1
|
Ilieva M, Panella R, Uchida S. MicroRNAs in Cancer and Cardiovascular Disease. Cells 2022; 11:3551. [PMID: 36428980 PMCID: PMC9688578 DOI: 10.3390/cells11223551] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Although cardiac tumor formation is rare, accumulating evidence suggests that the two leading causes of deaths, cancers, and cardiovascular diseases are similar in terms of pathogenesis, including angiogenesis, immune responses, and fibrosis. These similarities have led to the creation of new exciting field of study called cardio-oncology. Here, we review the similarities between cancer and cardiovascular disease from the perspective of microRNAs (miRNAs). As miRNAs are well-known regulators of translation by binding to the 3'-untranslated regions (UTRs) of messenger RNAs (mRNAs), we carefully dissect how a specific set of miRNAs are both oncomiRs (miRNAs in cancer) and myomiRs (muscle-related miRNAs). Furthermore, from the standpoint of similar pathogenesis, miRNAs categories related to the similar pathogenesis are discussed; namely, angiomiRs, Immune-miRs, and fibromiRs.
Collapse
Affiliation(s)
| | | | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen SV, Denmark
| |
Collapse
|
2
|
Mahinfar P, Mansoori B, Rostamzadeh D, Baradaran B, Cho WC, Mansoori B. The Role of microRNAs in Multidrug Resistance of Glioblastoma. Cancers (Basel) 2022; 14:3217. [PMID: 35804989 PMCID: PMC9265057 DOI: 10.3390/cancers14133217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 02/05/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive brain tumor that develops from neuroglial stem cells and represents a highly heterogeneous group of neoplasms. These tumors are predominantly correlated with a dismal prognosis and poor quality of life. In spite of major advances in developing novel and effective therapeutic strategies for patients with glioblastoma, multidrug resistance (MDR) is considered to be the major reason for treatment failure. Several mechanisms contribute to MDR in GBM, including upregulation of MDR transporters, alterations in the metabolism of drugs, dysregulation of apoptosis, defects in DNA repair, cancer stem cells, and epithelial-mesenchymal transition. MicroRNAs (miRNAs) are a large class of endogenous RNAs that participate in various cell events, including the mechanisms causing MDR in glioblastoma. In this review, we discuss the role of miRNAs in the regulation of the underlying mechanisms in MDR glioblastoma which will open up new avenues of inquiry for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Parvaneh Mahinfar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (P.M.); (B.M.); (B.B.)
| | - Behnaz Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (P.M.); (B.M.); (B.B.)
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 175-14115, Iran
| | - Davoud Rostamzadeh
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj 7591994799, Iran;
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj 7591994799, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (P.M.); (B.M.); (B.B.)
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| | - Behzad Mansoori
- The Wistar Institute, Molecular & Cellular Oncogenesis Program, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Gastric Cancer-Derived Extracellular Vesicles (EVs) Promote Angiogenesis via Angiopoietin-2. Cancers (Basel) 2022; 14:cancers14122953. [PMID: 35740619 PMCID: PMC9221039 DOI: 10.3390/cancers14122953] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Angiogenesis is the formation of new blood vessels, which is essential for gastric cancer growth and metastasis. Angiopoietin-2 is a key driver of tumor angiogenesis and has recently emerged as a promising target for antiangiogenic therapy. Extracellular vesicles play an important role in tumor progression including angiogenesis. We explored the crosstalk between gastric cancer and endothelial cells mediated by vesicles, with a specific focus on angiopoietin-2. We show that primary gastric cancer and omental metastasis tissues express angiopoietin-2. We isolated gastric cancer vesicles and demonstrated that they induce the proliferation, migration, invasion, and tube formation of endothelial cells. Characterization of the angiogenic profile of these vesicles revealed high levels of proangiogenic proteins including angiopoietin-2. Using angiopoietin-2 knockdown, we demonstrate that angiopoietin-2 mediates the proangiogenic effects of the gastric cancer vesicles. Our findings suggest a new mechanism via which gastric cancer cells induce angiogenesis. Such a mechanism may be used as a target for cancer therapy. Abstract Angiogenesis is an important control point of gastric cancer (GC) progression and metastasis. Angiopoietin-2 (ANG2) is a key driver of tumor angiogenesis and metastasis, and it has been identified in primary GC tissues. Extracellular vesicles (EVs) play an important role in mediating intercellular communication through the transfer of proteins between cells. However, the expression of ANG2 in GC-EVs has never been reported. Here, we characterized the EV-mediated crosstalk between GC and endothelial cells (ECs), with particular focus on the role of ANG2. We first demonstrate that ANG2 is expressed in GC primary and metastatic tissues. We then isolated EVs from two different GC cell lines and showed that these EVs enhance EC proliferation, migration, invasion, and tube formation in vitro and in vivo. Using an angiogenesis protein array, we showed that GC-EVs contain high levels of proangiogenic proteins, including ANG2. Lastly, using Lenti viral ANG2-shRNA, we demonstrated that the proangiogenic effects of the GC-EVs were mediated by ANG2 through the activation of the PI3K/Akt signal transduction pathway. Our data suggest a new mechanism via which GC cells induce angiogenesis. This knowledge may be utilized to develop new therapies in gastric cancer.
Collapse
|
4
|
The Use of Pro-Angiogenic and/or Pro-Hypoxic miRNAs as Tools to Monitor Patients with Diffuse Gliomas. Int J Mol Sci 2022; 23:ijms23116042. [PMID: 35682718 PMCID: PMC9181142 DOI: 10.3390/ijms23116042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022] Open
Abstract
IDH (isocitrate dehydrogenase) mutation, hypoxia, and neo-angiogenesis, three hallmarks of diffuse gliomas, modulate the expression of small non-coding RNAs (miRNA). In this paper, we tested whether pro-angiogenic and/or pro-hypoxic miRNAs could be used to monitor patients with glioma. The miRNAs were extracted from tumoral surgical specimens embedded in the paraffin of 97 patients with diffuse gliomas and, for 7 patients, from a blood sample too. The expression of 10 pro-angiogenic and/or pro-hypoxic miRNAs was assayed by qRT-PCR and normalized to the miRNA expression of non-tumoral brain tissues. We confirmed in vitro that IDH in hypoxia (1% O2, 24 h) alters pro-angiogenic and/or pro-hypoxic miRNA expression in HBT-14 (U-87 MG) cells. Then, we reported that the expression of these miRNAs is (i) strongly affected in patients with glioma compared to that in a non-tumoral brain; (ii) correlated with the histology/grade of glioma according to the 2016 WHO classification; and (iii) predicts the overall and/or progression-free survival of patients with glioma in univariate but not in a multivariate analysis after adjusting for sex, age at diagnosis, and WHO classification. Finally, the expression of miRNAs was found to be the same between the plasma and glial tumor of the same patient. This study highlights a panel of seven pro-angiogenic and/or pro-hypoxic miRNAs as a potential tool for monitoring patients with glioma.
