1
|
Peiu SN, Iosep DG, Danciu M, Scripcaru V, Ianole V, Mocanu V. Ghrelin Expression in Atherosclerotic Plaques and Perivascular Adipose Tissue: Implications for Vascular Inflammation in Peripheral Artery Disease. J Clin Med 2024; 13:3737. [PMID: 38999303 PMCID: PMC11242600 DOI: 10.3390/jcm13133737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Atherosclerosis, a leading cause of peripheral artery disease (PAD), is driven by lipid accumulation and chronic inflammation within arterial walls. Objectives: This study investigates the expression of ghrelin, an anti-inflammatory peptide hormone, in plaque morphology and inflammation in patients with PAD, highlighting its potential role in age-related vascular diseases and metabolic syndrome. Methods: The analysis specifically focused on the immunohistochemical expression of ghrelin in atherosclerotic plaques and perivascular adipose tissue (PVAT) from 28 PAD patients. Detailed immunohistochemical staining was performed to identify ghrelin within these tissues, comparing its presence in various plaque types and assessing its association with markers of inflammation and macrophage polarization. Results: Significant results showed a higher prevalence of calcification in fibro-lipid plaques (63.1%) compared to fibrous plaques, with a notable difference in inflammatory infiltration between the two plaque types (p = 0.027). Complicated plaques exhibited increased ghrelin expression, suggesting a modulatory effect on inflammatory processes, although this did not reach statistical significance. The correlation between ghrelin levels and macrophage presence, especially the pro-inflammatory M1 phenotype, indicates ghrelin's involvement in the inflammatory dynamics of atherosclerosis. Conclusions: The findings propose that ghrelin may influence plaque stability and vascular inflammation, pointing to its therapeutic potential in managing atherosclerosis. The study underlines the necessity for further research to clarify ghrelin's impact on vascular health, particularly in the context of metabolic syndrome and age-related vascular alterations.
Collapse
Affiliation(s)
- Sorin Nicolae Peiu
- Vascular Surgery Department, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Morpho-Functional Sciences II (Physiopathology) Department, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Diana Gabriela Iosep
- Pathology Department, "Sf. Spiridon" Emergency Clinical Hospital, 700111 Iasi, Romania
- Morpho-Functional Department-Morphopathology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Mihai Danciu
- Pathology Department, "Sf. Spiridon" Emergency Clinical Hospital, 700111 Iasi, Romania
- Morpho-Functional Department-Morphopathology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Veronica Scripcaru
- Morpho-Functional Department-Morphopathology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Victor Ianole
- Morpho-Functional Department-Morphopathology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Veronica Mocanu
- Morpho-Functional Sciences II (Physiopathology) Department, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
2
|
Inceu AI, Neag MA, Craciun AE, Buzoianu AD. Gut Molecules in Cardiometabolic Diseases: The Mechanisms behind the Story. Int J Mol Sci 2023; 24:3385. [PMID: 36834796 PMCID: PMC9965280 DOI: 10.3390/ijms24043385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Atherosclerotic cardiovascular disease is the most common cause of morbidity and mortality worldwide. Diabetes mellitus increases cardiovascular risk. Heart failure and atrial fibrillation are associated comorbidities that share the main cardiovascular risk factors. The use of incretin-based therapies promoted the idea that activation of alternative signaling pathways is effective in reducing the risk of atherosclerosis and heart failure. Gut-derived molecules, gut hormones, and gut microbiota metabolites showed both positive and detrimental effects in cardiometabolic disorders. Although inflammation plays a key role in cardiometabolic disorders, additional intracellular signaling pathways are involved and could explain the observed effects. Revealing the involved molecular mechanisms could provide novel therapeutic strategies and a better understanding of the relationship between the gut, metabolic syndrome, and cardiovascular diseases.
