1
|
Pharmacological Properties to Pharmacological Insight of Sesamin in Breast Cancer Treatment: A Literature-Based Review Study. Int J Breast Cancer 2022; 2022:2599689. [PMID: 35223101 PMCID: PMC8872699 DOI: 10.1155/2022/2599689] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 12/28/2022] Open
Abstract
The use of dietary phytochemical rather than conventional therapies to treat numerous cancers is now a well-known approach in medical science. Easily available and less toxic dietary phytochemicals present in plants should be introduced in the list of phytochemical-based treatment areas. Sesamin, a natural phytochemical, may be a promising chemopreventive agent aiming to manage breast cancer. In this study, we discussed the pharmacological properties of sesamin that determine its therapeutics opportunity to be used in breast cancer treatment and other diseases. Sesamin is available in medicinal plants, especially in Sesamum indicum, and is easily metabolized by the liver. To better understand the antibreast cancer consequence of sesamin, we postulate some putative pathways related to the antibreast cancer mechanism: (1) regulation of estrogen receptor (ER-α and ER-β) activities, (2) suppressing programmed death-ligand 1 (PD-L1) overexpression, (3) growth factor receptor inhibition, and (4) some tyrosine kinase pathways. Targeting these pathways, sesamin can modulate cell proliferation, cell cycle arrest, cell growth and viability, metastasis, angiogenesis, apoptosis, and oncogene inactivation in various in vitro and animal models. Although the actual tumor intrinsic signaling mechanism targeted by sesamin in cancer treatment is still unknown, this review summarized that this phytoestrogen suppressed NF-κB, STAT, MAPK, and PIK/AKT signaling pathways and activated some tumor suppressor protein in numerous breast cancer models. Cotreatment with γ-tocotrienol, conventional drugs, and several drug carriers systems increased the anticancer potentiality of sesamin. Furthermore, sesamin exhibited promising pharmacokinetics properties with less toxicity in the bodies. Overall, the shreds of evidence highlight that sesamin can be a potent candidate to design drugs against breast cancer. So, like other phytochemicals, sesamin can be consumed for better therapeutic advantages due to having the ability to target a plethora of molecular pathways until clinically trialed standard drugs are not available in pharma markets.
Collapse
|
2
|
Mottaghi S, Abbaszadeh H. A comprehensive mechanistic insight into the dietary and estrogenic lignans, arctigenin and sesamin as potential anticarcinogenic and anticancer agents. Current status, challenges, and future perspectives. Crit Rev Food Sci Nutr 2021; 62:7301-7318. [PMID: 33905270 DOI: 10.1080/10408398.2021.1913568] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A large body of evidence indicates that lignans as polyphenolic compounds are beneficial against life-threatening diseases such as cancer. Plant lignans have the potential to induce cancer cell death and interfere with carcinogenesis, tumor growth, and metastasis. Epidemiological studies have revealed that the intake of lignans is inversely associated with the risk of several cancers. Moreover, numerous experimental studies demonstrate that natural lignans significantly suppress cancer cell proliferation with minimal toxicity against non-transformed cells. Dietary lignans arctigenin and sesamin have been found to have potent antiproliferative activities against various types of human cancer. The purpose of this review is to provide the reader with a deeper understanding of the cellular and molecular mechanisms underlying anticancer effects of arctigenin and sesamin. Our review comprehensively describes the effects of arctigenin and sesamin on the signaling pathways and related molecules involved in cancer cell proliferation and invasion. The findings of present review show that the dietary lignans arctigenin and sesamin seem to be promising carcinopreventive and anticancer agents. These natural lignans can be used as dietary supplements and pharmaceuticals for prevention and treatment of cancer.
Collapse
Affiliation(s)
- Sayeh Mottaghi
- Department of Pediatrics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hassan Abbaszadeh
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
3
|
Lin T, Ji Y, Zhao Y, Xia Z. Expression of COX-2 and Nrf2/GPx3 in the anterior vaginal wall tissues of women with pelvic organ prolapse. Arch Gynecol Obstet 2021; 303:1245-1253. [PMID: 33415437 DOI: 10.1007/s00404-020-05913-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/18/2020] [Indexed: 11/25/2022]
Abstract
PURPOSE To evaluate COX-2 and Nrf2/GPx3 expressions in the lamina propria of the anterior vaginal wall tissues of women with and without pelvic organ prolapse (POP). METHODS Tissue samples of anterior vaginal wall were examined using HE staining, immuohistochemical staining and Western blot for the expressions of COX-2/PGE2, Nrf2/GPx3, MMP2, TIMP1, collagen I and collagen III (n = 35, per group). RESULTS Compared with control group, collagen fibers of the anterior vaginal wall were disorganized and discontinuous. Expressions of Nrf2, GPx3, TIMP1, collagen I and collagen III were found significantly lower in POP group (P < 0.05); while, expressions of COX-2, PGE2, and MMP2 were found significantly higher in POP group (P < 0.05). Statistically significant correlations of COX-2 and Nrf2/GPx3 were showed (P < 0.01). CONCLUSION We found that the interaction between inflammation and oxidative stress was closely related to the development of POP. This study demonstrates that COX-2 and Nrf2 pathways may be involved in pathogenesis of POP, as promising potential therapeutic targets and agents.
