1
|
Marinho PA, Jeong G, Shin SH, Kim SN, Choi H, Lee SH, Park BC, Hong YD, Kim HJ, Park WS. The development of an in vitrohuman hair follicle organoid with a complexity similar to that in vivo. Biomed Mater 2024; 19:025041. [PMID: 38324888 DOI: 10.1088/1748-605x/ad2707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
In vitrohair follicle (HF) models are currently limited toex vivoHF organ cultures (HFOCs) or 2D models that are of low availability and do not reproduce the architecture or behavior of the hair, leading to poor screening systems. To resolve this issue, we developed a technology for the construction of a humanin vitrohair construct based on the assemblage of different types of cells present in the hair organ. First, we demonstrated that epithelial cells, when isolatedin vitro, have similar genetic signatures regardless of their dissection site, and their trichogenic potential is dependent on the culture conditions. Then, using cell aggregation techniques, 3D spheres of dermal papilla (DP) were constructed, and subsequently, epithelial cells were added, enabling the production and organization of keratins in hair, similar to what is seenin vivo. These reconstructed tissues resulted in the following hair compartments: K71 (inner root-sheath), K85 (matrix region), K75 (companion layer), and vimentin (DP). Furthermore, the new hair model was able to elongate similarly toex vivoHFOC, resulting in a shaft-like shape several hundred micrometers in length. As expected, when the model was exposed to hair growth enhancers, such as ginseng extract, or inhibitors, such as TGF-B-1, significant effects similar to thosein vivowere observed. Moreover, when transplanted into skin biopsies, the new constructs showed signs of integration and hair bud generation. Owing to its simplicity and scalability, this model fully enables high throughput screening of molecules, which allows understanding of the mechanism by which new actives treat hair loss, finding optimal concentrations, and determining the synergy and antagonism among different raw materials. Therefore, this model could be a starting point for applying regenerative medicine approaches to treat hair loss.
Collapse
Affiliation(s)
| | - Gyusang Jeong
- AMOREPACIFIC Research and Innovation Center, Yongin-si, Republic of Korea
| | - Seung Hyun Shin
- AMOREPACIFIC Research and Innovation Center, Yongin-si, Republic of Korea
| | - Su Na Kim
- AMOREPACIFIC Research and Innovation Center, Yongin-si, Republic of Korea
| | - Hyeongwon Choi
- AMOREPACIFIC Research and Innovation Center, Yongin-si, Republic of Korea
| | - Sung Hoon Lee
- AMOREPACIFIC Research and Innovation Center, Yongin-si, Republic of Korea
| | - Byung Cheol Park
- Department of Dermatology, College of Medicine, Dankook University, Cheonan-si, Republic of Korea
| | - Yong Deog Hong
- AMOREPACIFIC Research and Innovation Center, Yongin-si, Republic of Korea
| | - Hyoung-June Kim
- AMOREPACIFIC Research and Innovation Center, Yongin-si, Republic of Korea
| | - Won-Seok Park
- AMOREPACIFIC Research and Innovation Center, Yongin-si, Republic of Korea
| |
Collapse
|
2
|
Kesika P, Sivamaruthi BS, Thangaleela S, Bharathi M, Chaiyasut C. Role and Mechanisms of Phytochemicals in Hair Growth and Health. Pharmaceuticals (Basel) 2023; 16:206. [PMID: 37259355 PMCID: PMC9963650 DOI: 10.3390/ph16020206] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2024] Open
Abstract
Hair health is associated with personal distress and psychological well-being. Even though hair loss (alopecia) does not affect humans' biological health, it affects an individual's social well-being. So, treatment for hair problems and improving hair health are obligatory. Several pharmacological and cosmeceutical treatment procedures are available to manage hair loss and promote growth. Several factors associated with hair health include genetics, disease or disorder, drugs, lifestyle, chemical exposure, and unhealthy habits such as smoking, diet, and stress. Synthetic and chemical formulations have side effects, so people are moving towards natural compounds-based remedies for their hair problems. The history of using phytochemicals for hair health has been documented anciently. However, scientific studies on hair loss have accelerated in recent decades. The current review summarizes the type of alopecia, the factor affecting hair health, alopecia treatments, phytochemicals' role in managing hair loss, and the mechanisms of hair growth-stimulating properties of phytochemicals. The literature survey suggested that phytochemicals are potent candidates for developing treatment procedures for different hair problems. Further detailed studies are needed to bring the scientific evidence to market.