Collapse
|
5
|
Setlai BP, Hull R, Reis RM, Agbor C, Ambele MA, Mulaudzi TV, Dlamini Z. MicroRNA Interrelated Epithelial Mesenchymal Transition (EMT) in Glioblastoma. Genes (Basel) 2022; 13:244. [PMID: 35205289 PMCID: PMC8872331 DOI: 10.3390/genes13020244] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNA) are small non-coding RNAs that are 20-23 nucleotides in length, functioning as regulators of oncogenes or tumor suppressor genes. They are molecular modulators that regulate gene expression by suppressing gene translation through gene silencing/degradation, or by promoting translation of messenger RNA (mRNA) into proteins. Circulating miRNAs have attracted attention as possible prognostic markers of cancer, which could aid in the early detection of the disease. Epithelial to mesenchymal transition (EMT) has been implicated in tumorigenic processes, primarily by promoting tumor invasiveness and metastatic activity; this is a process that could be manipulated to halt or prevent brain metastasis. Studies show that miRNAs influence the function of EMT in glioblastomas. Thus, miRNA-related EMT can be exploited as a potential therapeutic target in glioblastomas. This review points out the interrelation between miRNA and EMT signatures, and how they can be used as reliable molecular signatures for diagnostic purposes or targeted therapy in glioblastomas.
Collapse
Affiliation(s)
- Botle Precious Setlai
- Department of Surgery, Level 7, Bridge E, Steve Biko Academic Hospital, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia 0007, South Africa; (C.A.); (T.V.M.)
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (R.H.); (R.M.R.)
| | - Rui Manuel Reis
- SAMRC Precision Oncology Research Unit (PORU), Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (R.H.); (R.M.R.)
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos 14784-400, SP, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
| | - Cyril Agbor
- Department of Surgery, Level 7, Bridge E, Steve Biko Academic Hospital, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia 0007, South Africa; (C.A.); (T.V.M.)
| | - Melvin Anyasi Ambele
- Department of Oral Pathology and Oral Biology, School of Dentistry, Faculty of Health Sciences, University of Pretoria, P.O. Box 1266, Pretoria 0001, South Africa;
- Institute for Cellular and Molecular Medicine, SAMRC Extramural Unit for Stem Cell Research and Therapy, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Thanyani Victor Mulaudzi
- Department of Surgery, Level 7, Bridge E, Steve Biko Academic Hospital, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia 0007, South Africa; (C.A.); (T.V.M.)
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (R.H.); (R.M.R.)
| |
Collapse
|
6
|
Kampoli K, Foukas PG, Ntavatzikos A, Arkadopoulos N, Koumarianou A. Interrogating the interplay of angiogenesis and immunity in metastatic colorectal cancer. World J Methodol 2022; 12:43-53. [PMID: 35117981 PMCID: PMC8790311 DOI: 10.5662/wjm.v12.i1.43] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/17/2021] [Accepted: 12/28/2021] [Indexed: 02/06/2023] Open
Abstract
Colon cancer is the third most common malignancy and the fifth most frequent cause of death from neoplastic disease worldwide. At the time of diagnosis, more than 20% of patients already have metastatic disease. In the last 20 years, the natural course of the disease has changed due to major changes in the management of metastatic disease such as the advent of novel surgical and local therapy approaches as well as the introduction of novel chemotherapy drugs and targeted agents such as anti-epidermal growth factor receptor, anti-BRAF and antiangiogenics. Angiogenesis is a complex biological process of new vessel formation from existing ones and is an integral component of tumor progression supporting cancer cells to grow, proliferate and metastasize. Many molecules are involved in this proangiogenic process, such as vascular endothelial growth factor and its receptors on endothelial cells. A well-standardized methodology that is applied to assess angiogenesis in the tumor microenvironment is microvascular density by using immunohistochemistry with antibodies against endothelial CD31, CD34 and CD105 antigens. Even smaller molecules, such as the microRNAs, which are small non-coding RNAs, are being studied for their usefulness as surrogate biomarkers of angiogenesis and prognosis. In this review, we will discuss recent advances regarding the investigation of angiogenesis, the crosstalk between elements of the immune microenvironment and angiogenesis and how a disorganized tumor vessel network affects the trafficking of CD8+ T cells in the tumor bed. Furthermore, we will present recent data from clinical trials that combine antiangiogenic therapies with immune checkpoint inhibitors in colorectal cancer.