Collapse
Affiliation(s)
- Andreea-Ioana Inceu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Maria-Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Anca-Elena Craciun
- Department of Diabetes, and Nutrition Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Anca-Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Research progress of ghrelin on cardiovascular disease. Biosci Rep 2021; 41:227556. [PMID: 33427286 PMCID: PMC7823193 DOI: 10.1042/bsr20203387] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 01/04/2023] Open
Abstract
Ghrelin, a 28-aminoacid peptide, was isolated from the human and rat stomach and identified in 1999 as an endogenous ligand for the growth hormone secretagogue-receptor (GHS-R). In addition to stimulating appetite and regulating energy balance, ghrelin and its receptor GHS-R1a have a direct effect on the cardiovascular system. In recent years, it has been shown that ghrelin exerts cardioprotective effects, including the modulation of sympathetic activity and hypertension, enhancement of the vascular activity and angiogenesis, inhibition of arrhythmias, reduction in heart failure and inhibition of cardiac remodeling after myocardial infarction (MI). The cardiovascular protective effect of ghrelin may be associated with anti-inflammation, anti-apoptosis, inhibited sympathetic nerve activation, regulated autophagy, and endothelial dysfunction. However, the molecular mechanisms underlying the effects of ghrelin on the cardiovascular system have not been fully elucidated, and no specific therapeutic agent has been established. It is important to further explore the pharmacological potential of ghrelin pathway modulation for the treatment of cardiovascular diseases.
Collapse
|
4
|
Reich N, Hölscher C. Acylated Ghrelin as a Multi-Targeted Therapy for Alzheimer's and Parkinson's Disease. Front Neurosci 2020; 14:614828. [PMID: 33381011 PMCID: PMC7767977 DOI: 10.3389/fnins.2020.614828] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022] Open
Abstract
Much thought has been given to the impact of Amyloid Beta, Tau and Alpha-Synuclein in the development of Alzheimer's disease (AD) and Parkinson's disease (PD), yet the clinical failures of the recent decades indicate that there are further pathological mechanisms at work. Indeed, besides amyloids, AD and PD are characterized by the culminative interplay of oxidative stress, mitochondrial dysfunction and hyperfission, defective autophagy and mitophagy, systemic inflammation, BBB and vascular damage, demyelination, cerebral insulin resistance, the loss of dopamine production in PD, impaired neurogenesis and, of course, widespread axonal, synaptic and neuronal degeneration that leads to cognitive and motor impediments. Interestingly, the acylated form of the hormone ghrelin has shown the potential to ameliorate the latter pathologic changes, although some studies indicate a few complications that need to be considered in the long-term administration of the hormone. As such, this review will illustrate the wide-ranging neuroprotective properties of acylated ghrelin and critically evaluate the hormone's therapeutic benefits for the treatment of AD and PD.
Collapse
Affiliation(s)
- Niklas Reich
- Biomedical & Life Sciences Division, Lancaster University, Lancaster, United Kingdom
| | - Christian Hölscher
- Neurology Department, A Second Hospital, Shanxi Medical University, Taiyuan, China.,Research and Experimental Center, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
5
|
Huang J, Liu W, Doycheva DM, Gamdzyk M, Lu W, Tang J, Zhang JH. Ghrelin attenuates oxidative stress and neuronal apoptosis via GHSR-1α/AMPK/Sirt1/PGC-1α/UCP2 pathway in a rat model of neonatal HIE. Free Radic Biol Med 2019; 141:322-337. [PMID: 31279091 PMCID: PMC6718314 DOI: 10.1016/j.freeradbiomed.2019.07.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 11/26/2022]
Abstract
Neuronal apoptosis induced by oxidative stress is one of the major pathological processes involved in neurological impairment after hypoxic-ischemic encephalopathy (HIE). Ghrelin, the unique endogenous ligand for the growth hormone secretagogue receptor-1α (GHSR-1α), could take an anti-apoptotic role in the brain. However, whether ghrelin can attenuate neuronal apoptosis by attenuating oxidative stress after hypoxia-ischemia (HI) insult remains unknown. To investigate the beneficial effects of ghrelin on oxidative stress injury and neuronal apoptosis induced by HI, ten-day old unsexed rat pups were subjected to HI injury and exogenous recombinant human ghrelin(rh-Ghrelin) was administered intranasally at 1 h and 24 h after HI induction. [D-Lys3]-GHRP-6, a selective inhibitor of GHSR-1α and Ex527, a selective inhibitor of GHSR-1α were administered intranasally at 1 h before HI induction respectively. Small interfering ribonucleic acid (siRNA) for GHSR-1α were administered by intracerebroventricular (i.c.v) injection at 24 h before HI induction. Neurological tests, immunofluorescence, MitoSox staining, Fluoro-Jade C staining, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and western blot experiments were performed. Our results indicated that ghrelin significantly improved neurobehavioral outcomes and reduced oxidative stress and neuronal apoptosis. Moreover, ghrelin treatment significantly promoted phosphorylation of AMPK, upregulated the expression of Sirt1, PGC-1α, UCP2 and the ratio of Bcl2/Bax, while it downregulated cleaved caspase-3 levels. The protective effects of ghrelin were reversed by [D-Lys3]-GHRP-6, GHSR-1α siRNA or Ex527. In conclusion, our data demonstrated that ghrelin reduced oxidative stress injury and neuronal apoptosis which was in part via the GHSR-1α/AMPK/Sirt1/PGC-1α/UCP2 signalling pathway after HI. Ghrelin may be a novel therapeutic target for treatment after neonatasl HI injury.
