1
|
Katsaraki K, Kontos CK, Ardavanis-Loukeris G, Tzovaras AA, Sideris DC, Scorilas A. Exploring the time-dependent regulatory potential of microRNAs in breast cancer cells treated with proteasome inhibitors. Clin Transl Oncol 2024; 26:1256-1267. [PMID: 38038871 PMCID: PMC11026233 DOI: 10.1007/s12094-023-03349-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023]
Abstract
PURPOSE Breast cancer (BrCa) is a predominant type of cancer with a disparate molecular nature. MicroRNAs (miRNAs) have emerged as promising key players in the regulation of pathological processes in BrCa. Proteasome inhibitors (PIs) emerged as promising anticancer agents for several human malignancies, including BrCa, inhibiting the function of the proteasome. Aiming to shed light on the miRNA regulatory effect in BrCa after treatment with PIs, we used two PIs, namely bortezomib and carfilzomib. MATERIALS AND METHODS Four BrCa cell lines of distinct molecular subtypes were treated with these PIs. Cell viability and IC50 concentrations were determined. Total RNA was extracted, polyadenylated, and reversely transcribed. Next, the levels of specific miRNAs with a significant role in BrCa were determined using relative quantification, and their regulatory effect was assessed. RESULTS High heterogeneity was discovered in the levels of miRNAs in the four cell lines, after treatment. The miRNA levels fluctuate with distinct patterns, in 24, 48, or 72 hours. Interestingly, miR-1-3p, miR-421-3p, and miR-765-3p appear as key molecules, as they were found deregulated, in almost all combinations of cell lines and PIs. In the SK-BR-3 cell line, the majority of the miRNAs were significantly downregulated in treated compared to untreated cells, with miR-21-5p being the only one upregulated. Finally, various significant biological processes, molecular functions, and pathways were predicted to be affected. CONCLUSIONS The diversity of pathways predicted to be affected by the diversity in miRNA expression after treatment with PIs paves the way for the recognition of new regulatory axes in BrCa.
Collapse
Affiliation(s)
- Katerina Katsaraki
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece.
| | - Gerasimos Ardavanis-Loukeris
- First Department of Medical Oncology, "Saint Savvas" General Anticancer Hospital of Athens, 11522, Athens, Greece
| | - Alexandros A Tzovaras
- First Department of Medical Oncology, "Saint Savvas" General Anticancer Hospital of Athens, 11522, Athens, Greece
| | - Diamantis C Sideris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| |
Collapse
|
2
|
Chu M, Fan Y, Wu L, Ma X, Sao J, Yao Y, Zhuang W, Zhang C. Knockdown of lncRNA BDNF-AS inhibited the progression of multiple myeloma by targeting the miR-125a/b-5p-BCL2 axis. Immun Ageing 2022; 19:3. [PMID: 34980181 PMCID: PMC8722203 DOI: 10.1186/s12979-021-00258-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/03/2021] [Indexed: 02/07/2023]
Abstract
Purpose This study aimed to explore the role of long non-coding RNA (lncRNA) BDNF-AS in the progression of multiple myeloma (MM). Methods The expression of BDNF-AS, miR-125a-5p, and miR-125b-5p in MM serum and cell lines were detected by quantitative reverse transcriptase PCR (qRT-PCR). The binding relationships between miR-125a/b-5p and BDNF-AS or Bcl-2 were predicted by Starbase and verified by luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Cell proliferation was evaluated by Cell Counting Kit-8 (CCK-8) assay and 5-ethynyl-2′-deoxyuridine (EdU) staining assay. Cell migration was evaluated by wound healing assay. The expression levels of apoptosis-related proteins were evaluated by Western blot analysis. The role of BDNF-AS was also investigated in a xenograft tumor model in vivo. Results BDNF-AS was significantly upregulated, while miR-125a-5p and miR-125b-5p were downregulated in MM serum and corresponding cancer cell lines. Knockdown of BDNF-AS effectively inhibited the proliferation and migration of MM.1S and U266 cells, and co-transfection of miR-125a-5p or miR-125b-5p inhibitor and sh-BDNF-AS enhanced cell proliferation and migration compared with that in sh-BDNF-AS group. Knockdown of miR-125a-5p or miR-125b-5p significantly enhanced the proliferation and migration of MM.1S and U266 cells, and co-transfection of sh-Bcl-2 and miR-125a/b-5p inhibitor inhibited cell proliferation compared with that in miR-125a/b-5p inhibitor group. Moreover, knockdown of BDNF-AS increased the expression levels of apoptosis-related proteins (cleaved caspase 3 and cleaved PARP), while knockdown of miR-125a-5p or miR-125b-5p reduced the expression levels of these apoptosis-related proteins compared with knockdown of BDNF-AS. Furthermore, knockdown of BDNF-AS effectively suppressed MM tumor growth in vivo. Conclusion Our findings revealed that knockdown of BDNF-AS inhibited the progression of MM by targeting the miR-125a/b-5p-Bcl-2 axis, indicating that BDNF-AS might serve as a novel drug target for MM. Supplementary Information The online version contains supplementary material available at 10.1186/s12979-021-00258-5.