Collapse
Affiliation(s)
- Katerina Kampoli
- Hematology Oncology Unit, The Fourth Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Haidari 12462, Athens, Greece
| | - Periklis G Foukas
- The Second Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Haidari 12462, Athens, Greece
| | - Anastasios Ntavatzikos
- Hematology Oncology Unit, The Fourth Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Haidari 12462, Athens, Greece
| | - Nikolaos Arkadopoulos
- The Fourth Surgical Clinic, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Haidari 12462, Athens, Greece
| | - Anna Koumarianou
- Hematology Oncology Unit, The Fourth Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Haidari 12462, Athens, Greece
| |
Collapse
|
7
|
Gardin C, Ferroni L, Erdoğan YK, Zanotti F, De Francesco F, Trentini M, Brunello G, Ercan B, Zavan B. Nanostructured Modifications of Titanium Surfaces Improve Vascular Regenerative Properties of Exosomes Derived from Mesenchymal Stem Cells: Preliminary In Vitro Results. NANOMATERIALS 2021; 11:nano11123452. [PMID: 34947800 PMCID: PMC8707709 DOI: 10.3390/nano11123452] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 01/02/2023]
Abstract
(1) Background: Implantation of metal-based scaffolds is a common procedure for treating several diseases. However, the success of the long-term application is limited by an insufficient endothelialization of the material surface. Nanostructured modifications of metal scaffolds represent a promising approach to faster biomaterial osteointegration through increasing of endothelial commitment of the mesenchymal stem cells (MSC). (2) Methods: Three different nanotubular Ti surfaces (TNs manufactured by electrochemical anodization with diameters of 25, 80, or 140 nm) were seeded with human MSCs (hMSCs) and their exosomes were isolated and tested with human umbilical vein endothelial cells (HUVECs) to assess whether TNs can influence the secretory functions of hMSCs and whether these in turn affect endothelial and osteogenic cell activities in vitro. (3) Results: The hMSCs adhered on all TNs and significantly expressed angiogenic-related factors after 7 days of culture when compared to untreated Ti substrates. Nanomodifications of Ti surfaces significantly improved the release of hMSCs exosomes, having dimensions below 100 nm and expressing CD63 and CD81 surface markers. These hMSC-derived exosomes were efficiently internalized by HUVECs, promoting their migration and differentiation. In addition, they selectively released a panel of miRNAs directly or indirectly related to angiogenesis. (4) Conclusions: Preconditioning of hMSCs on TNs induced elevated exosomes secretion that stimulated in vitro endothelial and cell activity, which might improve in vivo angiogenesis, supporting faster scaffold integration.
Collapse
Affiliation(s)
- Chiara Gardin
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy; (C.G.); (L.F.)
| | - Letizia Ferroni
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy; (C.G.); (L.F.)
| | - Yaşar Kemal Erdoğan
- Biomedical Engineering Program, Middle East Technical University, Ankara 06800, Turkey; (Y.K.E.); (B.E.)
- Department of Biomedical Engineering, Isparta University of Applied Science, Isparta 32260, Turkey
| | - Federica Zanotti
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.Z.); (M.T.)
| | - Francesco De Francesco
- Department of Plastic and Reconstructive Surgery-Hand Surgery Unit, Azienda ‘Ospedali Riuniti’, 60126 Ancona, Italy;
| | - Martina Trentini
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.Z.); (M.T.)
| | - Giulia Brunello
- Department of Neurosciences, Dentistry Section, University of Padova, 35128 Padova, Italy;
- Department of Oral Surgery, University Clinic Düsseldorf, 40225 Dusseldorf, Germany
| | - Batur Ercan
- Biomedical Engineering Program, Middle East Technical University, Ankara 06800, Turkey; (Y.K.E.); (B.E.)
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara 06800, Turkey
- BIOMATEN, METU Center of Excellence in Biomaterials and Tissue Engineering, Ankara 06800, Turkey
| | - Barbara Zavan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.Z.); (M.T.)
- Correspondence: ; Tel.: +39-0532455502
| |
Collapse
|
8
|
Zisman D, Safieh M, Simanovich E, Feld J, Kinarty A, Zisman L, Gazitt T, Haddad A, Elias M, Rosner I, Kaly L, Rahat MA. Tocilizumab (TCZ) Decreases Angiogenesis in Rheumatoid Arthritis Through Its Regulatory Effect on miR-146a-5p and EMMPRIN/CD147. Front Immunol 2021; 12:739592. [PMID: 34975837 PMCID: PMC8714881 DOI: 10.3389/fimmu.2021.739592] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/29/2021] [Indexed: 01/25/2023] Open
Abstract
Background Angiogenesis is a major contributor to the development of inflammation during Rheumatoid arthritis (RA), as the vascularization of the pannus provides nutrients and oxygen for the infiltrating immune cells and proliferating synoviocytes. Tocilizumab (TCZ) is an anti-IL-6 receptor antibody that is used in the treatment of RA patients, and has been shown to exert anti-inflammatory effects. However, its effects on angiogenesis are not fully elucidated, and the molecular mechanisms regulating this effect are unknown. Methods We evaluated the concentrations of several pro- and anti-angiogenic factors and the expression levels of several microRNA molecules that are associated with RA and angiogenesis in serum samples obtained from 40 RA patients, before and 4 months after the initiation of TCZ treatment. Additionally, we used an in vitro co-culture system of fibroblasts (the HT1080 cell line) and monocytes (the U937 cell line) to explore the mechanisms of TCZ action. Results Serum samples from RA patients treated with TCZ exhibited reduced circulating levels of EMMPRIN/CD147, enhanced expression of circulating miR-146a-5p and miR-150-5p, and reduced the angiogenic potential as was manifested by the lower number of tube-like structures that were formed by EaHy926 endothelial cell line. In vitro, the accumulation in the supernatants of the pro-angiogenic factors EMMPRIN, VEGF and MMP-9 was increased by co-culturing the HT1080 fibroblasts and the U937 monocytes, while the accumulation of the anti-angiogenic factor thrombospondin-1 (Tsp-1) and the expression levels of miR-146a-5p were reduced. Transfection of HT1080 cells with the miR-146a-5p mimic, decreased the accumulation of EMMPRIN, VEGF and MMP-9. When we neutralized EMMPRIN with a blocking antibody, the supernatants derived from these co-cultures displayed reduced migration, proliferation and tube formation in the functional assays. Conclusions Our findings implicate miR-146a-5p in the regulation of EMMPRIN and propose that TCZ affects angiogenesis through its effects on EMMPRIN and miR-146a-5p.
