1
|
Ahangar Davoodi N, Najafi S, Naderi Ghale-Noie Z, Piranviseh A, Mollazadeh S, Ahmadi Asouri S, Asemi Z, Morshedi M, Tamehri Zadeh SS, Hamblin MR, Sheida A, Mirzaei H. Role of non-coding RNAs and exosomal non-coding RNAs in retinoblastoma progression. Front Cell Dev Biol 2022; 10:1065837. [PMID: 36619866 PMCID: PMC9816416 DOI: 10.3389/fcell.2022.1065837] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Retinoblastoma (RB) is a rare aggressive intraocular malignancy of childhood that has the potential to affect vision, and can even be fatal in some children. While the tumor can be controlled efficiently at early stages, metastatic tumors lead to high mortality. Non-coding RNAs (ncRNAs) are implicated in a number of physiological cellular process, including differentiation, proliferation, migration, and invasion, The deregulation of ncRNAs is correlated with several diseases, particularly cancer. ncRNAs are categorized into two main groups based on their length, i.e. short and long ncRNAs. Moreover, ncRNA deregulation has been demonstrated to play a role in the pathogenesis and development of RB. Several ncRNAs, such as miR-491-3p, miR-613,and SUSD2 have been found to act as tumor suppressor genes in RB, but other ncRNAs, such as circ-E2F3, NEAT1, and TUG1 act as tumor promoter genes. Understanding the regulatory mechanisms of ncRNAs can provide new opportunities for RB therapy. In the present review, we discuss the functional roles of the most important ncRNAs in RB, their interaction with the genes responsible for RB initiation and progression, and possible future clinical applications as diagnostic and prognostic tools or as therapeutic targets.
Collapse
Affiliation(s)
- Nasrin Ahangar Davoodi
- Eye Research Center, Rassoul Akram Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zari Naderi Ghale-Noie
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ashkan Piranviseh
- Brain and Spinal Cord Injury Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammadamin Morshedi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran,*Correspondence: Amirhossein Sheida, ; Hamed Mirzaei, ,
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran,*Correspondence: Amirhossein Sheida, ; Hamed Mirzaei, ,
| |
Collapse
|
2
|
Chai Y, Jiao S, Peng X, Gan Q, Chen L, Hu X, Hao L, Zhang S, Tao Q. RING-Finger Protein 6 promotes Drug Resistance in Retinoblastoma via JAK2/STAT3 Signaling Pathway. Pathol Oncol Res 2022; 28:1610273. [PMID: 35369571 PMCID: PMC8971205 DOI: 10.3389/pore.2022.1610273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/01/2022] [Indexed: 11/24/2022]
Abstract
Chemotherapy is the first-line treatment for human retinoblastoma (RB), but the occurrence of drug resistance greatly limited its efficacy in practice. RING-finger protein 6 (RNF6) is an E3 ubiquitin ligase that is aberrantly upregulated in a range of cancers and plays important roles in cancer progression. However, the role of RNF6 in RB is largely unknown. In this study, we investigated the role of RNF6 in RB drug resistance. Two carboplatin-resistant RB cells, Y-79/CR and SO-Rb50/CR, were generated based on Y-79 and SO-Rb50 cells. RT-PCR and western blot analyses showed that RNF6 expression on both mRNA and protein levels was significantly increased in Y-79/CR and SO-Rb50/CR cells comparing to their parental cells. Knockdown of RNF6 using siRNA in Y-79/CR and SO-Rb50/CR cells resulted in cells sensitive to carboplatin on a RNF6 siRNA dose dependent manner. Similarly, RNF6 overexpression in parental Y-79 and SO-Rb50 cells could help cells gain resistance to carboplatin on a RNF6 expression dependent manner. Signaling pathway analyses revealed that JAK2/STAT3 pathway was involved in the RNF6-induced carboplatin resistance in RB cells. We further revealed that RNF6 expression in both Y-79 and SO-Rb50 cells could render cells resistant to multiple anti-cancer drugs including carboplatin, vincristine and etoposide, an implication of RNF6 as a biomarker for RB drug resistance. Taken together, our study has revealed that RNF6 is upregulated in drug-resistant RB cells and RNF6 promotes drug resistance through JAK2/STAT3 signaling pathway. The importance of RNF6 in RB cells drug resistance may represent this protein as a potential biomarker and treatment target for drug resistance in RB.