Collapse
Affiliation(s)
- Periyanaina Kesika
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Subramanian Thangaleela
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Muruganantham Bharathi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Jeong G, Shin SH, Kim SN, Na Y, Park BC, Cho JH, Park WS, Kim HJ. Ginsenoside Re prevents 3-methyladenine-induced catagen phase acceleration by regulating Wnt/β-catenin signaling in human dermal papilla cells. J Ginseng Res 2022; 47:440-447. [DOI: 10.1016/j.jgr.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/07/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022] Open
|
4
|
Dou J, Zhang Z, Xu X, Zhang X. Exploring the effects of Chinese herbal ingredients on the signaling pathway of alopecia and the screening of effective Chinese herbal compounds. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115320. [PMID: 35483562 DOI: 10.1016/j.jep.2022.115320] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE alopecia is a hair disorder that can add a significant medical and psychological burden to patients. Currently, the FDA-approved drugs for the treatment of androgenetic alopecia (AGA) are minoxidil and finasteride and immunosuppressives are therapeutic options for alopecia areata (AA), but the objective adverse effects and high cost of these treatments reduce patient compliance and thus the effectiveness of the drugs. Traditional Chinese medicine (TCM) has good efficacy, a high safety profile and low treatment costs, but its mechanism of action is still not fully understood. The use of signaling pathways to modulate hair loss is a major direction in the study of the pathogenesis and pharmacology of alopecia. AIM OF THE STUDY This review aims to collect the results of experimental studies related to alopecia, to screen previously documented combinations of herbs claimed to be effective based on the herbs and their constituent compounds used in the identified studies, and to uncover other useful information that we hope will better guide the clinical application and scientific research of drug combinations or individual herbs for the treatment of alopecia. MATERIALS AND METHODS We have reviewed experimental studies to determine the methods used and the mechanisms of action of the herbs and constituent compounds. The following keywords were searched in databases, including PubMed, EMBASE, CNKI and CSTJ." Medicinal plants" "Chinese herbal medicine", "hair loss", " alopecia", "androgenetic alopecia" and " alopecia areata ". We also collected combinations of drugs from books approved by various schools for screening. RESULTS Using known combinations of compounds within herbal medicine to match the documented combinations, 34 topical combinations and 74 oral combinations were identified, and among the 108 herbal combinations screened Angelica, Rehmannia glutinosaLigusticum chuanxiong hort, Radix Rehmanniae, etc. The number of occurrences was very high, and the association with vascular drugs was also found to be very close. CONCLUSIONS This review further elucidates the therapeutic mechanisms of the compounds within the herbal components associated with alopecia and screens for other combinations that may be dominated by this component for the treatment of alopecia, uncovering compounds from other drugs that may be key factors in the treatment of alopecia. This improvement will provide a better quality of evidence for the effectiveness of herbs and compounds used to treat alopecia.
Collapse
Affiliation(s)
- Jinjin Dou
- The First Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Zhiming Zhang
- The First Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Xianrong Xu
- The First Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Xiwu Zhang
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China.
| |
Collapse
|
5
|
SHIN JY, SHIN DJ, KANG HJ, CHO BO, PARK JH, JANG SI. Hair loss improvement effect of Chrysanthemum zawadskii, peppermint and Glycyrrhiza glabra herbal mixture in human follicle dermal papilla cell and C57BL/6 mice. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.115921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jae Young SHIN
- Jeonju University, Republic of Korea; Jeonbuk National University, Republic of Korea
| | | | | | - Byoung Ok CHO
- Jeonju University, Republic of Korea; Research Institute, Republic of Korea
| | | | - Seon Il JANG
- Jeonju University, Republic of Korea; Jeonju University, Republic of Korea
| |
Collapse
|
6
|
Park S, Lee J. Modulation of Hair Growth Promoting Effect by Natural Products. Pharmaceutics 2021; 13:pharmaceutics13122163. [PMID: 34959442 PMCID: PMC8706577 DOI: 10.3390/pharmaceutics13122163] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 02/04/2023] Open
Abstract
A large number of people suffer from alopecia or hair loss worldwide. Drug-based therapies using minoxidil and finasteride for the treatment of alopecia are available, but they have shown various side effects in patients. Thus, the use of new therapeutic approaches using bioactive products to reduce the risk of anti-hair-loss medications has been emphasized. Natural products have been used since ancient times and have been proven safe, with few side effects. Several studies have demonstrated the use of plants and their extracts to promote hair growth. Moreover, commercial products based on these natural ingredients have been developed for the treatment of alopecia. Several clinical, animal, and cell-based studies have been conducted to determine the anti-alopecia effects of plant-derived biochemicals. This review is a collective study of phytochemicals with anti-alopecia effects, focusing mainly on the mechanisms underlying their hair-growth-promoting effects.