Collapse
Affiliation(s)
- Devy Zisman
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Rheumatology, Carmel Medical Center, Haifa, Israel
| | - Mirna Safieh
- Department of Rheumatology, Carmel Medical Center, Haifa, Israel
- Immunotherapy Laboratory, Carmel Medical Center, Haifa, Israel
| | | | - Joy Feld
- Department of Rheumatology, Carmel Medical Center, Haifa, Israel
| | - Amalia Kinarty
- Immunotherapy Laboratory, Carmel Medical Center, Haifa, Israel
| | - Liron Zisman
- Immunotherapy Laboratory, Carmel Medical Center, Haifa, Israel
| | - Tal Gazitt
- Department of Rheumatology, Carmel Medical Center, Haifa, Israel
| | - Amir Haddad
- Department of Rheumatology, Carmel Medical Center, Haifa, Israel
| | - Muna Elias
- Department of Rheumatology, Carmel Medical Center, Haifa, Israel
| | - Itzhak Rosner
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Rheumatology Unit, Bnei Zion Medical Center, Haifa, Israel
| | - Lisa Kaly
- Rheumatology Unit, Bnei Zion Medical Center, Haifa, Israel
| | - Michal A. Rahat
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Immunotherapy Laboratory, Carmel Medical Center, Haifa, Israel
| |
Collapse
|
9
|
Salybekov AA, Salybekova A, Sheng Y, Shinozaki Y, Yokoyama K, Kobayashi S, Asahara T. Extracellular Vesicles Derived From Regeneration Associated Cells Preserve Heart Function After Ischemia-Induced Injury. Front Cardiovasc Med 2021; 8:754254. [PMID: 34746267 PMCID: PMC8564358 DOI: 10.3389/fcvm.2021.754254] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022] Open
Abstract
Under vasculogenic conditioning, pro-inflammatory cell subsets of peripheral blood mononuclear cells (PBMCs) shift their phenotype to pro-regenerative cells such as vasculogenic endothelial progenitor cells, M2 macrophages, and regulatory T cells, collectively designated as regeneration-associated cells (RACs). In this study, we evaluated the therapeutic efficacy of RAC-derived extracellular vesicles (RACev) compared to mesenchymal stem cell-derived EVs (MSCev) in the context of myocardial ischemia reperfusion injury (M-IRI). Human PBMCs were cultured with defined growth factors for seven days to harvest RACs. RACev and MSCev were isolated via serial centrifugation and ultracentrifugation. EV quantity and size were characterized by nanoparticle tracking analysis. In vitro, RACev markedly enhanced the viability, and proliferation of human umbilical vein endothelial cells in a dose-dependent manner compared to MSCev. Notably, systemic injection of RACev improved cardiac functions at 4 weeks, such as fractional shortening, and protection from mitral regurgitation than the MSCev-treated group. Histologically, the RACev-transplanted group showed less interstitial fibrosis and enhanced capillary densities compared to the MSCev group. These beneficial effects were coupled with significant expression of angiogenesis, anti-fibrosis, anti-inflammatory, and cardiomyogenesis-related miRs in RACev, while modestly in MSCev. In vivo bioluminescence analysis showed preferential accumulation of RACev in the IR-injured myocardium, while MSCev accumulation was limited. Immune phenotyping analysis confirmed the immunomodulatory effect of MSCev and RACev. Overall, repetitive systemic transplantation of RACev is superior to MSCev in terms of cardiac function enhancements via crucial angiogenesis, anti-fibrosis, anti-inflammation miR delivery to the ischemic tissue.
Collapse
Affiliation(s)
- Amankeldi A Salybekov
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura, Japan.,Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura, Japan.,Division of Regenerative Medicine, Department of Center for Clinical and Translational Science, Shonan Kamakura General Hospital, Kamakura, Japan.,Department of Advanced Medicine Science, Tokai University School of Medicine, Isehara, Japan
| | - Ainur Salybekova
- Department of Advanced Medicine Science, Tokai University School of Medicine, Isehara, Japan
| | - Yin Sheng
- Department of Advanced Medicine Science, Tokai University School of Medicine, Isehara, Japan
| | - Yoshiko Shinozaki
- Teaching and Research Support Core Center, Tokai University School of Medicine, Isehara, Japan
| | - Keiko Yokoyama
- Teaching and Research Support Core Center, Tokai University School of Medicine, Isehara, Japan
| | - Shuzo Kobayashi
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura, Japan.,Division of Regenerative Medicine, Department of Center for Clinical and Translational Science, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Takayuki Asahara
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura, Japan.,Department of Advanced Medicine Science, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
10
|
Hussen BM, Abdullah ST, Rasul MF, Salihi A, Ghafouri-Fard S, Hidayat HJ, Taheri M. MicroRNAs: Important Players in Breast Cancer Angiogenesis and Therapeutic Targets. Front Mol Biosci 2021; 8:764025. [PMID: 34778378 PMCID: PMC8582349 DOI: 10.3389/fmolb.2021.764025] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022] Open
Abstract
The high incidence of breast cancer (BC) is linked to metastasis, facilitated by tumor angiogenesis. MicroRNAs (miRNAs or miRs) are small non-coding RNA molecules that have an essential role in gene expression and are significantly linked to the tumor development and angiogenesis process in different types of cancer, including BC. There's increasing evidence showed that various miRNAs play a significant role in disease processes; specifically, they are observed and over-expressed in a wide range of diseases linked to the angiogenesis process. However, more studies are required to reach the best findings and identify the link among miRNA expression, angiogenic pathways, and immune response-related genes to find new therapeutic targets. Here, we summarized the recent updates on miRNA signatures and their cellular targets in the development of breast tumor angiogenetic and discussed the strategies associated with miRNA-based therapeutic targets as anti-angiogenic response.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammed Fatih Rasul
- Department of Medical Analysis, Faculty of Science, Tishk International University-Erbil, Erbil, Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Iraq
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| |
Collapse
|
11
|
Yang T, Xiao H, Liu X, Wang Z, Zhang Q, Wei N, Guo X. Vascular Normalization: A New Window Opened for Cancer Therapies. Front Oncol 2021; 11:719836. [PMID: 34476218 PMCID: PMC8406857 DOI: 10.3389/fonc.2021.719836] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/23/2021] [Indexed: 12/17/2022] Open
Abstract
Preclinical and clinical antiangiogenic approaches, with multiple side effects such as resistance, have not been proved to be very successful in treating tumor blood vessels which are important targets for tumor therapy. Meanwhile, restoring aberrant tumor blood vessels, known as tumor vascular normalization, has been shown not only capable of reducing tumor invasion and metastasis but also of enhancing the effectiveness of chemotherapy, radiation therapy, and immunotherapy. In addition to the introduction of such methods of promoting tumor vascular normalization such as maintaining the balance between proangiogenic and antiangiogenic factors and targeting endothelial cell metabolism, microRNAs, and the extracellular matrix, the latest molecular mechanisms and the potential connections between them were primarily explored. In particular, the immunotherapy-induced normalization of blood vessels further promotes infiltration of immune effector cells, which in turn improves immunotherapy, thus forming an enhanced loop. Thus, immunotherapy in combination with antiangiogenic agents is recommended. Finally, we introduce the imaging technologies and serum markers, which can be used to determine the window for tumor vascular normalization.
