepatocytes as compared with BMSCs. Hub genes were analyzed using the STRING and Cytoscape v 3.8.2, revealing that twenty-four hub genes, play a pivotal role in the differentiation of BMSCs into hepatocytes. The expression of the hub genes in the BMSCs and hepatocytes was verified by reverse transcription-quantitative PCR (RT-qPCR). Next, the target miRNAs of hub genes were predicted, and then the lncRNAs regulating miRNAs was discovered, thus forming the lncRNA-miRNA-mRNA interaction chain. The results indicate that the lncRNA-miRNA-mRNA interaction chain may play an important role in the differentiation of BMSCs into hepatocytes, which provides a new therapeutic target for liver disease treatment.
Collapse
Affiliation(s)
- Ying-Hao Han
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, P.R. China
| | - Xin-Mei He
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, P.R. China
| | - Seung-Jae Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-Si 56212, Jeonbuk, Republic of Korea
- Department of Applied Biological Engineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Ying-Ying Mao
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, P.R. China
| | - Xuan-Chen Liu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, P.R. China
| | - Hu-Nan Sun
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, P.R. China
| | - Mei-Hua Jin
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, P.R. China
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-Si 56216, Jeonbuk, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
6
|
Liu B, Li P, He S, Xing S, Cao Z, Cao X, Wang X, Li ZH. Effects of short-term exposure to tralopyril on physiological indexes and endocrine function in turbot (Scophthalmus maximus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 245:106118. [PMID: 35176693 DOI: 10.1016/j.aquatox.2022.106118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Tralopyril is an emerging marine antifouling agent with potential toxic effects on non-target aquatic organisms. To evaluate the toxicity of tralopyril, to turbot (Scophthalmus maximus), we assessed biomarkers, including oxidative stress, neurotoxicity, and osmotic homeostasis regulation enzymes, after a 7-day exposure to tralopyril (5 μg/L, 15 μg/L, 30 μg/L). Superoxide dismutase activity was significantly decreased at 30 μg/L, and Ca2+-Mg2+-ATPase activity in the gills was significantly increased at 15 μg/L and 30 μg/L. No statistically significant differences in the responses of acetylcholinesterase and nitric oxide were detected. In addition, 15 μg/L and 30 μg/L tralopyril induced hyperthyroidism, reflected by significantly increased of T3 levels. The expression levels of hypothalamus-pituitary-thyroid axis-related genes were also upregulated. The molecular docking results showed that the thyroid system disruption was not caused by competitive binding to the receptor. In addition, the integrated biomarker response index showed that 15 μg/L tralopyril had the greatest effect on turbot. In general, tralopyril caused oxidative damage, affected energy metabolism, and interfered with the endocrine system. These findings could provide reference data for assessing the ecological risk of tralopyril in marine environments.
Collapse
Affiliation(s)
- Bin Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Shuwen He
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Shaoying Xing
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhihan Cao
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Xuqian Cao
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Xu Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
7
|
He HP, Gu S. The PPAR-γ/SFRP5/Wnt/β-catenin signal axis regulates the dexamethasone-induced osteoporosis. Cytokine 2021; 143:155488. [PMID: 33814272 DOI: 10.1016/j.cyto.2021.155488] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND The inhibition of glucocorticoid (GC) on osteoblastic differentiation of bone marrow stromal stem cells (BMSC) is an important pathway for GC to reduce bone formation. Recent studies implicated an important role of peroxisome proliferator-activated receptor-gamma (PPAR-γ) in GC-mediated cell proliferation and differentiation. Thus, our purpose is to investigate the role of PPAR-γ in regulating rat BMSC (rBMSC) osteoblastic differentiation. METHODS The rBMSC treated with dexamethasone (Dex) was used to construct an in vitro cell model of GC-induced osteoporosis. The expressions of PPAR-γ, RUNX2, ALP, OPN and SFRP5 in cells were detected by RT-qPCR and western blot assays. Osteogenic differentiation of rBMSC was measured by Alizarin Red S (ARS) staining analysis. Lentivirus-delivered shRNA was used to knock down PPAR-γ or SFRP5, and lentivirus-delivered constructs were used to overexpress SFRP5 in rBMSC to verify the effect of PPAR-γ or SFRP5 on cell osteogenic differentiation. RESULTS Dex significantly reduced rBMSC osteoblastic differentiation. The expression of PPAR-γ was enhanced in Dex treated rBMSC. PPAR-γ down-regulation improved Dex inhibition of rBMSC osteogenic differentiation. Moreover, PPAR-γ knockdown promoted protein levels of RUNX2, ALP, OPN and Dex-decreased rBMSC osteogenic differentiation. The expression of SFRP5 was reduced while Wnt and β-catenin were increased in PPAR-γ knockdown and Dex treated rBMSC. Moreover, the up-regulation of SFRP5 reversed the osteogenic differentiation of rBMSC induced by PPAR-γ knockdown. CONCLUSION These data indicated that in GC-induced osteoporosis, PPAR-γ/SFRP5 affects osteogenic differentiation by regulating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Hai-Peng He
- Shenzhen Institute of ENT & Longgang ENT Hospital, Shenzhen 518172, China
| | - Shan Gu
- Shenzhen Institute of ENT & Longgang ENT Hospital, Shenzhen 518172, China.