Collapse
Affiliation(s)
- Seyeon Park
- Department of Applied Chemistry, Dongduk Women’s University, Seoul 02748, Korea;
| | - Joomin Lee
- Department of Food and Nutrition, Chosun University, Gwangju 61452, Korea
- Correspondence: ; Tel.: +82-62-230-7722
| |
Collapse
|
7
|
Papukashvili D, Rcheulishvili N, Liu C, Xie F, Tyagi D, He Y, Wang PG. Perspectives on miRNAs Targeting DKK1 for Developing Hair Regeneration Therapy. Cells 2021; 10:2957. [PMID: 34831180 PMCID: PMC8616136 DOI: 10.3390/cells10112957] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 02/08/2023] Open
Abstract
Androgenetic alopecia (AGA) remains an unsolved problem for the well-being of humankind, although multiple important involvements in hair growth have been discovered. Up until now, there is no ideal therapy in clinical practice in terms of efficacy and safety. Ultimately, there is a strong need for developing a feasible remedy for preventing and treating AGA. The Wnt/β-catenin signaling pathway is critical in hair restoration. Thus, AGA treatment via modulating this pathway is rational, although challenging. Dickkopf-related protein 1 (DKK1) is distinctly identified as an inhibitor of canonical Wnt/β-catenin signaling. Thus, in order to stimulate the Wnt/β-catenin signaling pathway, inhibition of DKK1 is greatly demanding. Studying DKK1-targeting microRNAs (miRNAs) involved in the Wnt/β-catenin signaling pathway may lay the groundwork for the promotion of hair growth. Bearing in mind that DKK1 inhibition in the balding scalp of AGA certainly makes sense, this review sheds light on the perspectives of miRNA-mediated hair growth for treating AGA via regulating DKK1 and, eventually, modulating Wnt/β-catenin signaling. Consequently, certain miRNAs regulating the Wnt/β-catenin signaling pathway via DKK1 inhibition might represent attractive candidates for further studies focusing on promoting hair growth and AGA therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Yunjiao He
- School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China; (D.P.); (N.R.); (C.L.); (F.X.); (D.T.)
| | - Peng George Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China; (D.P.); (N.R.); (C.L.); (F.X.); (D.T.)
| |
Collapse
|
8
|
Lee YH, Choi HJ, Kim JY, Kim JE, Lee JH, Cho SH, Yun MY, An S, Song GY, Bae S. Ginsenoside Rg4 Enhances the Inductive Effects of Human Dermal Papilla Spheres on Hair Growth Via the AKT/GSK-3β/β-Catenin Signaling Pathway. J Microbiol Biotechnol 2021; 31:933-941. [PMID: 34099599 PMCID: PMC9706015 DOI: 10.4014/jmb.2101.01032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 12/15/2022]
Abstract
Ginsenoside Rg4 is a rare ginsenoside that is naturally found in ginseng, and exhibits a wide range of biological activities including antioxidant and anti-inflammatory properties in several cell types. The purpose of this study was to use an in vivo model of hair follicle (HF)-mimic based on a human dermal papilla (DP) spheroid system prepared by three-dimensional (3D) culture and to investigate the effect of Rg4 on the hair-inductive properties of DP cells. Treatment of the DP spheroids with Rg4 (20 to 50 μg/ml) significantly increased the viability and size of the DP spheres in a dose-dependent manner. Rg4 also increased the mRNA and protein expression of DP signature genes that are related to hair growth including ALP, BMP2, and VCAN in the DP spheres. Analysis of the signaling molecules and luciferase reporter assays further revealed that Rg4 induces the activation of phosphoinositide 3-kinase (PI3K)/AKT and the inhibitory phosphorylation of GSK3β, which activates the WNT/β-catenin signaling pathway. These results correlated with not only the increased nuclear translocation of β-catenin following the treatment of the DP spheres with Rg4 but also the significant elevation of mRNA expression of the downstream target genes of the WNT/β-catenin pathway including WNT5A, β-catenin, and LEF1. In conclusion, these results demonstrated that ginsenoside Rg4 promotes the hair-inductive properties of DP cells by activating the AKT/GSK3β/β-catenin signaling pathway in DP spheres, suggesting that Rg4 could be a potential natural therapy for hair growth.