Collapse
Affiliation(s)
- Ting Yang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongqi Xiao
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoxia Liu
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhihui Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingbai Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Nianjin Wei
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinggang Guo
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
12
|
Marceca GP, Distefano R, Tomasello L, Lagana A, Russo F, Calore F, Romano G, Bagnoli M, Gasparini P, Ferro A, Acunzo M, Ma Q, Croce CM, Nigita G. MiREDiBase, a manually curated database of validated and putative editing events in microRNAs. Sci Data 2021; 8:199. [PMID: 34349127 PMCID: PMC8338996 DOI: 10.1038/s41597-021-00979-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/10/2021] [Indexed: 11/08/2022] Open
Abstract
MicroRNAs (miRNAs) are regulatory small non-coding RNAs that function as translational repressors. MiRNAs are involved in most cellular processes, and their expression and function are presided by several factors. Amongst, miRNA editing is an epitranscriptional modification that alters the original nucleotide sequence of selected miRNAs, possibly influencing their biogenesis and target-binding ability. A-to-I and C-to-U RNA editing are recognized as the canonical types, with the A-to-I type being the predominant one. Albeit some bioinformatics resources have been implemented to collect RNA editing data, it still lacks a comprehensive resource explicitly dedicated to miRNA editing. Here, we present MiREDiBase, a manually curated catalog of editing events in miRNAs. The current version includes 3,059 unique validated and putative editing sites from 626 pre-miRNAs in humans and three primates. Editing events in mature human miRNAs are supplied with miRNA-target predictions and enrichment analysis, while minimum free energy structures are inferred for edited pre-miRNAs. MiREDiBase represents a valuable tool for cell biology and biomedical research and will be continuously updated and expanded at https://ncrnaome.osumc.edu/miredibase .
Collapse
Affiliation(s)
- Gioacchino P Marceca
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rosario Distefano
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Luisa Tomasello
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Alessandro Lagana
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Francesco Russo
- Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Federica Calore
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Giulia Romano
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Marina Bagnoli
- Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Pierluigi Gasparini
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Alfredo Ferro
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Mario Acunzo
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
13
|
Zheng Q, Hou W. Regulation of angiogenesis by microRNAs in cancer. Mol Med Rep 2021; 24:583. [PMID: 34132365 PMCID: PMC8223106 DOI: 10.3892/mmr.2021.12222] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/28/2021] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRs) are endogenous, small, non‑coding RNA molecules with ~22 nucleotides, and are involved in regulating the expression of multiple genes and controlling cellular functions. miRs serve key roles in angiogenesis by regulating the proliferation, differentiation, apoptosis and migration of endothelial cells. Regulation of angiogenesis is essential for several physiological and pathological processes, particularly for tumor development and progression. Therefore, it is important to investigate the roles served by miRs in angiogenesis as this may aid in discovering novel strategies for treating tumors via modulating angiogenesis. In this review, miRNA biogenesis, regulation and functions are described with new information and corresponding references. In particular, the latest advances in the role of various miRs and their target genes involved in tumor angiogenesis were updated. Next, different signaling pathways by which miRNAs could be regulated in different types of tumor progression were addressed. Furthermore, the potential clinical value of miRs as biomarkers for diagnosing and monitoring the response to therapy, as well as their ability to regulate tumor angiogenesis and the mechanism underlying this regulation, were investigated.
Collapse
Affiliation(s)
- Qi Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Wei Hou
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| |
Collapse
|
14
|
Harman RM, Marx C, Van de Walle GR. Translational Animal Models Provide Insight Into Mesenchymal Stromal Cell (MSC) Secretome Therapy. Front Cell Dev Biol 2021; 9:654885. [PMID: 33869217 PMCID: PMC8044970 DOI: 10.3389/fcell.2021.654885] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
The therapeutic potential of the mesenchymal stromal cell (MSC) secretome, consisting of all molecules secreted by MSCs, is intensively studied. MSCs can be readily isolated, expanded, and manipulated in culture, and few people argue with the ethics of their collection. Despite promising pre-clinical studies, most MSC secretome-based therapies have not been implemented in human medicine, in part because the complexity of bioactive factors secreted by MSCs is not completely understood. In addition, the MSC secretome is variable, influenced by individual donor, tissue source of origin, culture conditions, and passage. An increased understanding of the factors that make up the secretome and the ability to manipulate MSCs to consistently secrete factors of biologic importance will improve MSC therapy. To aid in this goal, we can draw from the wealth of information available on secreted factors from MSC isolated from veterinary species. These translational animal models will inspire efforts to move human MSC secretome therapy from bench to bedside.
Collapse
Affiliation(s)
| | | | - Gerlinde R. Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| |
Collapse
|
15
|
Li LJ, Chang WM, Hsiao M. Aberrant Expression of microRNA Clusters in Head and Neck Cancer Development and Progression: Current and Future Translational Impacts. Pharmaceuticals (Basel) 2021; 14:ph14030194. [PMID: 33673471 PMCID: PMC7997248 DOI: 10.3390/ph14030194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/14/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs are small non-coding RNAs known to negative regulate endogenous genes. Some microRNAs have high sequence conservation and localize as clusters in the genome. Their coordination is regulated by simple genetic and epigenetic events mechanism. In cells, single microRNAs can regulate multiple genes and microRNA clusters contain multiple microRNAs. MicroRNAs can be differentially expressed and act as oncogenic or tumor suppressor microRNAs, which are based on the roles of microRNA-regulated genes. It is vital to understand their effects, regulation, and various biological functions under both normal and disease conditions. Head and neck squamous cell carcinomas are some of the leading causes of cancer-related deaths worldwide and are regulated by many factors, including the dysregulation of microRNAs and their clusters. In disease stages, microRNA clusters can potentially control every field of oncogenic function, including growth, proliferation, apoptosis, migration, and intercellular commutation. Furthermore, microRNA clusters are regulated by genetic mutations or translocations, transcription factors, and epigenetic modifications. Additionally, microRNA clusters harbor the potential to act therapeutically against cancer in the future. Here, we review recent advances in microRNA cluster research, especially relative to head and neck cancers, and discuss their regulation and biological functions under pathological conditions as well as translational applications.