| |
Collapse
|
8
|
Pan FF, Shao J, Shi CJ, Li ZP, Fu WM, Zhang JF. Apigenin promotes osteogenic differentiation of mesenchymal stem cells and accelerates bone fracture healing via activating Wnt/β-catenin signaling. Am J Physiol Endocrinol Metab 2021; 320:E760-E771. [PMID: 33645251 DOI: 10.1152/ajpendo.00543.2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Apigenin (API), a natural plant flavone, is abundantly found in common fruits and vegetables. As a bioactive flavonoid, API exhibits several activities including antiproliferation and anti-inflammation. A recent study showed that API could retard osteoporosis progress, indicating its role in the skeletal system. However, the detailed function and mechanism remain obscure. In the present study, API was found to promote osteogenic differentiation of mesenchymal stem cells (MSCs). And further investigation showed that API could enhance the expression of the critical transcription factor β-catenin and several downstream target genes of Wnt signaling, thus activated Wnt/β-catenin signaling. Using a rat femoral fracture model, API was found to improve new bone formation and accelerate fracture healing in vivo. In conclusion, our data demonstrated that API could promote osteogenesis in vitro and facilitate the fracture healing in vivo via activating Wnt/β-catenin signaling, indicating that API may be a promising therapeutic candidate for bone fracture repair.NEW & NOTEWORTHY1) API promoted osteogenic differentiation of human MSCs in vitro; 2) API facilitated bone formation and accelerated fracture healing in vivo; 3) API stimulated Wnt/β-catenin signaling during osteogenesis of human MSCs.
Collapse
Affiliation(s)
- Fei-Fei Pan
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Jiang Shao
- Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Chuan-Jian Shi
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Zhi-Peng Li
- Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Wei-Ming Fu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Jin-Fang Zhang
- Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| |
Collapse
|
9
|
Li H, Xu X, Wang D, Zeng L, Li B, Zhang Y, Su S, Wei L, You H, Fang Y, Wang Y, Liu Y. miR-146b-5p regulates bone marrow mesenchymal stem cell differentiation by SIAH2/PPARγ in aplastic anemia children and benzene-induced aplastic anemia mouse model. Cell Cycle 2020; 19:2460-2471. [PMID: 32840137 PMCID: PMC7553565 DOI: 10.1080/15384101.2020.1807081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 07/16/2020] [Accepted: 07/23/2020] [Indexed: 12/26/2022] Open
Abstract
This study aimed to reveal the mechanism of miR-146b-5p in the differentiation of bone marrow mesenchymal stem cells (BMSCs) derived from children with aplastic anemia (AA). Here, we found that miR-146b-5p was highly expressed in BMSCs from children with AA, and the BMSCs surface markers expressions in BMSCs derived from children with AA and the healthy controls exerted no significant differences. Besides, the overexpression of miR-146b-5p in normal human-derived BMSCs promoted the adipogenic differentiation of BMSCs. Furthermore, miR-146b-5p negatively regulated SIAH2 luciferase activity, and the interference with miR-146b-5p reduced the stability of PPARγ protein and inhibited SIAH2-mediated ubiquitination of PPARγ protein. Besides, the interference with miR-146b-5p was beneficial for ameliorating AA in a mouse model of AA. Overall, our results found that miR-146b-5p was highly expressed in BMSCs from children with AA, and our further studies indicated that miR-146b-5p improved AA via promoting SIAH2-mediated ubiquitination of PPARγ protein.