Collapse
Affiliation(s)
- Yun Hee Lee
- Research Institute for Molecular-Targeted Drugs, Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hui-Ji Choi
- College of Pharmacy, Chungnam National University, Daejon 34134, Republic of Korea
| | - Ji Yea Kim
- Research Institute for Molecular-Targeted Drugs, Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Ji-Eun Kim
- College of Pharmacy, Chungnam National University, Daejon 34134, Republic of Korea
| | - Jee-Hyun Lee
- College of Pharmacy, Chungnam National University, Daejon 34134, Republic of Korea
| | - So-Hyun Cho
- College of Pharmacy, Chungnam National University, Daejon 34134, Republic of Korea
| | - Mi-Young Yun
- Department of Beauty Science, Kwangju Women’s University, Gwangju 62396, Republic of Korea
| | - Sungkwan An
- Research Institute for Molecular-Targeted Drugs, Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Gyu Yong Song
- College of Pharmacy, Chungnam National University, Daejon 34134, Republic of Korea,
G.Y. Song Phone: +82-42-821-5926 Fax: +82-42-823-6566 E-mail:
| | - Seunghee Bae
- Research Institute for Molecular-Targeted Drugs, Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Republic of Korea,Corresponding authors S. Bae Phone: +82-2-450-0463 E-mail:
| |
Collapse
|
9
|
A Multimodal Hair-Loss Treatment Strategy Using a New Topical Phytoactive Formulation: A Report of Five Cases. Case Rep Dermatol Med 2021; 2021:6659943. [PMID: 33614172 PMCID: PMC7878086 DOI: 10.1155/2021/6659943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/02/2020] [Accepted: 12/24/2020] [Indexed: 11/17/2022] Open
Abstract
Introduction. Current approved medications for hair loss, such as topical minoxidil and oral finasteride, may have suboptimal efficacy or side effects precluding continued use in some patients. Thus, we report an evaluation of the efficacy, safety, and tolerability of a new topical botanical formulation -GASHEE containing over 12 phytoactive ingredients that affect multiple targets in the cascade of pathophysiologic events that cause hair loss. Five patients with various hair-loss conditions, including cases of previous treatment failures, are presented. Case Presentation. This is a case series of four women and one man with hair loss due to various causes, four of whom had failed minoxidil treatment for over a year. All patients used the topical treatment as a sole therapy for at least 3 months before the documentation of outcomes, which involved interval changes noted through each patient's account, direct observation, and photography. Discussion. In all patients, we observed significant improvements in hair regrowth in the nape, crown, vertex, and temple areas after 3-15 months of treatment. All patients were highly satisfied with their results and reported no adverse events. Although the use of botanicals in the treatment of hair loss is in an infant stage, the new formulation used in this study demonstrated a good efficacy related to hair growth, warranting further evaluation.
Collapse
|
10
|
Dell’Acqua G, Richards A, Thornton MJ. The Potential Role of Nutraceuticals as an Adjuvant in Breast Cancer Patients to Prevent Hair Loss Induced by Endocrine Therapy. Nutrients 2020; 12:nu12113537. [PMID: 33217935 PMCID: PMC7698784 DOI: 10.3390/nu12113537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 12/21/2022] Open
Abstract
Nutraceuticals, natural dietary and botanical supplements offering health benefits, provide a basis for complementary and alternative medicine (CAM). Use of CAM by healthy individuals and patients with medical conditions is rapidly increasing. For the majority of breast cancer patients, treatment plans involve 5–10 yrs of endocrine therapy, but hair loss/thinning is a common side effect. Many women consider this significant, severely impacting on quality of life, even leading to non-compliance of therapy. Therefore, nutraceuticals that stimulate/maintain hair growth can be proposed. Although nutraceuticals are often available without prescription and taken at the discretion of patients, physicians can be reluctant to recommend them, even as adjuvants, since potential interactions with endocrine therapy have not been fully elucidated. It is, therefore, important to understand the modus operandi of ingredients to be confident that their use will not interfere/interact with therapy. The aim is to improve clinical/healthcare outcomes by combining specific nutraceuticals with conventional care whilst avoiding detrimental interactions. This review presents the current understanding of nutraceuticals beneficial to hair wellness and outcomes concerning efficacy/safety in breast cancer patients. We will focus on describing endocrine therapy and the role of estrogens in cancer and hair growth before evaluating the effects of natural ingredients on breast cancer and hair growth.