Collapse
Affiliation(s)
- Juan Huang
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China; Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Wei Liu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA; Department of Physiology, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Desislava Met Doycheva
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Marcin Gamdzyk
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Weitian Lu
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China; Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA; Department of Anesthesiology, Loma Linda University, Loma Linda, CA, 92350, USA; Department of Neurosurgery, Loma Linda University, Loma Linda, CA, 92350, USA.
| |
Collapse
|
6
|
Uncoupling proteins as a therapeutic target to protect the diabetic heart. Pharmacol Res 2018; 137:11-24. [PMID: 30223086 DOI: 10.1016/j.phrs.2018.09.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/07/2018] [Accepted: 09/13/2018] [Indexed: 12/16/2022]
Abstract
Myocardial remodeling and dysfunction caused by accelerated oxidative damage is a widely reported phenomenon within a diabetic state. Altered myocardial substrate preference appears to be the major cause of enhanced oxidative stress-mediated cell injury within a diabetic heart. During this process, exacerbated free fatty acid flux causes an abnormal increase in mitochondrial membrane potential leading to the overproduction of free radical species and subsequent cell damage. Uncoupling proteins (UCPs) are expressed within the myocardium and can protect against free radical damage by modulating mitochondrial respiration, leading to reduced production of reactive oxygen species. Moreover, transgenic animals lacking UCPs have been shown to be more susceptible to oxidative damage and display reduced cardiac function when compared to wild type animals. This suggests that tight regulation of UCPs is necessary for normal cardiac function and in the prevention of diabetes-induced oxidative damage. This review aims to enhance our understanding of the pathophysiological mechanisms relating to the role of UCPs in a diabetic heart, and further discuss known pharmacological compounds and hormones that can protect a diabetic heart through the modulation of UCPs.
Collapse
|
7
|
Ježek P, Holendová B, Garlid KD, Jabůrek M. Mitochondrial Uncoupling Proteins: Subtle Regulators of Cellular Redox Signaling. Antioxid Redox Signal 2018; 29:667-714. [PMID: 29351723 PMCID: PMC6071544 DOI: 10.1089/ars.2017.7225] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Mitochondria are the energetic, metabolic, redox, and information signaling centers of the cell. Substrate pressure, mitochondrial network dynamics, and cristae morphology state are integrated by the protonmotive force Δp or its potential component, ΔΨ, which are attenuated by proton backflux into the matrix, termed uncoupling. The mitochondrial uncoupling proteins (UCP1-5) play an eminent role in the regulation of each of the mentioned aspects, being involved in numerous physiological events including redox signaling. Recent Advances: UCP2 structure, including purine nucleotide and fatty acid (FA) binding sites, strongly support the FA cycling mechanism: UCP2 expels FA anions, whereas uncoupling is achieved by the membrane backflux of protonated FA. Nascent FAs, cleaved by phospholipases, are preferential. The resulting Δp dissipation decreases superoxide formation dependent on Δp. UCP-mediated antioxidant protection and its impairment are expected to play a major role in cell physiology and pathology. Moreover, UCP2-mediated aspartate, oxaloacetate, and malate antiport with phosphate is expected to alter metabolism of cancer cells. CRITICAL ISSUES A wide range of UCP antioxidant effects and participations in redox signaling have been reported; however, mechanisms of UCP activation are still debated. Switching off/on the UCP2 protonophoretic function might serve as redox signaling either by employing/releasing the extra capacity of cell antioxidant systems or by directly increasing/decreasing mitochondrial superoxide sources. Rapid UCP2 degradation, FA levels, elevation of purine nucleotides, decreased Mg2+, or increased pyruvate accumulation may initiate UCP-mediated redox signaling. FUTURE DIRECTIONS Issues such as UCP2 participation in glucose sensing, neuronal (synaptic) function, and immune cell activation should be elucidated. Antioxid. Redox Signal. 29, 667-714.