Collapse
Affiliation(s)
- Huanhuan Li
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xueju Xu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dao Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Zeng
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bai Li
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan Zhang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shufang Su
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Linlin Wei
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongliang You
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingqi Fang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingchao Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yufeng Liu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Mahendra CK, Tan LTH, Lee WL, Yap WH, Pusparajah P, Low LE, Tang SY, Chan KG, Lee LH, Goh BH. Angelicin-A Furocoumarin Compound With Vast Biological Potential. Front Pharmacol 2020; 11:366. [PMID: 32372949 PMCID: PMC7176996 DOI: 10.3389/fphar.2020.00366] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/10/2020] [Indexed: 12/14/2022] Open
Abstract
Angelicin, a member of the furocoumarin group, is related to psoralen which is well known for its effectiveness in phototherapy. The furocoumarins as a group have been studied since the 1950s but only recently has angelicin begun to come into its own as the subject of several biological studies. Angelicin has demonstrated anti-cancer properties against multiple cell lines, exerting effects via both the intrinsic and extrinsic apoptotic pathways, and also demonstrated an ability to inhibit tubulin polymerization to a higher degree than psoralen. Besides that, angelicin too demonstrated anti-inflammatory activity in inflammatory-related respiratory and neurodegenerative ailments via the activation of NF-κB pathway. Angelicin also showed pro-osteogenesis and pro-chondrogenic effects on osteoblasts and pre-chondrocytes respectively. The elevated expression of pro-osteogenic and chondrogenic markers and activation of TGF-β/BMP, Wnt/β-catenin pathway confirms the positive effect of angelicin bone remodeling. Angelicin also increased the expression of estrogen receptor alpha (ERα) in osteogenesis. Other bioactivities, such as anti-viral and erythroid differentiating properties of angelicin, were also reported by several researchers with the latter even displaying an even greater aptitude as compared to the commonly prescribed drug, hydroxyurea, which is currently on the market. Apart from that, recently, a new application for angelicin against periodontitis had been studied, where reduction of bone loss was indirectly caused by its anti-microbial properties. All in all, angelicin appears to be a promising compound for further studies especially on its mechanism and application in therapies for a multitude of common and debilitating ailments such as sickle cell anaemia, osteoporosis, cancer, and neurodegeneration. Future research on the drug delivery of angelicin in cancer, inflammation and erythroid differentiation models would aid in improving the bioproperties of angelicin and efficacy of delivery to the targeted site. More in-depth studies of angelicin on bone remodeling, the pro-osteogenic effect of angelicin in various bone disease models and the anti-viral implications of angelicin in periodontitis should be researched. Finally, studies on the binding of angelicin toward regulatory genes, transcription factors, and receptors can be done through experimental research supplemented with molecular docking and molecular dynamics simulation.
Collapse
Affiliation(s)
- Camille Keisha Mahendra
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Subang Jaya, Malaysia
| | - Loh Teng Hern Tan
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Subang Jaya, Malaysia
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Wai Leng Lee
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | - Wei Hsum Yap
- School of Biosciences, Taylor's University, Subang Jaya, Malaysia
| | - Priyia Pusparajah
- Medical Health and Translational Research Group, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Liang Ee Low
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Siah Ying Tang
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Subang Jaya, Malaysia
- Advanced Engineering Platform, Monash University Malaysia, Subang Jaya, Malaysia
| | - Kok Gan Chan
- International Genome Centre, Jiangsu University, Zhenjiang, China
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Learn Han Lee
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Subang Jaya, Malaysia
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Health and Well-Being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Subang Jaya, Malaysia
| |
Collapse
|
11
|
Cepeda SB, Sandoval MJ, Crescitelli MC, Rauschemberger MB, Massheimer VL. The isoflavone genistein enhances osteoblastogenesis: signaling pathways involved. J Physiol Biochem 2020; 76:99-110. [DOI: 10.1007/s13105-019-00722-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/11/2019] [Indexed: 11/24/2022]
|
12
|
