1
|
Galow AM, Brenmoehl J, Hoeflich A. Synergistic effects of hormones on structural and functional maturation of cardiomyocytes and implications for heart regeneration. Cell Mol Life Sci 2023; 80:240. [PMID: 37541969 PMCID: PMC10403476 DOI: 10.1007/s00018-023-04894-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/06/2023]
Abstract
The limited endogenous regenerative capacity of the human heart renders cardiovascular diseases a major health threat, thus motivating intense research on in vitro heart cell generation and cell replacement therapies. However, so far, in vitro-generated cardiomyocytes share a rather fetal phenotype, limiting their utility for drug testing and cell-based heart repair. Various strategies to foster cellular maturation provide some success, but fully matured cardiomyocytes are still to be achieved. Today, several hormones are recognized for their effects on cardiomyocyte proliferation, differentiation, and function. Here, we will discuss how the endocrine system impacts cardiomyocyte maturation. After detailing which features characterize a mature phenotype, we will contemplate hormones most promising to induce such a phenotype, the routes of their action, and experimental evidence for their significance in this process. Due to their pleiotropic effects, hormones might be not only valuable to improve in vitro heart cell generation but also beneficial for in vivo heart regeneration. Accordingly, we will also contemplate how the presented hormones might be exploited for hormone-based regenerative therapies.
Collapse
Affiliation(s)
- Anne-Marie Galow
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany.
| | - Julia Brenmoehl
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Andreas Hoeflich
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| |
Collapse
|
2
|
Yan L, Qi H, Zhou W. Silencing of Hsa_circ_0055440 Alleviates Hypoxia-Induced Cardiomyocyte Injury by Regulating the MiR-499b-5p/ACSL1 Axis. Int Heart J 2023; 64:274-282. [PMID: 37005321 DOI: 10.1536/ihj.22-473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Circular RNAs (circRNAs) are a new type of regulatory RNAs, which are involved in various cardiac processes. However, the role of circRNA hsa_circ_0055440 (circ-USP39) in acute myocardial infarction regulation has not been studied yet.This study aims to explore the effect of circ-USP39 on hypoxia-induced cardiomyocyte injury.The head-to-tail splicing of circ-USP39 was verified by agarose gel electrophoresis. AC16 cell viability was detected using 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide assays. The apoptosis of the AC16 cell was determined by flow cytometry and detection of caspase-3 activity. The levels of creatine kinase-muscle/brain and cTnl were evaluated by specific detection kits. The interactions between miR-499b-5p and circ-USP39 (or acyl-CoA synthetase long-chain family member-1 (ACSL1) ) were verified by luciferase reporter assays.After confirming the circular characteristics of circ-USP39, we further found that the circ-USP39 expression was upregulated in hypoxia-induced cardiomyocytes and the circ-USP39 knockdown facilitated the viability of hypoxia-induced AC16, while suppressing cardiomyocyte apoptosis and injury. Importantly, circ-USP39 negatively regulated miR-499b-5p expression. As a downstream target of miR-499b-5p, ACSL1 partially counteracted the protective effect of circ-USP39 depletion on cardiomyocyte injury.Silencing of circ-USP39 alleviates hypoxia-induced cardiomyocyte injury via the miR-499b-5p/ACSL1 axis.
