1
|
Gao J, Liu H, Li L, Guo C, Wang Z, Cheng M, Tan S, Chen L, Shi J, Wu H, Feng C, Yu G, Ding C. Comprehensive proteomic characterization of urethral stricture disease in the Chinese population. Front Mol Biosci 2024; 11:1401970. [PMID: 39130371 PMCID: PMC11310122 DOI: 10.3389/fmolb.2024.1401970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/16/2024] [Accepted: 06/26/2024] [Indexed: 08/13/2024] Open
Abstract
Background Male urethral stricture disease (USD) is predominantly characterized by scar formation. There are few effective therapeutic drugs, and comprehensive molecular characterizations of USD formation remain undefined. Methods The proteomic profiling of twelve scar tissues and five matched normal adjacent tissues (NATs). Proteomic analysis methods were applied to explore the molecular characterizations of USD formation, including uncovering mechanistic pathways and providing novel biomarkers for scar formation. Results Comparative proteomic analysis showed that the extracellular matrix (ECM) and complement cascade signaling were predominant in scar tissues. COL11A1 and CD248 significantly contributed to the accumulation of ECM components. Our study presented diverse molecular mechanisms of scar formation across different ages and suggested the potential effects of PXK in Age 1 (<45) patients. Furthermore, immune infiltration studies indicated the therapeutic potential of inhibiting the complement system (C4A, C4B) in Age 2 (≥45) patients, providing a potential clinical strategy for USD. Conclusion This study illustrated the pathogenesis of USD formation and the diverse characteristics of USD patients with different ages, enhancing our understanding of the disease's pathogenesis and providing a valuable resource for USD treatment.
Collapse
Affiliation(s)
- Jiangtao Gao
- Department of Urology, The First People’s Hospital of Zhengzhou, Henan, China
| | - Hui Liu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
- State Key Laboratory Cell Differentiation and Regulation, Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis, (111 Project), College of Life Science, Henan Normal University, Xinxiang, China
| | - Lingling Li
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Chunmei Guo
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Zhiyong Wang
- Key Medical Laboratory of Stem Cell Transformation and Application, Department of Pathology, The First People’s Hospital of Zhengzhou, Henan, China
| | - Mengya Cheng
- Department of Urology, The First People’s Hospital of Zhengzhou, Henan, China
| | - Subei Tan
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Lu Chen
- Department of Urology, The First People’s Hospital of Zhengzhou, Henan, China
| | - Jijing Shi
- Key Medical Laboratory of Stem Cell Transformation and Application, Department of Pathology, The First People’s Hospital of Zhengzhou, Henan, China
| | - Hui Wu
- Department of Urology, The First People’s Hospital of Zhengzhou, Henan, China
| | - Chao Feng
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Guoying Yu
- State Key Laboratory Cell Differentiation and Regulation, Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis, (111 Project), College of Life Science, Henan Normal University, Xinxiang, China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
- State Key Laboratory Cell Differentiation and Regulation, Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis, (111 Project), College of Life Science, Henan Normal University, Xinxiang, China
- Institute of Cancer Research, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
2
|
Li X, Li Z, Liu P, Ai S, Sun F, Hu Q, Dong Y, Xia X, Guan W, Liu S. Novel CircRNAs in Hub ceRNA Axis Regulate Gastric Cancer Prognosis and Microenvironment. Front Med (Lausanne) 2021; 8:771206. [PMID: 34820403 PMCID: PMC8606568 DOI: 10.3389/fmed.2021.771206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/06/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is one of the most prevalent malignancies with an unfavorable survival rate. Immunotherapy may contribute to a better prognosis. However, several phase III trials failed. Circular RNA (circRNA) is a novel type of non-coding RNA, plays a vital role in the progression of tumors. The expression and function of circRNA in the GC immune microenvironment remain obscure. In this study, we utilized a bioinformatic analysis to construct a circRNA/microRNA (miRNA)/messenger RNA (mRNA) network involved in the progression and prognosis of GC. CircRNA DYRK1A_017, circRNA FLNA_118, miR-6512-3p, miR-6270-5p, and VCAN were identified as the key molecules in the hub regulatory axis. Dysregulation of this axis contributed to the cancer-associated signaling pathways (epithelial-mesenchymal transition [EMT], Nuclear factor kappa β-Tumor necrosis factor-α (NFκβ-TNFα) signaling, and angiogenesis) and aberrant immune microenvironment (infiltration by tumor associated macrophage, regulatory T cell, and mast cell). More importantly, the immunosuppressive tumor microenvironment may reveal the mechanism of novel circRNAs in tumors and serve as the target of immunotherapy.
