1
|
Chen G, Yang L, Liu G, Zhu Y, Yang F, Dong X, Xu F, Zhu F, Cao C, Zhong D, Li S, Zhang H, Li B. Research progress in protein microarrays: Focussing on cancer research. Proteomics Clin Appl 2023; 17:e2200036. [PMID: 36316278 DOI: 10.1002/prca.202200036] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/10/2022] [Accepted: 09/27/2022] [Indexed: 01/22/2023]
Abstract
Although several effective treatment modalities have been developed for cancers, the morbidity and mortality associated with cancer continues to increase every year. As one of the most exciting emerging technologies, protein microarrays represent a powerful tool in the field of cancer research because of their advantages such as high throughput, small sample usage, more flexibility, high sensitivity and direct readout of results. In this review, we focus on the research progress in four types of protein microarrays (proteome microarray, antibody microarray, lectin microarray and reversed protein array) with emphasis on their application in cancer research. Finally, we discuss the current challenges faced by protein microarrays and directions for future developments. We firmly believe that this novel systems biology research tool holds immense potential in cancer research and will become an irreplaceable tool in this field.
Collapse
Affiliation(s)
- Guang Chen
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Guoxiang Liu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Yunfan Zhu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Fenghua Xu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Feng Zhu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Can Cao
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Di Zhong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Shuang Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Huhu Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China.,Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Xia ZK, Wang W, Qiu JG, Shi XN, Li HJ, Chen R, Ke KB, Dong C, Zhu Y, Wu SG, Zhang RP, Meng ZR, Zhao H, Gu P, Leung KS, Wong MH, Liu XD, Zhou FM, Zhang JY, Yao YT, Wang SJ, Zhang CY, Qin YR, Lin MCM, Jiang BH. Discovery of a New CDK4/6 and PI3K/AKT Multiple Kinase Inhibitor Aminoquinol for the Treatment of Hepatocellular Carcinoma. Front Pharmacol 2021; 12:691769. [PMID: 34335258 PMCID: PMC8320333 DOI: 10.3389/fphar.2021.691769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a lethal malignancy lacking effective treatment. The Cyclin-dependent kinases 4/6 (CDK4/6) and PI3K/AKT signal pathways play pivotal roles in carcinogenesis and are promising therapeutic targets for HCC. Here we identified a new CDK4/6 and PI3K/AKT multi-kinase inhibitor for the treatment of HCC. Methods: Using a repurposing and ensemble docking methodology, we screened a library of worldwide approved drugs to identify candidate CDK4/6 inhibitors. By MTT, apoptosis, and flow cytometry analysis, we investigated the effects of candidate drug in reducing cell-viability,inducing apoptosis, and causing cell-cycle arrest. The drug combination and thermal proteomic profiling (TPP) method were used to investigate whether the candidate drug produced antagonistic effect. The in vivo anti-cancer effect was performed in BALB/C nude mice subcutaneously xenografted with Huh7 cells. Results: We demonstrated for the first time that the anti-plasmodium drug aminoquinol is a new CDK4/6 and PI3K/AKT inhibitor. Aminoquinol significantly decreased cell viability, induced apoptosis, increased the percentage of cells in G1 phase. Drug combination screening indicated that aminoquinol could produce antagonistic effect with the PI3K inhibitor LY294002. TPP analysis confirmed that aminoquinol significantly stabilized CDK4, CDK6, PI3K and AKT proteins. Finally, in vivo study in Huh7 cells xenografted nude mice demonstrated that aminoquinol exhibited strong anti-tumor activity, comparable to that of the leading cancer drug 5-fluorouracil with the combination treatment showed the highest therapeutic effect. Conclusion: The present study indicates for the first time the discovery of a new CDK4/6 and PI3K/AKT multi-kinase inhibitor aminoquinol. It could be used alone or as a combination therapeutic strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Zhong-Kun Xia
- School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Wei Wang
- School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Jian-Ge Qiu
- School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Xi-Nan Shi
- Department of Pathology, Yunnan University of Chinese Medicine, Kunming, China.,XingYi People' Hospital, Xingyi, China
| | - Hong-Jian Li
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Rong Chen
- Department of Physiology, Yunnan University of Chinese Medicine, Kunming, China
| | - Kun-Bin Ke
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chao Dong
- Department of the Second Medical Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, Kunming, China
| | - Ying Zhu
- Department of Cadre Medical Branch, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shi-Guo Wu
- Department of Teaching and Research Section of Formulas of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Rong-Ping Zhang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine,Kunming, China
| | - Zhuo-Ran Meng
- Department of Pathology, Yunnan University of Chinese Medicine, Kunming, China
| | - Hui Zhao
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Peng Gu
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kwong-Sak Leung
- Department of Computer Science and Engineering, Chinese University of Hong Kong, Hong Kong, China
| | - Man-Hon Wong
- Department of Computer Science and Engineering, Chinese University of Hong Kong, Hong Kong, China
| | - Xiao-Dong Liu
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Feng-Mei Zhou
- School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Jian-Ying Zhang
- School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Ya-Ting Yao
- School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Si-Jia Wang
- School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, China
| | - Yan-Ru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Marie Chia-Mi Lin