Collapse
Affiliation(s)
| | | | - M. Julie Thornton
- Centre for Skin Sciences, University of Bradford, Bradford BD17 7DF, UK
- Correspondence:
| |
Collapse
|
11
|
Protective Role of Nutritional Plants Containing Flavonoids in Hair Follicle Disruption: A Review. Int J Mol Sci 2020; 21:ijms21020523. [PMID: 31947635 PMCID: PMC7013965 DOI: 10.3390/ijms21020523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 11/26/2022] Open
Abstract
Hair loss is a disorder in which the hair falls out from skin areas such as the scalp and the body. Several studies suggest the use of herbal medicine to treat related disorders, including alopecia. Dermal microcirculation is essential for hair maintenance, and an insufficient blood supply can lead to hair follicles (HF) diseases. This work aims to provide an insight into the ethnohistorical records of some nutritional compounds containing flavonoids for their potential beneficial features in repairing or recovering from hair follicle disruption. We started from a query for “alopecia” OR “hair loss” AND “Panaxginseng C.A. Mey.“ (or other six botanicals) terms included in Pubmed and Web of Sciences articles. The activities of seven common botanicals introduced with diet (Panaxginseng C.A. Mey., Malus pumila Mill cultivar Annurca, Coffea arabica, Allium sativum L., Camellia sinensis (L.) Kuntze, Rosmarinum officinalis L., Capsicum annum L.) are discussed, which are believed to reduce the rate of hair loss or stimulate new hair growth. In this review, we pay our attention on the molecular mechanisms underlying the bioactivity of the aforementioned nutritional compounds in vivo, ex vivo and in vitro studies. There is a need for systematic evaluation of the most commonly used plants to confirm their anti-hair loss power, identify possible mechanisms of action, and recommend their best adoption.
Collapse
|
12
|
Stimulating hair growth via hormesis: Experimental foundations and clinical implications. Pharmacol Res 2019; 152:104599. [PMID: 31857242 DOI: 10.1016/j.phrs.2019.104599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 12/19/2022]
Abstract
Numerous agents (approximately 90) are shown to stimulate hair growth in cellular and animal models in a hormetic-like biphasic dose response manner. These hormetic dose responses occur within the framework of direct stimulatory responses as well as in preconditioning experimental protocols. These findings have important implications for experimental and clinical investigations with respect to study design strategies, dose selection and dose spacing along with sample size and statistical power issues. These findings further reflect the general occurrence of hormetic dose responses within the biological and biomedical literature that consistently appear to be independent of biological model, level of biological organization (i.e., cell, organ, and organism), endpoint, inducing agent, potency of the inducing agent, and mechanism.
Collapse
|
13
|
Daniels G, Akram S, Westgate GE, Tamburic S. Can plant-derived phytochemicals provide symptom relief for hair loss? A critical review. Int J Cosmet Sci 2019; 41:332-345. [DOI: 10.1111/ics.12554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/23/2019] [Accepted: 06/22/2019] [Indexed: 12/16/2022]
Affiliation(s)
- G. Daniels
- Cosmetic Science Research Group; University of the Arts, London; 20 John Princes Street London U.K
| | - S. Akram
- Cosmetic Science Research Group; University of the Arts, London; 20 John Princes Street London U.K
| | - G. E. Westgate
- Gill Westgate Consultancy Ltd; Stevington Bedfordshire U.K
| | - S. Tamburic
- Cosmetic Science Research Group; University of the Arts, London; 20 John Princes Street London U.K
| |
Collapse
|
14
|
Hair-Growth Potential of Ginseng and Its Major Metabolites: A Review on Its Molecular Mechanisms. Int J Mol Sci 2018; 19:ijms19092703. [PMID: 30208587 PMCID: PMC6163201 DOI: 10.3390/ijms19092703] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 12/12/2022] Open
Abstract
The functional aspect of scalp hair is not only to protect from solar radiation and heat/cold exposure but also to contribute to one's appearance and personality. Progressive hair loss has a cosmetic and social impact. Hair undergoes three stages of hair cycle: the anagen, catagen, and telogen phases. Through cyclical loss and new-hair growth, the number of hairs remains relatively constant. A variety of factors, such as hormones, nutritional status, and exposure to radiations, environmental toxicants, and medications, may affect hair growth. Androgens are the most important of these factors that cause androgenic alopecia. Other forms of hair loss include immunogenic hair loss, that is, alopecia areata. Although a number of therapies, such as finasteride and minoxidil, are approved medications, and a few others (e.g., tofacitinib) are in progress, a wide variety of structurally diverse classes of phytochemicals, including those present in ginseng, have demonstrated hair growth-promoting effects in a large number of preclinical studies. The purpose of this review is to focus on the potential of ginseng and its metabolites on the prevention of hair loss and its underlying mechanisms.
Collapse
|