Collapse
Affiliation(s)
- Te Lin
- Department of Obstetrics and Gynecology, Pelvic Floor Disease Diagnosis and Treatment Center, Shengjing Hospital of China Medical University, Shenyang City, Liaoning Province, China
| | - Yuting Ji
- Department of Obstetrics and Gynecology, Pelvic Floor Disease Diagnosis and Treatment Center, Shengjing Hospital of China Medical University, Shenyang City, Liaoning Province, China
| | - Ying Zhao
- Department of Obstetrics and Gynecology, Pelvic Floor Disease Diagnosis and Treatment Center, Shengjing Hospital of China Medical University, Shenyang City, Liaoning Province, China
| | - Zhijun Xia
- Department of Obstetrics and Gynecology, Pelvic Floor Disease Diagnosis and Treatment Center, Shengjing Hospital of China Medical University, Shenyang City, Liaoning Province, China.
| |
Collapse
|
4
|
Deesrisak K, Chatupheeraphat C, Roytrakul S, Anurathapan U, Tanyong D. Autophagy and apoptosis induction by sesamin in MOLT-4 and NB4 leukemia cells. Oncol Lett 2020; 21:32. [PMID: 33262824 PMCID: PMC7693381 DOI: 10.3892/ol.2020.12293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 10/16/2020] [Indexed: 12/24/2022] Open
Abstract
Sesamin, the major furofuran lignan found in the seeds of Sesamum indicum L., has been investigated for its various medicinal properties. In the present study, the anti-leukemic effects of sesamin and its underlying mechanisms were investigated in MOLT-4 and NB4 acute leukemic cells. Leukemic cells were treated with various concentrations of sesamin. Cell viability was determined using an MTT assay. Flow cytometry using Annexin V-FITC/PI staining and anti-LC3/FITC antibodies was applied to detect the level of apoptosis and autophagy, respectively. Reverse transcription-quantitative PCR was performed to examine the alterations in the mRNA expression of apoptotic and autophagic genes. In addition, bioinformatics tools were used to predict the possible interactions between sesamin and its targets. The results revealed that sesamin inhibited MOLT-4 and NB4 cell proliferation in a dose-dependent manner. In addition, sesamin induced both apoptosis and autophagy. In sesamin-treated cells, the gene expression levels of caspase 3 and unc-51 like autophagy activating kinase 1 (ULK1) were upregulated, while those of mTOR were downregulated compared with in the control. Notably, the protein-chemical interaction network indicated that caspase 3, mTOR and ULK1 were the essential factors involved in the effects of sesamin treatment, as with anticancer agents, such as rapamycin, AZD8055, Torin1 and 2. Overall, the findings of the present study suggested that sesamin inhibited MOLT-4 and NB4 cell proliferation, and induced apoptosis and autophagy through the regulation of caspase 3 and mTOR/ULK1 signaling, respectively.
Collapse
Affiliation(s)
- Kamolchanok Deesrisak
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Chawalit Chatupheeraphat
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology, Thailand Science Park, Pathum Thani 12120, Thailand
| | - Usanarat Anurathapan
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Dalina Tanyong
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand
| |
Collapse
|
5
|
Wu S, Huang D, Su X, Yan H, Ma A, Li L, Wu J, Sun Z. The prostaglandin synthases, COX-2 and L-PGDS, mediate prostate hyperplasia induced by low-dose bisphenol A. Sci Rep 2020; 10:13108. [PMID: 32753632 PMCID: PMC7403327 DOI: 10.1038/s41598-020-69809-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 07/02/2020] [Indexed: 12/22/2022] Open
Abstract
This study aimed to identify prostaglandin synthases (PGS) that mediate bisphenol A (BPA)-induced prostatic hyperplasia and explore their underlying mechanisms. In an in vivo study, male adult Sprague–Dawley rats were treated with different concentrations of BPA (10, 30, 90, or 270 μg/kg, i.g., daily), or with vehicle for 4 weeks. Results revealed that low-dose BPA induced prostatic hyperplasia with increased PCNA/TUNEL ratio. It significantly upregulated the expression of cyclooxygenase-2 (COX-2) and NF-κB in the dorsolateral prostate (P < 0.05) and the expression of lipocalin-type prostaglandin D synthase (L-PGDS) in ventral prostate (P < 0.05). The level of estradiol (E2)/testosterone (T) and expression of androgen receptor (AR) and estrogen receptor α (ERα) were also altered. In vitro studies showed that low-dose BPA (0.1–10 nM) promoted the proliferation of human prostate fibroblasts and epithelial cells, and significantly upregulated the expression of COX-2 and L-PGDS in the cells. The two types of cell proliferation induced by BPA were inhibited by COX-2 inhibitor (NS398) and L-PGDS inhibitor (AT56), with increased apoptosis level. These findings suggested that COX-2 and L-PGDS could mediate low-dose BPA-induced prostatic hyperplasia through pathways involved in cell proliferation and apoptosis, which might be related to the functions of ERα and AR. The role of COX-2/NF-κB pathway in dorsolateral prostate requires further research.