- School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Bing-Hua Jiang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
3
|
Lv T, Liu H, Wu Y, Huang W. Knockdown of lncRNA DLEU1 inhibits the tumorigenesis of oral squamous cell carcinoma via regulation of miR‑149‑5p/CDK6 axis. Mol Med Rep 2021; 23:447. [PMID: 33880596 PMCID: PMC8060799 DOI: 10.3892/mmr.2021.12086] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a frequent malignant tumor worldwide. Long non-coding RNAs (lncRNAs) are known to play key roles in different types of cancer, including OSCC. It was previously reported that lncRNA deleted in lymphocytic leukemia 1 (DLEU1) is notably upregulated in OSCC; however, the role of DLEU1 in OSCC remains unclear. Gene and protein expression levels in OSCC cells were detected by reverse transcription-quantitative PCR and western blotting, respectively, in the present study. A Transwell assay was performed to measure cell migration and invasion. Flow cytometry was used to detect cell apoptosis, and the dual-luciferase reporter assay was applied to confirm the interaction between DLEU1, microRNA (miR)-149-5p and CDK6 in OSCC cells. DLEU1 expression was negatively associated with the survival rate of patients with OSCC. In addition, silencing of DLEU1 notably inhibited the proliferation of OSCC cells by inducing apoptosis. Meanwhile, DLEU1 directly bound to miR-149-5p, and CDK6 was found to be the direct target of miR-149-5p. Furthermore, DLEU1 knockdown-induced inhibition of OSCC cell proliferation was significantly reversed by the miR-149-5p antagomir. Knockdown of lncRNA DLEU1 reversed the proliferation of OSCC cells via regulation of the miR-149-5p/CDK6 axis. Thus, DLEU1 may serve as a novel target for treating OSCC.
Collapse
Affiliation(s)
- Tianzhu Lv
- Department of Emergency General, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Hongjing Liu
- Department of Emergency General, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Yadong Wu
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Wentao Huang
- Department of Basic Stomatology, School of Savaid Stomatology, Hangzhou Medical College, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
4
|
Severe hypoglycaemia under abemaciclib administration in a patient with breast cancer: A case report. Mol Clin Oncol 2021; 14:61. [PMID: 33604051 PMCID: PMC7849062 DOI: 10.3892/mco.2021.2223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 01/11/2021] [Indexed: 01/22/2023] Open
Abstract
The current study reports the case of an 80-year-old woman who experienced severe hypoglycaemia after abemaciclib administration, with a recovery time of ~46 h. Abemaciclib is a cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitor that is used to treat metastatic breast cancer. A side effect of abemaciclib administration is an increase in creatinine levels. The half-life (t1/2) of 150 mg abemaciclib in patients with breast cancer was reported to be 17.5 h (nearly lower limit), and the time to reach Cmax was ~5 h (Tmax, 4-6 h). Therefore, the total time to reach half the maximum blood concentration after abemaciclib administration is ~24 h (Tmax + t1/2=5+17.5=22.5 h). As abemaciclib is administered twice daily, a considerable amount (Cmax = 123 ng/ml) may persist in the blood following the initial dose. Upon repeated administration, the blood abemaciclib concentration in patients with metastatic liver tumours might increase, although their liver function remains normal. The patient described in the current study had a creatinine level of 1.05 mg/dl at the start of abemaciclib administration. At the time of emergency hospitalisation (on day 5 of abemaciclib administration), the creatinine level was 1.40 mg/dl; however, dehydration was not observed. The patient had been administered the same dose of glimepiride for >1 year and had not experienced hypoglycaemia previously. It can be speculated that the increase in blood creatinine level had some effect on glimepiride metabolism. It is thought that administered abemaciclib enhances metabolic delay in the blood in the same way as in patients with impaired liver function, and as a result, the creatinine level increases in patients with liver metastases. This causes a decrease in renal function, which in turn results in an increase in blood concentration of glimepiride, consequently leading to severe hypoglycaemia. Therefore, clinicians must be careful when using abemaciclib in patients with liver metastases, diabetes and poor renal function.
Collapse
|
5
|
Wei L, Wang B, Hu L, Xu Y, Li Z, Shen Y, Huang H. MEX3A is upregulated in esophageal squamous cell carcinoma (ESCC) and promotes development and progression of ESCC through targeting CDK6. Aging (Albany NY) 2020; 12:21091-21113. [PMID: 33188661 PMCID: PMC7695430 DOI: 10.18632/aging.103196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/13/2020] [Indexed: 02/07/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most commonly diagnosed malignant tumors worldwide and identified as a serious threat to human health. The role of MEX3A in ESCC remains unclear. In this study, we found that MEX3A was upregulated in tumor tissues of ESCC and positively associated with more advanced tumor stage, higher risk of lymphatic metastasis and poor prognosis. The downregulation of MEX3A in ESCC cell lines could induce inhibition of cell proliferation, colony formation, cell migration, and the promotion of cell apoptosis, while MEX3A overexpression exhibited opposite effects. In vivo experiments also verified the inhibition of ESCC induced by MEX3A knockdown. Moreover, we identified CDK6 as a potential target of MEX3A, which was also upregulated in ESCC. Further studies demonstrated that knockdown of CDK6 showed similar effects on the development of ESCC with MEX3A. More importantly, it was illustrated that CDK6 knockdown could alleviate the promotion effects of MEX3A overexpression on ESCC. In conclusion, MEX3A was identified as a tumor promotor in the development and progression of ESCC by targeting CDK6, which may be considered as a novel prognostic indicator and therapeutic target in treatment of ESCC.