Collapse
Affiliation(s)
- Xianghui Li
- Department of Gastrointestinal Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhiyan Li
- Department of Gastrointestinal Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ping Liu
- Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Shichao Ai
- Department of Gastrointestinal Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Feng Sun
- Department of Gastrointestinal Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qiongyuan Hu
- Department of Gastrointestinal Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuxiang Dong
- First Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Xuefeng Xia
- Department of Gastrointestinal Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenxian Guan
- Department of Gastrointestinal Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Song Liu
- Department of Gastrointestinal Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
3
|
Systemic Immunosuppression for Prevention of Recurrent Tendon Adhesions. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2021; 9:e3834. [PMID: 34667696 PMCID: PMC8519255 DOI: 10.1097/gox.0000000000003834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/15/2020] [Accepted: 08/02/2021] [Indexed: 12/05/2022]
Abstract
Background: The recovery for patients after tendon repair is frequently limited by development of tendon adhesions. This scar tissue formation is dependent on immune system activation. Tacrolimus has unique properties that may contribute to the prevention of overactive scarring by inhibition of inflammatory cytokines. Methods: Herein, we present a case using systemic immunosuppression to prevent recurrent adhesion accumulation in a patient with a prior spaghetti wrist injury. Tacrolimus began 1 week before repeat-secondary tenolysis surgery, and it continued for 3 months postoperative. Dosing was tapered to a serum level between 5 and 8 µg/L. Results: The 27-year-old male patient suffered a volar wrist laceration transecting all flexor tendons and volar wrist nerves. He underwent immediate repair but had a poor outcome despite early range of motion therapy. A primary tenolysis only improved his average arc of finger motion from 72 to 95 degrees. Secondary tenolysis augmented with systemic tacrolimus improved his arc of finger motion from 95 to 202 degrees. Mechanistically, tacrolimus prevents proper function of activated T and B cells. This results in decreased proliferation, angiogenesis, and cytoskeletal organization of fibroblasts on inflammation and integrin adhesions, and it potentially explains the reduced tendon molecule adhesions seen in this patient. Conclusions: Tacrolimus may be effective in reducing motion, limiting tendon adhesions. The novel use of this medication resulted in the return of near-normal hand function in a patient placed on low-dose tacrolimus after primary tenolysis had failed.
Collapse
|
4
|
Zhou W, Yu Q, Ma J, Xu C, Wu D, Li C. Triamcinolone acetonide combined with 5-fluorouracil suppresses urethral scar fibroblasts autophagy and fibrosis by increasing miR-192-5p expression. Am J Transl Res 2021; 13:5956-5968. [PMID: 34306337 PMCID: PMC8290770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/16/2020] [Accepted: 03/14/2021] [Indexed: 06/13/2023]
Abstract
Urethral stricture is one of the common diseases in urology. It can lead to obstructive voiding dysfunction and may cause long-term damage to the entire urinary tract. Here, we investigated the effect of combined use of 5-fluorouracil (5-FU) and triamcinolone acetonide (TA) in improving urethral stricture. We established urethral stricture in vivo and in vitro model. The role of TA combined with 5-FU treatment in scar tissue and fibroblast cells were examined by RT-PCR, Western blot and immunohistochemical methods. The function of miRNA in improving urethral stricture by TA combined with 5-FU treatment were further investigated. We found that TA combined with 5-FU treatment obviously prevent urethral fibrosis in vivo as well as in vitro. MiR-192-5p level was downregulated in urethral stricture tissue and urethral tissue fibroblast, TA combined with 5-FU treatment rescue the expression of miR-192-5p. The improvement of urethral fibrosis by TA combined with 5-FU treatment was blocked by miR-192-5p inhibitor. miR-192-5p mediated the improvement of urethral scar by triamcinolone acetonide combined with 5-FU by directly targeting ATG7, which is marker gene of autophagy. Our data demonstrated that TA combined with 5-FU suppresses urethral scar fibroblasts autophagy and fibrosis by increasing miR-192-5p expression, thus offering a new strategies and target for Urethral stricture.