Collapse
Affiliation(s)
- Petr Ježek
- 1 Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences , Prague, Czech Republic
| | - Blanka Holendová
- 1 Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences , Prague, Czech Republic
| | - Keith D Garlid
- 2 UCLA Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA , Los Angeles, California
| | - Martin Jabůrek
- 1 Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences , Prague, Czech Republic
| |
Collapse
|
8
|
Ghrelin prevents articular cartilage matrix destruction in human chondrocytes. Biomed Pharmacother 2018; 98:651-655. [PMID: 29291551 DOI: 10.1016/j.biopha.2017.12.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/01/2017] [Accepted: 12/13/2017] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) is the most common form of arthritis worldwide. Excessive production of pro-inflammatory cytokines such as interleukin-1β (IL-1β) plays a key role in the pathogenesis of OA. OA is generally characterized by degradation of extracellular matrixes such as type II collagen and aggrecans mediated by matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS). Ghrelin is a secreted peptide hormone regulating appetite and the distribution and rate of use of energy. However, the physiological and pharmacological roles of Ghrelin on the pathological progression of OA haven't been reported before. In the current study, our results indicate that Ghrelin reduced IL-1β-induced expression of MMP-3, MMP-13, ADAMTS-4 and ADAMTS-5 in a concentration-dependent manner. Notably, Ghrelin ameliorated IL-1β-induced degradation of type II collagen and aggrecan. Mechanistically, Ghrelin is able to inhibit the expression of IRF-1 mediated by inactivating the JAK2/STAT3 pathway. However, Ghrelin didn't have any impact on IL-1β induced activation of p38. Taken together, our findings identify a novel function of Ghrelin on inhibiting the degradation of type II collagen and aggrecan.
Collapse
|
9
|
Li W, Wu X, Qu R, Wang W, Chen X, Cheng L, Liu Y, Guo L, Zhao Y, Liu C. Ghrelin protects against nucleus pulposus degeneration through inhibition of NF-κB signaling pathway and activation of Akt signaling pathway. Oncotarget 2017; 8:91887-91901. [PMID: 29190883 PMCID: PMC5696149 DOI: 10.18632/oncotarget.19695] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022] Open
Abstract
The objective of the present study was to examine the potential role of ghrelin in degeneration of nucleus pulposus (NP). Lower expression levels of ghrelin were found in human NP cells stimulated with interleukin-1β (IL-1β). Moreover, exogenous ghrelin suppressed IL-1β induced degeneration and inflammation associated biomarkers in human NP cells, including matrix metalloproteinase-13, a disintegrin and metalloproteinase with thrombospondin motifs-5, tumor necrosis factor-α and iNOS, which was possibly mediated by antagonization of NF-κB signaling. Moreover, ghrelin enhanced production of critical extracellular matrix of NP cells, including collagen 2, aggrecan, and Sox-9 in NP cells. Ghrelin also promoted NP tissue regeneration in a rabbit IVD degeneration model, which seems to be associated with growth hormone secretagogue receptor. Additionally, the protective role of ghrelin in anabolism potentially relies on activation of Akt signaling pathway. Taken together, ghrelin may represent a molecular target for prevention and treatment of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Xihai Wu
- Department of Gynaecology and Obstetrics, Jinan Central Hospital, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Ruize Qu
- Medical School of Shandong University, Jinan, Shandong 250012, P. R. China
| | - Wenhan Wang
- Medical School of Shandong University, Jinan, Shandong 250012, P. R. China
| | - Xiaomin Chen
- Medical School of Shandong University, Jinan, Shandong 250012, P. R. China
| | - Lei Cheng
- Department of Orthopaedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Yaoge Liu
- Medical School of Shandong University, Jinan, Shandong 250012, P. R. China
| | - Linlin Guo
- Medical School of Shandong University, Jinan, Shandong 250012, P. R. China
| | - Yunpeng Zhao
- Department of Orthopaedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Chao Liu
- Department of Oral and Maxillofacial Surgery and Institute of Dental Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P. R. China
| |
Collapse
|