Collapse
Affiliation(s)
- Min Chu
- Medical laboratory, Shidong Hospital Affiliated to University of Shanghai For Science and Technology, 999 Shiguang Road, Yangpu District, Shanghai, 200438, China
| | - Yingchao Fan
- Medical laboratory, Shidong Hospital Affiliated to University of Shanghai For Science and Technology, 999 Shiguang Road, Yangpu District, Shanghai, 200438, China
| | - Liting Wu
- Medical laboratory, Shidong Hospital Affiliated to University of Shanghai For Science and Technology, 999 Shiguang Road, Yangpu District, Shanghai, 200438, China
| | - Xiaoyan Ma
- Medical laboratory, Shidong Hospital Affiliated to University of Shanghai For Science and Technology, 999 Shiguang Road, Yangpu District, Shanghai, 200438, China
| | - Jinfeng Sao
- Medical laboratory, Shidong Hospital Affiliated to University of Shanghai For Science and Technology, 999 Shiguang Road, Yangpu District, Shanghai, 200438, China
| | - Yonghua Yao
- Medical laboratory, Shidong Hospital Affiliated to University of Shanghai For Science and Technology, 999 Shiguang Road, Yangpu District, Shanghai, 200438, China
| | - Wenfang Zhuang
- Medical laboratory, Shidong Hospital Affiliated to University of Shanghai For Science and Technology, 999 Shiguang Road, Yangpu District, Shanghai, 200438, China.
| | - Cui Zhang
- Medical laboratory, Shidong Hospital Affiliated to University of Shanghai For Science and Technology, 999 Shiguang Road, Yangpu District, Shanghai, 200438, China.
| |
Collapse
|
3
|
Xu C, Liang T, Zhang F, Liu J, Fu Y. tRNA-derived fragments as novel potential biomarkers for relapsed/refractory multiple myeloma. BMC Bioinformatics 2021; 22:238. [PMID: 33971811 PMCID: PMC8111751 DOI: 10.1186/s12859-021-04167-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022] Open
Abstract
Background tRNA-derived fragments have been reported to be key regulatory factors in human tumors. However, their roles in the progression of multiple myeloma remain unknown. Results This study employed RNA-sequencing to explore the expression profiles of tRFs/tiRNAs in new diagnosed MM and relapsed/refractory MM samples. The expression of selected tRFs/tiRNAs were further validated in clinical specimens and myeloma cell lines by qPCR. Bioinformatic analysis was performed to predict their roles in multiple myeloma progression.We identified 10 upregulated tRFs/tiRNAs and 16 downregulated tRFs/tiRNAs. GO enrichment and KEGG pathway analysis were performed to analyse the functions of 1 significantly up-regulated and 1 significantly down-regulated tRNA-derived fragments. tRFs/tiRNAs may be involved in MM progression and drug-resistance. Conclusion tRFs/tiRNAs were dysregulated and could be potential biomarkers for relapsed/refractory MM. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04167-8.
Collapse
Affiliation(s)
- Cong Xu
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, 410000, China
| | - Ting Liang
- Department of Blood Transfusion, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518000, China
| | - Fangrong Zhang
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, 410000, China
| | - Jing Liu
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, 410000, China.
| | - Yunfeng Fu
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, 410000, China.
| |
Collapse
|
4
|
Potential Role of microRNAs in inducing Drug Resistance in Patients with Multiple Myeloma. Cells 2021; 10:cells10020448. [PMID: 33672466 PMCID: PMC7923438 DOI: 10.3390/cells10020448] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/08/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
The prognosis for newly diagnosed subjects with multiple myeloma (MM) has significantly progressed in recent years. However, most MM patients relapse and after several salvage therapies, the onset of multidrug resistance provokes the occurrence of a refractory disease. A continuous and bidirectional exchange of information takes place between the cells of the microenvironment and neoplastic cells to solicit the demands of cancer cells. Among the molecules serving as messengers, there are microRNAs (miRNA), a family of small noncoding RNAs that regulate gene expression. Numerous miRNAs are associated with drug resistance, also in MM, and the modulation of their expression or activity might be explored to reverse it. In this review we report the most recent studies concerning the relationship between miRNAs and chemoresistance to the most frequently used drugs, such as proteasome inhibitors, steroids, alkylating agents and immunomodulators. The experimental use of antagomirs or miRNA mimics have successfully been proven to counteract chemoresistance and display synergistic effects with antimyeloma drugs which could represent a fundamental moment to overcome resistance in MM treatment.