Collapse
Affiliation(s)
- Yong Chai
- Department of Ophthalmology, The Affiliated Children’s Hospital of Nanchang University, Nanchang, China
| | - Shoufeng Jiao
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xin Peng
- Department of General Surgery, The Affiliated Children’s Hospital of Nanchang University, Nanchang, China
| | - Qiang Gan
- Department of Ophthalmology, The Affiliated Children’s Hospital of Nanchang University, Nanchang, China
| | - Leifeng Chen
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaolu Hu
- Department of General Surgery, The Affiliated Children’s Hospital of Nanchang University, Nanchang, China
| | - Liang Hao
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shouhua Zhang
- Department of General Surgery, The Affiliated Children’s Hospital of Nanchang University, Nanchang, China
| | - Qiang Tao
- Department of General Surgery, The Affiliated Children’s Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Investigation of Key Signaling Pathways Associating miR-204 and Common Retinopathies. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5568113. [PMID: 34646884 PMCID: PMC8505061 DOI: 10.1155/2021/5568113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/15/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
MicroRNAs are a large group of small noncoding RNAs that work in multiple cellular pathways. miR-204, as one of the key axes in the development, maintenance, and pathogenesis of the retina, plays several roles by modulating its target genes. This study was aimed at evaluating the target genes of miR-204 involved in the development and progression of common retinopathies such as glaucoma, retinoblastoma, and age-related macular degeneration. In this study, three datasets related to retinopathies (GSE50195, GSE27276, and GSE97508) were selected from Gene Expression Omnibus. miR-204 target genes were isolated from TargeScan. The shares between retinopathy and miR-204 target genes were then categorized. Using Enrichr and STRING, we highlighted the signaling pathways and the relationships between the proteins. SHC1 events in ERBB2, adherent junction's interactions, NGF signaling via TRKA from the plasma membrane, IRF3-mediated activation of type 1 IFN, pathways in upregulated genes and G0 and early G1, RORA-activated gene expression, PERK-regulated gene expression, adherent junction's interactions, and CREB phosphorylation pathways in downregulated genes were identified in glaucoma, retinoblastoma, and age-related macular degeneration. WEE1, SMC2, HMGB1, RRM2, and POLA1 proteins were also observed to be involved in the progression and invasion of retinoblastoma; SLC24A2 and DTX4 in age-related macular degeneration; and EPHB6, EFNB3, and SHC1 in glaucoma. Continuous bioinformatics analysis has shown that miR-204 has a significant presence and expression in retinal tissue, and approximately 293 genes are controlled and regulated by miR-204 in this tissue; also, target genes of miR-204 have the potential to develop various retinopathies; thus, a study of related target genes can provide appropriate treatment strategies in the future.
Collapse
|
4
|
Li B, Peng X, Li H, Chen F, Chen Y, Zhang Y, Le K. The performance of the alarmin HMGB1 in pediatric diseases: From lab to clinic. IMMUNITY INFLAMMATION AND DISEASE 2020; 9:8-30. [PMID: 33140586 PMCID: PMC7860603 DOI: 10.1002/iid3.370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/10/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The ubiquitously expressed nonhistone nuclear protein high-mobility group box protein 1 (HMGB1) has different functions related to posttranslational modifications and cellular localization. In the nucleus, HMGB1 modulates gene transcription, replication and DNA repair as well as determines chromosomal architecture. When the post-transcriptional modified HMGB1 is released into the extracellular space, it triggers several physiological and pathological responses and initiates innate immunity through interacting with its reciprocal receptors (i.e., TLR4/2 and RAGE). The effect of HMGB1-mediated inflammatory activation on different systems has received increasing attention. HMGB1 is now considered to be an alarmin and participates in multiple inflammation-related diseases. In addition, HMGB1 also affects the occurrence and progression of tumors. However, most studies involving HMGB1 have been focused on adults or mature animals. Due to differences in disease characteristics between children and adults, it is necessary to clarify the role of HMGB1 in pediatric diseases. METHODS AND RESULTS Through systematic database retrieval, this review aimed to first elaborate the characteristics of HMGB1 under physiological and pathological conditions and then discuss the clinical significance of HMGB1 in the pediatric diseases according to different systems. CONCLUSIONS HMGB1 plays an important role in a variety of pediatric diseases and may be used as a diagnostic biomarker and therapeutic target for new strategies for the prevention and treatment of pediatric diseases.