Abdallah BM, Ali EM. 5'-hydroxy Auraptene stimulates osteoblast differentiation of bone marrow-derived mesenchymal stem cells via a BMP-dependent mechanism. J Biomed Sci 2019; 26:51. [PMID: 31277646 PMCID: PMC6610929 DOI: 10.1186/s12929-019-0544-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/26/2019] [Indexed: 12/28/2022] Open
Abstract
Background Identifying bone anabolic agents is a superior strategy for the treatment of osteoporosis. Naturally, derived coumarin derivatives have shown osteoanabolic effect in vitro and in vivo. In this study, we investigated the effect of 5′-Hydroxy Auraptene (5′-HA), a coumarin derivative that newly isolated from Lotus lalambensis Schweinf on the differentiation of the mouse bone marrow-derived mesenchymal (skeletal) stem cells (mBMSCs) into osteoblast and adipocyte. Methods The effect of 5′-HA on mBMSCs cell proliferation and osteoblast differentiation was assessed by measuring cell viability, quantitative alkaline phosphatase (ALP) activity assay, Alizarin red staining for matrix mineralization and osteogenic gene array expression. Adipogenesis was measured by Oil Red O staining and quantitative real time PCR (qPCR) analysis of adipogenic markers. Regulation of BMPs signaling pathways by 5′-HA was measured by Western blot analysis and qPCR. Results 5′-HA showed to stimulate the differentiation of mBMSCs into osteogenic cell lineage in a dose-dependent manner, without affecting their differentiation into adipocytic cell lineage. Treatment of mBMSCs with 5′-HA showed to promote significantly the BMP2-induced osteogenesis in mBMSCs via activating Smad1/5/8 phosphorylation and increasing Smad4 expression. Blocking of BMP signaling using BMPR1 selective inhibitor LDN-193189 significantly inhibited the stimulatory effect of 5′-HA on osteogenesis. Conclusions Our data identified 5′-HA, as a novel coumarin derivative that function to stimulate the differentiation of mBMSCs into osteoblasts in BMP-signaling dependent mechanism. Electronic supplementary material The online version of this article (10.1186/s12929-019-0544-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Basem M Abdallah
- Biological Sciences Department, College of Science, King Faisal University, Hofuf-31982, Al-Ahsa, Saudi Arabia. .,Endocrine Research (KMEB), Department of Endocrinology, Odense University Hospital and University of Southern Denmark, Odense, Denmark.
| | - Enas M Ali
- Biological Sciences Department, College of Science, King Faisal University, Hofuf-31982, Al-Ahsa, Saudi Arabia.,Department of Botany and Microbiology, Faculty of Science, Cairo University, Cairo, Egypt
| |
Collapse
|
13
|
Li YP, Wu B, Liang J, Li F. Isopsoralen ameliorates H 2O 2-induced damage in osteoblasts via activating the Wnt/β-catenin pathway. Exp Ther Med 2019; 18:1899-1906. [PMID: 31410152 DOI: 10.3892/etm.2019.7741] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 05/16/2019] [Indexed: 01/03/2023] Open
Abstract
Osteoporosis is a disease with a worldwide prevalence that involves a severe loss of bone mineral density and decreased microarchitecture, which increases the risk of bone fracture. The present study evaluated the effects of isopsoralen on osteoblastic OB-6 cells following hydrogen peroxide (H2O2)-induced damage and investigated the molecular mechanisms involved in this process. For in vitro experiments, OB-6 osteoblasts were treated with H2O2 or H2O2 + isopsoralen then the cell viability, apoptosis, reactive oxygen species (ROS) production and calcium accumulation were determined. Results demonstrated that treatment with H2O2 reduced cell viability, runt-related transcription factor 2 (RUNX2) and osteocalcin (OCN) expression levels, and calcium deposition, whilst markedly increasing cell apoptosis and ROS production. However, isopsoralen (1 µM) provided significant protection against H2O2-induced alterations in osteoblasts. In addition, isopsoralen effectively upregulated protein expression of tankyrase and β-catenin which are the main transductors of the Wnt/β-catenin pathway. Of note, the protective effects of isopsoralen against H2O2-induced damage were attenuated in OB-6 cells treated with tankyrase inhibitor XAV-939. In conclusion, the present findings provided evidence that isopsoralen attenuated oxidative stress-induced injury in osteoblasts via the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yu-Peng Li
- Department of Orthopedics, The People's Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Bin Wu
- Department of Orthopedics, The People's Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Jie Liang
- Department of Orthopedics, The People's Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Fei Li
- Department of Orthopedics, The People's Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China
| |
Collapse
|
14
|
Ge L, Cui Y, Liu B, Yin X, Pang J, Han J. ERα and Wnt/β‑catenin signaling pathways are involved in angelicin‑dependent promotion of osteogenesis. Mol Med Rep 2019; 19:3469-3476. [PMID: 30864714 PMCID: PMC6472132 DOI: 10.3892/mmr.2019.9999] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 02/20/2019] [Indexed: 01/08/2023] Open
Abstract