Collapse
Affiliation(s)
- Weidong Zhou
- Department of Urology, Tongji Hospital, Tongji University School of Medicine Shanghai 200065, China
| | - Qingsong Yu
- Department of Urology, Tongji Hospital, Tongji University School of Medicine Shanghai 200065, China
| | - Junjie Ma
- Department of Urology, Tongji Hospital, Tongji University School of Medicine Shanghai 200065, China
| | - Chengdang Xu
- Department of Urology, Tongji Hospital, Tongji University School of Medicine Shanghai 200065, China
| | - Denglong Wu
- Department of Urology, Tongji Hospital, Tongji University School of Medicine Shanghai 200065, China
| | - Chao Li
- Department of Urology, Tongji Hospital, Tongji University School of Medicine Shanghai 200065, China
| |
Collapse
|
5
|
Dong X, Li Y, Cao R, Xu H. MicroRNA-363-3p Inhibits the Expression of Renal Fibrosis Markers in TGF-β1-Treated HK-2 Cells by Targeting TGF-β2. Biochem Genet 2021; 59:1033-1048. [PMID: 33630202 DOI: 10.1007/s10528-021-10044-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/16/2020] [Accepted: 01/29/2021] [Indexed: 11/30/2022]
Abstract
This study aimed to explore the role of miR-363-3p in renal fibrosis (RF) in vitro. HK-2 cells were treated with transforming growth factor (TGF)-β1 for 72 h to establish an in vitro model of RF. Subsequently, western blot analysis and reverse transcription-quantitative PCR were used to detect the protein and mRNA expression levels of RF markers in TGF-β1-treated HK-2 cells, respectively. The results showed that the protein and mRNA expression levels of TGF-β2, α-smooth muscle actin (SMA), fibronectin, vimentin, collagen II and N-cadherin were increased, while the protein and mRNA expression levels of E-cadherin were decreased in TGF-β1-treated HK-2 cells. The level of miR-363-3p was significantly decreased in TGF-β1-treated HK-2 cells. TargetScan indicated that TGF-β2 was a direct target gene for miR-363-3p, which was further verified using dual luciferase reporter gene assays. Further analyses revealed that the increased protein and mRNA expression levels of TGF-β2, α-SMA, fibronectin, vimentin, collagen II, N-cadherin, increased phosphorylated-Smad3 protein level, and decreased E-cadherin protein and mRNA expression in TGF-β1-treated HK-2 cells were significantly reversed by miR-363-3p mimics. However, all the effects were suppressed by a TGF-β2-plasmid. The results suggested that miR-363-3p plays a protective role in RF by regulating the TGF-β2/Smad3 signaling pathway.
Collapse
Affiliation(s)
- Xiangnan Dong
- Department of Urinary Medicine, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Yang Li
- Department of Nephrology, Qingdao Municipal Hospital, 1 Jiaozhou Road, Shibei, Qingdao, 266000, Shandong, China
| | - Rui Cao
- Department of Blood Purification Center, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Honglan Xu
- Department of Nephrology, Qingdao Municipal Hospital, 1 Jiaozhou Road, Shibei, Qingdao, 266000, Shandong, China.
| |
Collapse
|
6
|
Yi W, Liu J, Qu S, Fan H, Lv Z. An 8 miRNA-Based Risk Score System for Predicting the Prognosis of Patients With Papillary Thyroid Cancer. Technol Cancer Res Treat 2020; 19:1533033820965594. [PMID: 33054579 PMCID: PMC7570775 DOI: 10.1177/1533033820965594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/23/2022] Open
Abstract
Background: Dysregulation of microRNAs (miRNAs) in papillary thyroid cancer (PTC) might influence prognosis of PTC. This study is aimed to develop a risk score system for predicting prognosis of PTC. Methods: The miRNA and gene expression profiles of PTC were obtained from The Cancer Genome Atlas database. PTC samples were randomly separated into training set (n = 248) and validation set (n = 248). The differentially expressed miRNAs (DE-miRNAs) in the training set were screened using limma package. The independent prognosis-associated DE-miRNAs were identified for building a risk score system. Risk score of PTC samples in the training set was calculated and samples were divided into high risk group and low risk group. Kaplan-Meier curves and receiver operating characteristic (ROC) curve were used to assess the accuracy of the risk score system in the training set, validation set and entire set. Finally, a miRNA-gene regulatory network was visualized by Cytoscape software, followed by enrichment analysis. Results: Totally, 162 DE-miRNAs between tumor and control groups in the training set were identified. An 8 independent prognosis-associated DE-miRNAs, (including miR-1179, miR-133b, miR-3194, miR-3912, miR-548j, miR-6720, miR-6734, and miR-6843) based risk score system was developed. The area under ROC curve in the training set, validation set and entire set was all above 0.93. A miRNA-gene regulatory network involving the 8 DE-miRNAs were built and functional enrichment analysis suggested the genes in the network were significantly enriched into 13 pathways, including calcium signaling pathway and hedgehog signaling pathway. Conclusion: The risk score system developed this study might be used for predicting the prognosis of PTC. Besides, the 8 miRNAs might affect the prognosis of PTC via hedgehog signaling pathway and calcium signaling pathway.