Collapse
Affiliation(s)
- Bo Li
- Department of Cardiology, Children's Hospital of Hebei Province Affiliated to Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xin Peng
- Department of Otolaryngology, The Affiliated Children's Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - He Li
- Department of Urology Surgery, Qilu Children's Hospital of Shandong University, Jinan, Shandong, China
| | - Fei Chen
- Department of Child Health Care, Qilu Children's Hospital of Shandong University, Jinan, Shandong, China
| | - Yuxia Chen
- Ministry of Education Key Laboratory of Child Development and Disorders, and Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Rehabilitation Centre, Children's Hospital, Chongqing Medical University, Chongqing, Yuzhong, China
| | - Yingqian Zhang
- Department of Cardiology, Children's Hospital of Hebei Province Affiliated to Hebei Medical University, Shijiazhuang, Hebei, China
| | - Kai Le
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
Wang S, Du S, Lv Y, Zhang F, Wang W. MicroRNA-665 inhibits the oncogenicity of retinoblastoma by directly targeting high-mobility group box 1 and inactivating the Wnt/β-catenin pathway. Cancer Manag Res 2019; 11:3111-3123. [PMID: 31114354 PMCID: PMC6489654 DOI: 10.2147/cmar.s200566] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 02/25/2019] [Indexed: 12/11/2022] Open
Abstract
Purpose: Previous studies have revealed that microRNA-665 (miR-665) is dysregulated in a variety of human cancers. However, little is known regarding its expression profiles and functions in retinoblastoma (RB). Therefore, the aims of our study were to evaluate miR-665 expression in RB and determine the precise roles of miR-665 in the progression of RB. Patients and methods: Herein, RT-qPCR was used to determine miR-665 expression levels in RB tissues and cell lines, and a series of functional experiments were performed to explore the influence of miR-665 on RB cell proliferation, colony formation, apoptosis, migration, and invasion as well as tumor growth. The molecular mechanisms underlying the tumor-suppressive action of miR-665 in RB were also explored. Results: We found that miR-665 was markedly reduced in RB tissues and cell lines and that lower miR-665 expression was strongly associated with tumor size, TNM stage, and differentiation in patients with RB. Exogenous expression of miR-665 suppressed cell proliferation, colony formation, migration, and invasion, and induced cell apoptosis in RB cells, while silencing miR-665 expression had the opposite effects. In addition, upregulation of miR-665 decreased the tumor growth of RB cells in vivo. High-mobility group box 1 (HMGB1) was identified as a direct target of miR-665 in RB cells, and decreasing the expression of HMGB1 simulated the regulatory effects of miR-665 overexpression in RB cells, while knockdown of HMGB1 expression counteracted the miR-665-mediated antitumor effects in RB cells. Moreover, miR-665 was shown to regulate the Wnt/β-catenin signaling pathway by targeting HMGB1 in vitro and in vivo. Conclusion: Taken together, our in vitro and in vivo results suggest that miR-665 acts as a tumor-suppressive miRNA in RB by directly targeting HMGB1 and inactivating the Wnt/β-catenin pathway. Hence, this miRNA is a candidate prognostic biomarker and therapeutic target in patients with RB.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Shanshan Du
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Yong Lv
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Fengyan Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Wenzhan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| |
Collapse
|