Collapse
Affiliation(s)
- Lianhua Yan
- Department of Cardiology, Wuhan Central Hospital Affiliated to Huazhong University of Science and Technology
| | - Haijun Qi
- Department of Cardiology, Wuhan Central Hospital Affiliated to Huazhong University of Science and Technology
| | - Wei Zhou
- Department of Cardiology, Wuhan Central Hospital Affiliated to Huazhong University of Science and Technology
| |
Collapse
|
3
|
Miller LR, Tarantini S, Nyúl-Tóth Á, Johnston MP, Martin T, Bullen EC, Bickel MA, Sonntag WE, Yabluchanskiy A, Csiszar A, Ungvari ZI, Elliott MH, Conley SM. Increased Susceptibility to Cerebral Microhemorrhages Is Associated With Imaging Signs of Microvascular Degeneration in the Retina in an Insulin-Like Growth Factor 1 Deficient Mouse Model of Accelerated Aging. Front Aging Neurosci 2022; 14:788296. [PMID: 35356301 PMCID: PMC8959924 DOI: 10.3389/fnagi.2022.788296] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/31/2022] [Indexed: 01/21/2023] Open
Abstract
Age-related cerebrovascular defects contribute to vascular cognitive impairment and dementia (VCID) as well as other forms of dementia. There has been great interest in developing biomarkers and other tools for studying cerebrovascular disease using more easily accessible tissues outside the brain such as the retina. Decreased circulating insulin-like growth factor 1 (IGF-1) levels in aging are thought to contribute to the development of cerebrovascular impairment, a hypothesis that has been supported by the use of IGF-1 deficient animal models. Here we evaluate vascular and other retinal phenotypes in animals with circulating IGF-1 deficiency and ask whether the retina mimics common age-related vascular changes in the brain such as the development of microhemorrhages. Using a hypertension-induced model, we confirm that IGF-1 deficient mice exhibited worsened microhemorrhages than controls. The retinas of IGF-1 deficient animals do not exhibit microhemorrhages but do exhibit signs of vascular damage and retinal stress such as patterns of vascular constriction and Müller cell activation. These signs of retinal stress are not accompanied by retinal degeneration or impaired neuronal function. These data suggest that the role of IGF-1 in the retina is complex, and while IGF-1 deficiency leads to vascular defects in both the brain and the retina, not all brain pathologies are evident in the retina.
Collapse
Affiliation(s)
- Lauren R. Miller
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, United States
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Morgan P. Johnston
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Teryn Martin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Elizabeth C. Bullen
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Marisa A. Bickel
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - William E. Sonntag
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Zoltan I. Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Michael H. Elliott
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
4
|
Wan J, Jiang S, Jiang Y, Ma W, Wang X, He Z, Wang X, Cui R. Data Mining and Expression Analysis of Differential lncRNA ADAMTS9-AS1 in Prostate Cancer. Front Genet 2020; 10:1377. [PMID: 32153626 PMCID: PMC7049946 DOI: 10.3389/fgene.2019.01377] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) play important roles in the regulation of gene expression by acting as competing endogenous RNAs (ceRNAs). However, the roles of lncRNA-associated ceRNAs in oncogenesis are not fully understood. The present study aims to determine whether a ceRNA network can serve as a prognostic marker in human prostate cancer (PCa). In order to identify a ceRNA network and the key lncRNAs in PCa, we constructed a differentially expressed lncRNAs (DELs)-differentially expressed miRNAs (DEMis)-differentially expressed mRNAs (DEMs) regulatory network based on the ceRNA theory using data from the Cancer Genome Atlas (TCGA). We found that the DELs-DEMis-DEMs network was composed of 27 DELs nodes, seven DEMis nodes, and three DEMs nodes. The 27 DELs were further analyzed with several public databases to provide meaningful information for understanding the functional roles of lncRNAs in regulatory networks in PCa. We selected ADAMTS9-AS1 to determine its role in PCa and found that ADAMTS9-AS1 significantly influences tumor cell growth and proliferation, suggesting that it plays a tumor suppressive role. In addition, ADAMTS9-AS1 functioned as ceRNA, effectively becoming a sponge for hsa-mir-96 and modulating the expression of PRDM16. These results suggest that ceRNAs could accelerate biomarker discovery and therapeutic strategies for PCa.
Collapse
Affiliation(s)
- Jiahui Wan
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, China.,Department of Clinical Laboratory, Harbin Public Security Hospital, Harbin, China
| | - Shijun Jiang
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, China.,Department of Clinical Laboratory, Daqing Medical College, Daqing, China
| | - Ying Jiang
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, China
| | - Wei Ma
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, China
| | - Xiuli Wang
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, China.,Department of Clinical Laboratory, The Seventh Hospital in Qiqihar, Qiqihar, China
| | - Zikang He
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, China
| | - Xiaojin Wang
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, China
| | - Rongjun Cui
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|