Collapse
Affiliation(s)
- Lei Wei
- Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing 210002, China
| | - Bo Wang
- Department of Thoracic Surgery, Nanjing Chest Hospital, Nanjing 210029, China
| | - Liwen Hu
- Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing 210002, China
| | - Yang Xu
- Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing 210002, China
| | - Zhongdong Li
- Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing 210002, China
| | - Yi Shen
- Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing 210002, China
| | - Hairong Huang
- Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing 210002, China
| |
Collapse
|
6
|
Chen B, Ji F, Wen X, Jin Z. Circular RNA circ_ASAP2 promotes cell viability, migration, and invasion of gastric cancer cells by regulating the miR-770-5p/CDK6 axis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:2806-2819. [PMID: 33284890 PMCID: PMC7716128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/20/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common causes of cancer death. GSE83521 microarray analysis suggested that circular RNA circ_ASAP2 (hsa_circ_0008768) expression was increased in GC tissues. However, the molecular mechanism of circ_ASAP2 remains unknown. METHODS Expression levels of circ_ASAP2, microRNA-770-5p (miR-770-5p), and the cyclin-dependent kinase 6 (CDK6) were detected by using real time PCR (RT-PCR). 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and transwell assays were applied to explore cell viability, migration, and invasion, respectively. The interactions between miR-770-5p and circ_ASAP2 or CDK6 was predicted by using Starbase software, and then confirmed by luciferase reporter assay. Xenograft tumor model was also used to estimate the effect of circ_ASAP2 on tumor growth in vivo. RESULTS The expression levels of circ_ASAP2 and CDK6 were increased, and miR-770-5p level was decreased in GC tissues and cells. Furthermore, circ_ASAP2 knockdown inhibited cell viability, migration, and invasion of GC cells. Mechanically, circ_ASAP2 functioned as a sponge of miR-770-5p to regulate CDK6 expression, thereby boosting the progression of GC cells. Circ_ASAP2 silencing hindered the tumor growth of GC in vivo. CONCLUSION Circ_ASAP2 knockdown can repress the development of GC cells partly through regulating the miR-770-5p/CDK6 axis, suggesting an underlying circRNA-targeted therapy for GC treatment.
Collapse
Affiliation(s)
- Bing Chen
- Department of Gastroenterology, The First Affiliated Hospital of Xinjiang Medical UniversityUrumchi 830054, Xinjiang Uygur Autonomous Region, China
| | - Fei Ji
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical UniversityUrumchi 830054, Xinjiang Uygur Autonomous Region, China
| | - Xinian Wen
- Department of Gastroenterology, The Fifth Affiliated Hospital of Xinjiang Medical UniversityUrumchi 830054, Xinjiang Uygur Autonomous Region, China
| | - Zhong Jin
- Department of Cadre/VIP Surgery, The First Affiliated Hospital of Xinjiang Medical UniversityUrumchi 830054, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
7
|
Roberts PJ, Kumarasamy V, Witkiewicz AK, Knudsen ES. Chemotherapy and CDK4/6 Inhibitors: Unexpected Bedfellows. Mol Cancer Ther 2020; 19:1575-1588. [PMID: 32546660 PMCID: PMC7473501 DOI: 10.1158/1535-7163.mct-18-1161] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/17/2020] [Accepted: 06/10/2020] [Indexed: 12/31/2022]
Abstract
Cyclin-dependent kinases 4 and 6 (CDK4/6) have emerged as important therapeutic targets. Pharmacologic inhibitors of these kinases function to inhibit cell-cycle progression and exert other important effects on the tumor and host environment. Because of their impact on the cell cycle, CDK4/6 inhibitors (CDK4/6i) have been hypothesized to antagonize the antitumor effects of cytotoxic chemotherapy in tumors that are CDK4/6 dependent. However, there are multiple preclinical studies that illustrate potent cooperation between CDK4/6i and chemotherapy. Furthermore, the combination of CDK4/6i and chemotherapy is being tested in clinical trials to both enhance antitumor efficacy and limit toxicity. Exploitation of the noncanonical effects of CDK4/6i could also provide an impetus for future studies in combination with chemotherapy. Thus, while seemingly mutually exclusive mechanisms are at play, the combination of CDK4/6 inhibition and chemotherapy could exemplify rational medicine.
Collapse
Affiliation(s)
| | - Vishnu Kumarasamy
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, New York
| | - Agnieszka K Witkiewicz
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, New York
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, New York
| | - Erik S Knudsen
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, New York.
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York
| |
Collapse
|