Collapse
Affiliation(s)
- Shuangshuang Wu
- Pharmacy School of Fudan University, Shanghai, 201203, China.,National Evaluation Centre for Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China.,Key Laboratory of Reproduction Regulation of NPFPC, Shanghai, 200032, China.,Reproductive and Developmental Research Institute of Fudan University, Shanghai, 200032, China
| | - Dongyan Huang
- National Evaluation Centre for Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China.,Key Laboratory of Reproduction Regulation of NPFPC, Shanghai, 200032, China.,Reproductive and Developmental Research Institute of Fudan University, Shanghai, 200032, China
| | - Xin Su
- National Evaluation Centre for Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China.,Key Laboratory of Reproduction Regulation of NPFPC, Shanghai, 200032, China.,Reproductive and Developmental Research Institute of Fudan University, Shanghai, 200032, China
| | - Han Yan
- National Evaluation Centre for Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China.,Key Laboratory of Reproduction Regulation of NPFPC, Shanghai, 200032, China.,Reproductive and Developmental Research Institute of Fudan University, Shanghai, 200032, China
| | - Aicui Ma
- National Evaluation Centre for Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China.,Key Laboratory of Reproduction Regulation of NPFPC, Shanghai, 200032, China.,Reproductive and Developmental Research Institute of Fudan University, Shanghai, 200032, China
| | - Lei Li
- National Evaluation Centre for Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China.,Key Laboratory of Reproduction Regulation of NPFPC, Shanghai, 200032, China.,Reproductive and Developmental Research Institute of Fudan University, Shanghai, 200032, China
| | - Jianhui Wu
- National Evaluation Centre for Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China. .,Key Laboratory of Reproduction Regulation of NPFPC, Shanghai, 200032, China. .,Reproductive and Developmental Research Institute of Fudan University, Shanghai, 200032, China.
| | - Zuyue Sun
- National Evaluation Centre for Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China.,Key Laboratory of Reproduction Regulation of NPFPC, Shanghai, 200032, China.,Reproductive and Developmental Research Institute of Fudan University, Shanghai, 200032, China
| |
Collapse
|
6
|
Yang S, Li X, Dou H, Hu Y, Che C, Xu D. Sesamin induces A549 cell mitophagy and mitochondrial apoptosis via a reactive oxygen species-mediated reduction in mitochondrial membrane potential. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:223-232. [PMID: 32392913 PMCID: PMC7193912 DOI: 10.4196/kjpp.2020.24.3.223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 01/30/2023]
Abstract
Sesamin, a lipid-soluble lignin originally isolated from sesame seeds, which induces cancer cell apoptosis and autophagy. In the present study, has been reported that sesamin induces apoptosis via several pathways in human lung cancer cells. However, whether mitophagy is involved in sesamin induced lung cancer cell apotosis remains unclear. This study, the anticancer activity of sesamin in lung cancer was studied by reactive oxygen species (ROS) and mitophagy. A549 cells were treated with sesamin, and cell viability, migration ability, and cell cycle were assessed using the CCK8 assay, scratch-wound test, and flow cytometry, respectively. ROS levels, mitochondrial membrane potential, and apoptosis were examined by flow cytometric detection of DCFH-DA fluorescence and by using JC-1 and TUNEL assays. The results indicated that sesamin treatment inhibited the cell viability and migration ability of A549 cells and induced G0/G1 phase arrest. Furthermore, sesamin induced an increase in ROS levels, a reduction in mitochondrial membrane potential, and apoptosis accompanied by an increase in cleaved caspase-3 and cleaved caspase-9. Additionally, sesamin triggered mitophagy and increased the expression of PINK1 and translocation of Parkin from the cytoplasm to the mitochondria. However, the antioxidant N-acetyl-L-cysteine clearly reduced the oxidative stress and mitophagy induced by sesamin. Furthermore, we found that cyclosporine A (an inhibitor of mitophagy) decreased the inhibitory effect of sesamin on A549 cell viability. Collectively, our data indicate that sesamin exerts lethal effects on lung cancer cells through the induction of ROS-mediated mitophagy and mitochondrial apoptosis.