Collapse
Affiliation(s)
- Li-Jie Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
| | - Wei-Min Chang
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-2-2789–8752
| |
Collapse
|
16
|
Extracellular Vesicle-Derived microRNAs of Human Wharton's Jelly Mesenchymal Stromal Cells May Activate Endogenous VEGF-A to Promote Angiogenesis. Int J Mol Sci 2021; 22:ijms22042045. [PMID: 33669517 PMCID: PMC7922033 DOI: 10.3390/ijms22042045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022] Open
Abstract
Despite low levels of vascular endothelial growth factor (VEGF)-A, the secretome of human Wharton’s jelly (WJ) mesenchymal stromal cells (MSCs) effectively promoted proangiogenic responses in vitro, which were impaired upon the depletion of small (~140 nm) extracellular vesicles (EVs). The isolated EVs shared the low VEGF-A profile of the secretome and expressed five microRNAs, which were upregulated compared to fetal dermal MSC-derived EVs. These upregulated microRNAs exclusively targeted the VEGF-A gene within 54 Gene Ontology (GO) biological processes, 18 of which are associated with angiogenesis. Moreover, 15 microRNAs of WJ-MSC-derived EVs were highly expressed (Ct value ≤ 26) and exclusively targeted the thrombospondin 1 (THBS1) gene within 75 GO biological processes, 30 of which are associated with the regulation of tissue repair. The relationship between predicted microRNA target genes and WJ-MSC-derived EVs was shown by treating human umbilical-vein endothelial cells (HUVECs) with appropriate doses of EVs. The exposure of HUVECs to EVs for 72 h significantly enhanced the release of VEGF-A and THBS1 protein expression compared to untreated control cells. Finally, WJ-MSC-derived EVs stimulated in vitro tube formation along with the migration and proliferation of HUVECs. Our findings can contribute to a better understanding of the molecular mechanisms underlying the proangiogenic responses induced by human umbilical cord-derived MSCs, suggesting a key regulatory role for microRNAs delivered by EVs.
Collapse
|
17
|
Kasprzak A. Angiogenesis-Related Functions of Wnt Signaling in Colorectal Carcinogenesis. Cancers (Basel) 2020; 12:cancers12123601. [PMID: 33276489 PMCID: PMC7761462 DOI: 10.3390/cancers12123601] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Angiogenesis belongs to the most clinical characteristics of colorectal cancer (CRC) and is strongly linked to the activation of Wnt/β-catenin signaling. The most prominent factors stimulating constitutive activation of this pathway, and in consequence angiogenesis, are genetic alterations (mainly mutations) concerning APC and the β-catenin encoding gene (CTNNB1), detected in a large majority of CRC patients. Wnt/β-catenin signaling is involved in the basic types of vascularization (sprouting and nonsprouting angiogenesis), vasculogenic mimicry as well as the formation of mosaic vessels. The number of known Wnt/β-catenin signaling components and other pathways interacting with Wnt signaling, regulating angiogenesis, and enabling CRC progression continuously increases. This review summarizes the current knowledge about the role of the Wnt/Fzd/β-catenin signaling pathway in the process of CRC angiogenesis, aiming to improve the understanding of the mechanisms of metastasis as well as improvements in the management of this cancer. Abstract Aberrant activation of the Wnt/Fzd/β-catenin signaling pathway is one of the major molecular mechanisms of colorectal cancer (CRC) development and progression. On the other hand, one of the most common clinical CRC characteristics include high levels of angiogenesis, which is a key event in cancer cell dissemination and distant metastasis. The canonical Wnt/β-catenin downstream signaling regulates the most important pro-angiogenic molecules including vascular endothelial growth factor (VEGF) family members, matrix metalloproteinases (MMPs), and chemokines. Furthermore, mutations of the β-catenin gene associated with nuclear localization of the protein have been mainly detected in microsatellite unstable CRC. Elevated nuclear β-catenin increases the expression of many genes involved in tumor angiogenesis. Factors regulating angiogenesis with the participation of Wnt/β-catenin signaling include different groups of biologically active molecules including Wnt pathway components (e.g., Wnt2, DKK, BCL9 proteins), and non-Wnt pathway factors (e.g., chemoattractant cytokines, enzymatic proteins, and bioactive compounds of plants). Several lines of evidence argue for the use of angiogenesis inhibition in the treatment of CRC. In the context of this paper, components of the Wnt pathway are among the most promising targets for CRC therapy. This review summarizes the current knowledge about the role of the Wnt/Fzd/β-catenin signaling pathway in the process of CRC angiogenesis, aiming to improve the understanding of the mechanisms of metastasis as well as improvements in the management of this cancer.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecicki Street 6, 60-781 Poznań, Poland
| |
Collapse
|
18
|
Cannavicci A, Zhang Q, Kutryk MJB. Non-Coding RNAs and Hereditary Hemorrhagic Telangiectasia. J Clin Med 2020; 9:jcm9103333. [PMID: 33080889 PMCID: PMC7603193 DOI: 10.3390/jcm9103333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 02/08/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are functional ribonucleic acid (RNA) species that include microRNAs (miRs), a class of short non-coding RNAs (∼21–25 nucleotides), and long non-coding RNAs (lncRNAs) consisting of more than 200 nucleotides. They regulate gene expression post-transcriptionally and are involved in a wide range of pathophysiological processes. Hereditary hemorrhagic telangiectasia (HHT) is a rare disorder inherited in an autosomal dominant fashion characterized by vascular dysplasia. Patients can develop life-threatening vascular malformations and experience severe hemorrhaging. Effective pharmacological therapies are limited. The study of ncRNAs in HHT is an emerging field with great promise. This review will explore the current literature on the involvement of ncRNAs in HHT as diagnostic and pathogenic factors.