Collapse
|
5
|
Tian FQ, Zhang LS, Li JH, Tang MQ, Jiang J, Cheng XH, Zhang XC, Jiang M. [Venetoclax combined with azacitidine in the treatment of elderly patients with acute myeloid leukemia or myeloid sarcoma: Three cases reports and literature review]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 41:694-696. [PMID: 32942828 PMCID: PMC7525173 DOI: 10.3760/cma.j.issn.0253-2727.2020.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- F Q Tian
- Department of Hematology, Longgang District People's Hospital of Shenzhen, Shenzhen 518172, China
| | - L S Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - J H Li
- Department of Hematology, Longgang District People's Hospital of Shenzhen, Shenzhen 518172, China
| | - M Q Tang
- Department of Hematology, Longgang District People's Hospital of Shenzhen, Shenzhen 518172, China
| | - J Jiang
- Department of Hematology, Longgang District People's Hospital of Shenzhen, Shenzhen 518172, China
| | - X H Cheng
- Department of Hematology, Longgang District People's Hospital of Shenzhen, Shenzhen 518172, China
| | - X C Zhang
- Department of Hematology, Longgang District People's Hospital of Shenzhen, Shenzhen 518172, China
| | - M Jiang
- Department of Hematology, Longgang District People's Hospital of Shenzhen, Shenzhen 518172, China
| |
Collapse
|
6
|
Zi Y, Zhang Y, Wu Y, Zhang L, Yang R, Huang Y. Downregulation of microRNA‑25‑3p inhibits the proliferation and promotes the apoptosis of multiple myeloma cells via targeting the PTEN/PI3K/AKT signaling pathway. Int J Mol Med 2021; 47:8. [PMID: 33448321 PMCID: PMC7834966 DOI: 10.3892/ijmm.2020.4841] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 12/04/2020] [Indexed: 12/30/2022] Open
Abstract
Numerous studies have confirmed that microRNAs (miRNAs or miRs) have important roles in cancer biogenesis and development including multiple myeloma (MM). MicroRNA-25-3p (miR-25-3p) has been proven to promote cancer progression, whereas its functions in MM has not yet been reported, at least to the best of our knowledge. Therefore, the present study aimed to investigate the function of miR-25-3p in MM and to identify the potential underlying mechanistic pathway. Herein, it was found that miR-25-3p expression was significantly increased in MM tissues and cell lines. The upregulation of miR-25-3p was closely associated with anemia, renal function impairment international staging system (ISS) staging and Durie-Salmon (D-S) staging. A high level of miR-25-3p was predictive of a poor prognosis of patients with MM. In vitro, the knockdown of miR-25-3p suppressed the proliferation and promoted the apoptosis of RPMI-8226 and U266 cells, while the overexpression of miR-25-3p exerted opposite effects. In addition, phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a well-known tumor suppressor, was confirmed as a target of miR-25-3p in MM cells. Moreover, it was found that the PTEN expression levels were decreased, and inversely correlated with miR-25-3p expression levels in MM tissues. Further analyses revealed that the overexpression of PTEN exerted effects similar to those of miR-25-3p knockdown, whereas the knockdown of PTEN partially abolished the effects of miR-25-3p inhibitor on MM cells. Accompanied by PTEN induction, miR-25-3p promoted PI3K/AKT signaling pathway activation in MM cells. Collectively, these findings demonstrate critical roles for miR-25-3p in the pathogenesis of MM, and suggest that miR-25-3p may serve as a novel prognostic biomarker and therapeutic target of MM.