Collapse
Affiliation(s)
- Shasha Yang
- Center of Morphological Experiment, Medical College of Yanbian University, Yanji, Jilin 133000, China
| | - Xiangdan Li
- Center of Morphological Experiment, Medical College of Yanbian University, Yanji, Jilin 133000, China
| | - Haowen Dou
- Center of Morphological Experiment, Medical College of Yanbian University, Yanji, Jilin 133000, China
| | - Yulai Hu
- Center of Morphological Experiment, Medical College of Yanbian University, Yanji, Jilin 133000, China
| | - Chengri Che
- Department of Thoracic Surgery, Affiliated Hospital of Yanbian University, Yanji, Jilin 133000, China
| | - Dongyuan Xu
- Center of Morphological Experiment, Medical College of Yanbian University, Yanji, Jilin 133000, China
| |
Collapse
|
7
|
Anti-Inflammatory and Anticancer Properties of Bioactive Compounds from Sesamum indicum L.-A Review. Molecules 2019; 24:molecules24244426. [PMID: 31817084 PMCID: PMC6943436 DOI: 10.3390/molecules24244426] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 12/24/2022] Open
Abstract
The use of foodstuff as natural medicines has already been established through studies demonstrating the pharmacological activities that they exhibit. Knowing the nutritional and pharmacological significance of foods enables the understanding of their role against several diseases. Among the foods that can potentially be considered as medicine, is sesame or Sesamum indicum L., which is part of the Pedaliaceae family and is composed of its lignans such as sesamin, sesamol, sesaminol and sesamolin. Its lignans have been widely studied and are known to possess antiaging, anticancer, antidiabetes, anti-inflammatory and antioxidant properties. Modern chronic diseases, which can transform into clinical diseases, are potential targets of these lignans. The prime example of chronic diseases is rheumatic inflammatory diseases, which affect the support structures and the organs of the body and can also develop into malignancies. In line with this, studies emphasizing the anti-inflammatory and anticancer activities of sesame have been discussed in this review.
Collapse
|
8
|
Tomita K, Takashi Y, Ouchi Y, Kuwahara Y, Igarashi K, Nagasawa T, Nabika H, Kurimasa A, Fukumoto M, Nishitani Y, Sato T. Lipid peroxidation increases hydrogen peroxide permeability leading to cell death in cancer cell lines that lack mtDNA. Cancer Sci 2019; 110:2856-2866. [PMID: 31314163 PMCID: PMC6726706 DOI: 10.1111/cas.14132] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/02/2019] [Accepted: 07/11/2019] [Indexed: 12/30/2022] Open
Abstract
4-Hydroxynonenal (HNE) is an important product of plasma membrane lipid peroxidation, which is a cause of cell and tissue injury. Mitochondrial DNA (mtDNA)-depleted ρ0 cells were established using human cervical cancer and oral squamous cell carcinoma cell lines. We investigated the effect of reactive oxygen species in ρ0 cells, especially the mechanism of hydrogen peroxide (H2 O2 )-mediated cell death. These cell were subjected to high oxidative stress and, compared with their parental cells, showed greater sensitivity to H2 O2 and high lipid peroxidation. Upregulation of HNE in the plasma membrane was observed prior to the increase in intracellular H2 O2 . The amount of oxidized lipid present changed H2 O2 permeability and administration of oxidized lipid led to further cell death after treatment with H2 O2 . Expression levels of lipoxygenase ALOX genes (ie ALOX5, ALOX12, and ALOX15) were upregulated in ρ0 cells, as were expression levels of ALOX12 and ALOX15 proteins. ALOX5 protein was mainly distributed in the nucleus, while ALOX12 and ALOX15 proteins were distributed in the nucleus and the cytoplasm. Although expression of COX2 gene was upregulated, its protein expression did not increase. ALOX (especially ALOX15) may be involved in the sensitivity of cancer cells to treatment. These data offer promise for the development of novel anticancer agents by altering the oxidation state of the plasma membrane. Our results showed that lipid peroxidation status is important for H2 O2 sensitivity and that ALOX15 is involved in lipid peroxidation status.
Collapse
Affiliation(s)
- Kazuo Tomita
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yuko Takashi
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.,Department of Restorative Dentistry and Endodontology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yuya Ouchi
- Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, Yamagata, Japan
| | - Yoshikazu Kuwahara
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.,Department of Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kento Igarashi
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Taisuke Nagasawa
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hideki Nabika
- Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, Yamagata, Japan
| | - Akihiro Kurimasa
- Department of Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Manabu Fukumoto
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Yoshihiro Nishitani
- Department of Restorative Dentistry and Endodontology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tomoaki Sato
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|