Collapse
Affiliation(s)
- Anthony Cannavicci
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Division of Cardiology, Keenan Research Center for Biomedical Sciences, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1T8, Canada;
| | - Qiuwang Zhang
- Division of Cardiology, Keenan Research Center for Biomedical Sciences, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1T8, Canada;
| | - Michael J. B. Kutryk
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Division of Cardiology, Keenan Research Center for Biomedical Sciences, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1T8, Canada;
- Correspondence: ; Tel.: +1-(416)-360-4000 (ext. 6155)
| |
Collapse
|
19
|
Zhou L, Zhang Z, Huang Z, Nice E, Zou B, Huang C. Revisiting cancer hallmarks: insights from the interplay between oxidative stress and non-coding RNAs. MOLECULAR BIOMEDICINE 2020; 1:4. [PMID: 35006436 PMCID: PMC8603983 DOI: 10.1186/s43556-020-00004-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/21/2020] [Indexed: 02/08/2023] Open
Abstract
Cancer is one of the most common disease worldwide, with complex changes and certain traits which have been described as “The Hallmarks of Cancer.” Despite increasing studies on in-depth investigation of these hallmarks, the molecular mechanisms associated with tumorigenesis have still not yet been fully defined. Recently, accumulating evidence supports the observation that microRNAs and long noncoding RNAs (lncRNAs), two main classes of noncoding RNAs (ncRNAs), regulate most cancer hallmarks through their binding with DNA, RNA or proteins, or encoding small peptides. Reactive oxygen species (ROS), the byproducts generated during metabolic processes, are known to regulate every step of tumorigenesis by acting as second messengers in cancer cells. The disturbance in ROS homeostasis leads to a specific pathological state termed “oxidative stress”, which plays essential roles in regulation of cancer progression. In addition, the interplay between oxidative stress and ncRNAs is found to regulate the expression of multiple genes and the activation of several signaling pathways involved in cancer hallmarks, revealing a potential mechanistic relationship involving ncRNAs, oxidative stress and cancer. In this review, we provide evidence that shows the essential role of ncRNAs and the interplay between oxidative stress and ncRNAs in regulating cancer hallmarks, which may expand our understanding of ncRNAs in the cancer development from the new perspective.
Collapse
Affiliation(s)
- Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Edouard Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Bingwen Zou
- Department of Thoracic Oncology and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China. .,School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China.
| |
Collapse
|
20
|
Mesenchymal and Induced Pluripotent Stem Cells-Derived Extracellular Vesicles: The New Frontier for Regenerative Medicine? Cells 2020; 9:cells9051163. [PMID: 32397132 PMCID: PMC7290733 DOI: 10.3390/cells9051163] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
Regenerative medicine aims to repair damaged, tissues or organs for the treatment of various diseases, which have been poorly managed with conventional drugs and medical procedures. To date, multimodal regenerative methods include transplant of healthy organs, tissues, or cells, body stimulation to activate a self-healing response in damaged tissues, as well as the combined use of cells and bio-degradable scaffold to obtain functional tissues. Certainly, stem cells are promising tools in regenerative medicine due to their ability to induce de novo tissue formation and/or promote organ repair and regeneration. Currently, several studies have shown that the beneficial stem cell effects, especially for mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPSCs) in damaged tissue restore are not dependent on their engraftment and differentiation on the injury site, but rather to their paracrine activity. It is now well known that paracrine action of stem cells is due to their ability to release extracellular vesicles (EVs). EVs play a fundamental role in cell-to-cell communication and are directly involved in tissue regeneration. In the present review, we tried to summarize the molecular mechanisms through which MSCs and iPSCs-derived EVs carry out their therapeutic action and their possible application for the treatment of several diseases.
Collapse
|
21
|
Paracrine Mechanisms of Mesenchymal Stromal Cells in Angiogenesis. Stem Cells Int 2020; 2020:4356359. [PMID: 32215017 PMCID: PMC7085399 DOI: 10.1155/2020/4356359] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
The role of the mesenchymal stromal cell- (MSC-) derived secretome is becoming increasingly intriguing from a clinical perspective due to its ability to stimulate endogenous tissue repair processes as well as its effective regulation of the immune system, mimicking the therapeutic effects produced by the MSCs. The secretome is a composite product secreted by MSC in vitro (in conditioned medium) and in vivo (in the extracellular milieu), consisting of a protein soluble fraction (mostly growth factors and cytokines) and a vesicular component, extracellular vesicles (EVs), which transfer proteins, lipids, and genetic material. MSC-derived secretome differs based on the tissue from which the MSCs are isolated and under specific conditions (e.g., preconditioning or priming) suggesting that clinical applications should be tailored by choosing the tissue of origin and a priming regimen to specifically correct a given pathology. MSC-derived secretome mediates beneficial angiogenic effects in a variety of tissue injury-related diseases. This supports the current effort to develop cell-free therapeutic products that bring both clinical benefits (reduced immunogenicity, persistence in vivo, and no genotoxicity associated with long-term cell cultures) and manufacturing advantages (reduced costs, availability of large quantities of off-the-shelf products, and lower regulatory burden). In the present review, we aim to give a comprehensive picture of the numerous components of the secretome produced by MSCs derived from the most common tissue sources for clinical use (e.g., AT, BM, and CB). We focus on the factors involved in the complex regulation of angiogenic processes.
Collapse
|
22
|
Varghese E, Liskova A, Kubatka P, Samuel SM, Büsselberg D. Anti-Angiogenic Effects of Phytochemicals on miRNA Regulating Breast Cancer Progression. Biomolecules 2020; 10:biom10020191. [PMID: 32012744 PMCID: PMC7072640 DOI: 10.3390/biom10020191] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/19/2020] [Accepted: 01/25/2020] [Indexed: 12/16/2022] Open
Abstract
Several phytochemicals have been identified for their role in modifying miRNA regulating tumor progression. miRNAs modulate the expression of several oncogenes and tumor suppressor genes including the genes that regulate tumor angiogenesis. Hypoxia inducible factor-1 alpha (HIF-1α) signaling is a central axis that activates oncogenic signaling and acts as a metabolic switch in endothelial cell (EC) driven tumor angiogenesis. Tumor angiogenesis driven by metabolic reprogramming of EC is crucial for tumor progression and metastasis in many different cancers, including breast cancers, and has been linked to aberrant miRNA expression profiles. In the current article, we identify different miRNAs that regulate tumor angiogenesis in the context of oncogenic signaling and metabolic reprogramming in ECs and review how selected phytochemicals could modulate miRNA levels to induce an anti-angiogenic action in breast cancer. Studies involving genistein, epigallocatechin gallate (EGCG) and resveratrol demonstrate the regulation of miRNA-21, miRNA-221/222 and miRNA-27, which are prognostic markers in triple negative breast cancers (TNBCs). Modulating the metabolic pathway is a novel strategy for controlling tumor angiogenesis and tumor growth. Cardamonin, curcumin and resveratrol exhibit their anti-angiogenic property by targeting the miRNAs that regulate EC metabolism. Here we suggest that using phytochemicals to target miRNAs, which in turn suppresses tumor angiogenesis, should have the potential to inhibit tumor growth, progression, invasion and metastasis and may be developed into an effective therapeutic strategy for the treatment of many different cancers where tumor angiogenesis plays a significant role in tumor growth and progression.