Collapse
Affiliation(s)
- Wanwan Yi
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Wanwan Yi, Jin Liu and Shuping Qu are co-first authors
| | - Jin Liu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Wanwan Yi, Jin Liu and Shuping Qu are co-first authors
| | - Shuping Qu
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Navy Medical University (Second Military Medical University), Shanghai, China.,Wanwan Yi, Jin Liu and Shuping Qu are co-first authors
| | - Hengwei Fan
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Navy Medical University (Second Military Medical University), Shanghai, China.,Hengwei Fan and Zhongwei Lv are co-corresponding authors
| | - Zhongwei Lv
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Hengwei Fan and Zhongwei Lv are co-corresponding authors
| |
Collapse
|
7
|
Zhang K, Yang R, Chen J, Qi E, Zhou S, Wang Y, Fu Q, Chen R, Fang X. Let-7i-5p Regulation of Cell Morphology and Migration Through Distinct Signaling Pathways in Normal and Pathogenic Urethral Fibroblasts. Front Bioeng Biotechnol 2020; 8:428. [PMID: 32478052 PMCID: PMC7240038 DOI: 10.3389/fbioe.2020.00428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/16/2019] [Accepted: 04/14/2020] [Indexed: 12/05/2022] Open
Abstract
microRNAs regulate subcellular functions through distinct molecular mechanisms. In this study, we used normal and pathogenic fibroblasts in pelvic fracture urethral distraction defects (PFUDD) patients. PFUDD is a common disease that could severely affect patients’ life quality, yet little is known about the molecular mechanism associated with pathogenic fibrosis in PFUDD. Our data showed that let-7i-5p performs a multi-functional role in distinct signaling transduction pathways involved in cell morphology and cell migration in both normal and pathogenic fibroblasts. By analyzing the molecular mechanism associated with its functions, we found that let-7i-5p regulates through its direct target genes involved in collagen metabolism, cell proliferation and differentiation, TGF-beta signaling, DNA repair and ubiquitination, gene silencing and oxygen homeostasis. We conclude that let-7i-5p plays an essential role in regulating cell shape and tissue elasticity, cell migration, cell morphology and cytoskeleton, and could serve as a potential target for clinical treatment of urethral stricture patients.
Collapse
Affiliation(s)
- Kaile Zhang
- The Department of Urology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China
| | - Ranxin Yang
- The Department of Urology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China
| | - Jun Chen
- The Department of Urology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China
| | - Er Qi
- Shanghai Xuhui District Xietu Street Community Health Service Center, Shanghai, China
| | - Shukui Zhou
- The Department of Urology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Wang
- The Department of Urology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Fu
- The Department of Urology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China
| | - Rong Chen
- The Department of Urology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China
| | - Xiaolan Fang
- The Department of Urology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China.,Shanghai Xuhui District Xietu Street Community Health Service Center, Shanghai, China
| |
Collapse
|
8
|
Aydemir H, Saglam HS, Budak S, Kose O, Gokce A. Can proliferative hypertrophic scars of the median sternotomy incision predict the occurrence and characteristics of urethral stricture? Saudi Med J 2020; 40:701-706. [PMID: 31287131 PMCID: PMC6757202 DOI: 10.15537/smj.2019.7.24285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/28/2022] Open
Abstract
Objectives: To investigate the correlation between the characteristics of urethral stricture and incision scars in patients with urethral stricture and median sternotomy incision. Methods: We identified 368 patients who had undergone internal urethrotomy between January 2014 and December 2017. A total of 49 male patients with a median sternotomy scar and diagnosed with urethral stricture were retrospectively evaluated. The median sternotomy incision scars were assessed using the Vancouver Scar Scale (VSS) and the patients were divided into 2 groups. Group I consisted of patients with a VSS score of <4 points, and those with ≥4 points constituted group II. The groups were compared in terms of age, smoking habit, body mass index, diabetes mellitus, hypertension, urethral stricture etiology, length and localization, and stricture relapse after intervention. Results: The mean total VSS score was 2.0 points in group I and 7.46 points in group II. There was a significant correlation between the VSS total score and the urethral stricture length among the whole study population (correlation coefficient value=0.481; p<0.001). The urethral stricture was longer as the VSS score increased. Conclusion: A poorly healed median sternotomy incision scar can predict a poor wound healing in the urethra tissue. Further large scale, multi-center and prospective studies are needed to clarify this relationship.
Collapse
Affiliation(s)
- Huseyin Aydemir
- Department of Urology, Sakarya University, Education and Research Hospital, Sakarya, Turkey. E-mail.
| | | | | | | | | |
Collapse
|