Reports of the ameliorative effect of angelicin on sex hormone deficiency-induced osteoporosis have highlighted this compound as a candidate for the treatment of osteoporosis. However, the molecular mechanisms of action of angelicin on osteoblast differentiation have not been thoroughly researched. The aim of the present study was to evaluate the effect of angelicin on the proliferation, differentiation and mineralization of rat calvarial osteoblasts using a Cell Counting Kit-8, alkaline phosphatase activity and the expression of osteogenic genes and proteins. Treatment with angelicin promoted the proliferation, matrix mineralization and upregulation of osteogenic marker genes including collagen type I α 1 and bone γ-carboxyglutamate in fetal rat calvarial osteoblasts. Furthermore, angelicin promoted the expression of β-catenin and runt related transcription factor 2, which serve a vital role in the Wnt/β-catenin signaling pathway. Consistently, the osteogenic effect of angelicin was attenuated by the use of a Wnt inhibitor. Moreover, angelicin increased the expression of estrogen receptor α (ERα), which also serves a key role in osteoblast differentiation. Taken together, these results demonstrated that angelicin may promote osteoblast differentiation through activation of ERα and the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Luna Ge
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Yazhou Cui
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Baoyan Liu
- School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Xiaoli Yin
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Jingxiang Pang
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Jinxiang Han
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| |
Collapse
|
15
|
Li Y, Li J, Zhou Q, Liu Y, Chen W, Xu H. mTORC1 signaling is essential for neurofibromatosis type I gene modulated osteogenic differentiation of BMSCs. J Cell Biochem 2018; 120:2886-2896. [DOI: 10.1002/jcb.26626] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/19/2017] [Indexed: 12/23/2022]
Affiliation(s)
- YiQiang Li
- Department of Pediatric Orthopaedics, GuangZhou Women and Children's Medical Center, Guangzhou Medical University Guangzhou China
| | - JingChun Li
- Department of Pediatric Orthopaedics, GuangZhou Women and Children's Medical Center, Guangzhou Medical University Guangzhou China
| | - QingHe Zhou
- Department of Pediatric Orthopaedics, GuangZhou Women and Children's Medical Center, Guangzhou Medical University Guangzhou China
| | - Yuanzhong Liu
- Department of Pediatric Orthopaedics, GuangZhou Women and Children's Medical Center, Guangzhou Medical University Guangzhou China
| | - WeiDong Chen
- Department of Pediatric Orthopaedics, GuangZhou Women and Children's Medical Center, Guangzhou Medical University Guangzhou China
| | - HongWen Xu
- Department of Pediatric Orthopaedics, GuangZhou Women and Children's Medical Center, Guangzhou Medical University Guangzhou China
| |
Collapse
|
16
|
Shen G, Ren H, Qiu T, Zhang Z, Zhao W, Yu X, Huang J, Tang J, Liang D, Yao Z, Yang Z, Jiang X. Mammalian target of rapamycin as a therapeutic target in osteoporosis. J Cell Physiol 2017; 233:3929-3944. [PMID: 28834576 DOI: 10.1002/jcp.26161] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/21/2017] [Indexed: 12/19/2022]
Abstract
The mechanistic target of rapamycin (mTOR) plays a key role in sensing and integrating large amounts of environmental cues to regulate organismal growth, homeostasis, and many major cellular processes. Recently, mounting evidences highlight its roles in regulating bone homeostasis, which sheds light on the pathogenesis of osteoporosis. The activation/inhibition of mTOR signaling is reported to positively/negatively regulate bone marrow mesenchymal stem cells (BMSCs)/osteoblasts-mediated bone formation, adipogenic differentiation, osteocytes homeostasis, and osteoclasts-mediated bone resorption, which result in the changes of bone homeostasis, thereby resulting in or protect against osteoporosis. Given the likely importance of mTOR signaling in the pathogenesis of osteoporosis, here we discuss the detailed mechanisms in mTOR machinery and its association with osteoporosis therapy.
Collapse
Affiliation(s)
- Gengyang Shen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Ren
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ting Qiu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhida Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenhua Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiang Yu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinjing Huang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingjing Tang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - De Liang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhensong Yao
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhidong Yang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaobing Jiang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory Affiliated to National Key Discipline of Orthopaedic and Traumatology of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|