Collapse
Affiliation(s)
- Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar; (E.V.); (S.M.S.)
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar; (E.V.); (S.M.S.)
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar; (E.V.); (S.M.S.)
- Correspondence: ; Tel.: +974-4492-8334; Fax: +974-4492-8333
| |
Collapse
|
23
|
Kim DY, Lee SS, Bae YK. Colorectal cancer cells differentially impact migration and microRNA expression in endothelial cells. Oncol Lett 2019; 18:6361-6370. [PMID: 31814846 PMCID: PMC6888185 DOI: 10.3892/ol.2019.11055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 08/08/2019] [Indexed: 01/08/2023] Open
Abstract
Angiogenesis is an essential step in cancer progression and metastasis. Changes in the microRNA (miRNA or miR) expression profiles of endothelial cells (ECs) elicited by cancer cells promote angiogenesis. Vascular endothelial growth factor (VEGF), a key pro-angiogenic factor, influences miRNA expression in ECs; however, the exact role that VEGF serves in miRNA regulation during angiogenesis is poorly defined. The present study aimed to demonstrate the differential angiogenic effects on human umbilical vein endothelial cells (HUVECs) of five different colorectal cancer (CRC) cell lines by in vitro HUVEC migration and angiogenesis assays in response to CRC-conditioned medium (CM). Among the tested CMs, LoVo was the most effective cell line in eliciting HUVEC angiogenic phenotypes, at least partially due to its high VEGF level. It was also observed that pro-angiogenesis-regulatory miRNAs (angio-miRNA) miR-296, miR-132, miR-105 and miR-200 were upregulated in the VEGF-rich LoVo CM compared with the VEGF-scarce SW620 CM. In addition, treatment with VEGF receptor 2 inhibitor downregulated the pro-angio-miRNAs, with the exception of miR-132, suggesting that VEGF, as well as additional signaling, is required for angio-miRNA expression. Quantitative analyses on pro-angio-miRNA target expression suggested that independent pathways may be involved in the regulation of their expression. Overall, the data from the present study indicated that multiple paracrine factors, including VEGF secreted by CRCs, effectively modulated angio-miRNA expression, thus impacting their target expression and the angiogenic phenotypes of HUVECs.
Collapse
Affiliation(s)
- Do Yei Kim
- Center for Bioanalysis, Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea.,Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Sang-Soo Lee
- Center for Bioanalysis, Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea.,Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Young-Kyung Bae
- Center for Bioanalysis, Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| |
Collapse
|
24
|
Xu D, Dong P, Xiong Y, Yue J, Ihira K, Konno Y, Kobayashi N, Todo Y, Watari H. MicroRNA-361: A Multifaceted Player Regulating Tumor Aggressiveness and Tumor Microenvironment Formation. Cancers (Basel) 2019; 11:E1130. [PMID: 31394811 PMCID: PMC6721607 DOI: 10.3390/cancers11081130] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/01/2019] [Accepted: 08/01/2019] [Indexed: 12/22/2022] Open
Abstract
MicroRNA-361-5p (miR-361) expression frequently decreases or is lost in different types of cancers, and contributes to tumor suppression by repressing the expression of its target genes implicated in tumor growth, epithelial-to-mesenchymal transition (EMT), metastasis, drug resistance, glycolysis, angiogenesis, and inflammation. Here, we review the expression pattern of miR-361 in human tumors, describe the mechanisms responsible for its dysregulation, and discuss how miR-361 modulates the aggressive properties of tumor cells and alter the tumor microenvironment by acting as a novel tumor suppressor. Furthermore, we describe its potentials as a promising diagnostic or prognostic biomarker for cancers and a promising target for therapeutic development.
Collapse
Affiliation(s)
- Daozhi Xu
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 060-8638, Japan.
| | - Ying Xiong
- Department of Gynecology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Kei Ihira
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Yosuke Konno
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Noriko Kobayashi
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Yukiharu Todo
- Division of Gynecologic Oncology, National Hospital Organization, Hokkaido Cancer Center, Sapporo 003-0804, Japan
| | - Hidemichi Watari
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 060-8638, Japan.
| |
Collapse
|
25
|
Micrornas at the Interface between Osteogenesis and Angiogenesis as Targets for Bone Regeneration. Cells 2019; 8:cells8020121. [PMID: 30717449 PMCID: PMC6406308 DOI: 10.3390/cells8020121] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/25/2019] [Accepted: 01/30/2019] [Indexed: 12/17/2022] Open
Abstract
Bone formation and regeneration is a multistep complex process crucially determined by the formation of blood vessels in the growth plate region. This is preceded by the expression of growth factors, notably the vascular endothelial growth factor (VEGF), secreted by osteogenic cells, as well as the corresponding response of endothelial cells, although the exact mechanisms remain to be clarified. Thereby, coordinated coupling between osteogenesis and angiogenesis is initiated and sustained. The precise interplay of these two fundamental processes is crucial during times of rapid bone growth or fracture repair in adults. Deviations in this balance might lead to pathologic conditions such as osteoarthritis and ectopic bone formation. Besides VEGF, the recently discovered important regulatory and modifying functions of microRNAs also support this key mechanism. These comprise two principal categories of microRNAs that were identified with specific functions in bone formation (osteomiRs) and/or angiogenesis (angiomiRs). However, as hypoxia is a major driving force behind bone angiogenesis, a third group involved in this process is represented by hypoxia-inducible microRNAs (hypoxamiRs). This review was focused on the identification of microRNAs that were found to have an active role in osteogenesis as well as angiogenesis to date that were termed "CouplingmiRs (CPLGmiRs)". Outlined representatives therefore represent microRNAs that already have been associated with an active role in osteogenic-angiogenic coupling or are presumed to have its potential. Elucidation of the molecular mechanisms governing bone angiogenesis are of great relevance for improving therapeutic options in bone regeneration, tissue-engineering, and the treatment of bone-related diseases.
Collapse
|