Collapse
Affiliation(s)
- Youmei Zi
- Department of Hematology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Yingzi Zhang
- Department of Blood Transfusion, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Yanwei Wu
- Clinical Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Lina Zhang
- Central Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Ru Yang
- Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Yan Huang
- Department of Hematology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| |
Collapse
|
7
|
Rodrigues-Junior DM, Pelarin MFDA, Nader HB, Vettore AL, Pinhal MAS. MicroRNA-1252-5p Associated with Extracellular Vesicles Enhances Bortezomib Sensitivity in Multiple Myeloma Cells by Targeting Heparanase. Onco Targets Ther 2021; 14:455-467. [PMID: 33488100 PMCID: PMC7814994 DOI: 10.2147/ott.s286751] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Multiple myeloma (MM) remains an incurable disease, and patient survival requires a better understanding of this malignancy's molecular aspects. Heparanase (HPSE) is highly expressed in aggressive MM cells and related to tumor growth, metastasis, and bortezomib (BTZ) resistance. Thus, targeting HPSE seems to be a promising approach for MM treatment, and because microRNAs (miRNAs) have emerged as potential regulators of HPSE expression, the use of extracellular vesicles (EVs) can allow the efficient delivery of therapeutic miRNAs. METHODS We used prediction algorithms to identify potential miRNAs that regulate negatively HPSE expression. RT-qPCR was performed to assess miRNAs and HPSE expression in MM lines (U266 and RPMI-8226). Synthetic miRNA mimics were electroporated in MM cells to understand the miRNA contribution in HPSE expression, glycosaminoglycans (GAGs) profile, cell proliferation, and cell death induced by BTZ. EVs derived from HEK293T cells were engineered with miRNAs to evaluate their therapeutic potential combined with BTZ. RESULTS It revealed a direct association between BTZ sensitivity, HPSE, and miR-1252-5p expressions. Moreover, overexpression of miR-1252-5p significantly reduced HPSE expression and HPSE enzymatic activity in MM cells. The higher level of miR-1252-5p was correlated with a reduction of cell viability and higher sensitivity to BTZ. Further, EVs carrying miR-1252-5p increased MM cells' sensitivity to BTZ treatment. CONCLUSION These results showed that miR-1252-5p could negatively regulate HPSE in MM, indicating the use of EVs carrying miR-1252-5p as a potential novel BTZ sensitization approach in MM cells.
Collapse
Affiliation(s)
- Dorival Mendes Rodrigues-Junior
- Department of Biochemistry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Institute of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | - Helena Bonciani Nader
- Department of Biochemistry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - André Luiz Vettore
- Department of Biological Science, Universidade Federal de São Paulo (UNIFESP), Diadema, Brazil
| | - Maria Aparecida Silva Pinhal
- Department of Biochemistry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Department of Biochemistry, Faculdade de Medicina do ABC, Santo André, Brazil
| |
Collapse
|
8
|
Luo G, He K, Xia Z, Liu S, Liu H, Xiang G. Regulation of microRNA-497 expression in human cancer. Oncol Lett 2020; 21:23. [PMID: 33240429 PMCID: PMC7681205 DOI: 10.3892/ol.2020.12284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs/miRs) are a type of non-coding single-stranded RNA, with a length of ~22 nt, which are encoded by endogenous genes and are involved in the post-transcriptional regulation of gene expression in animals and plants. Studies have demonstrated that miRNAs play an important role in the occurrence, development, metastasis, diagnosis and treatment of cancer. In recent years, miR-497 has been identified as one of the key miRNAs in a variety of cancer types and has been shown to be downregulated in a variety of solid tumors. However, the regulation of miR-497 expression involves a complex network, which is affected by several factors. The aim of the present review was to summarize the mechanism of regulation of miR-497 expression at the pre-transcriptional and transcriptional levels in cancer, as well as the role of miR-497 expression imbalance in cancer diagnosis, treatment and prognosis. The regulatory mechanisms of miR-497 expression may aid in our understanding of the causes of miR-497 expression imbalance and provide a reference value for further research on the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Guanshui Luo
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China.,Department of Postgraduate Studies, The Second Clinical College of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ke He
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Zhenglin Xia
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Shuai Liu
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Hong Liu
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Guoan Xiang
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| |
Collapse
|
9
|
Robak P, Dróżdż I, Jarych D, Mikulski D, Węgłowska E, Siemieniuk-Ryś M, Misiewicz M, Stawiski K, Fendler W, Szemraj J, Smolewski P, Robak T. The Value of Serum MicroRNA Expression Signature in Predicting Refractoriness to Bortezomib-Based Therapy in Multiple Myeloma Patients. Cancers (Basel) 2020; 12:cancers12092569. [PMID: 32916955 PMCID: PMC7565855 DOI: 10.3390/cancers12092569] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/20/2020] [Accepted: 09/03/2020] [Indexed: 12/22/2022] Open
Abstract
Bortezomib is the first-in-class proteasome inhibitor, commonly used in the treatment of multiple myeloma (MM). The mechanisms underlying acquired bortezomib resistance in MM are poorly understood. Several cell-free miRNAs have been found to be aberrantly regulated in MM patients. The aim of this pilot study was to identify a blood-based miRNA signature that predicts bortezomib-based therapy efficacy in MM patients. Thirty MM patients treated with bortezomib-based regimens were studied, including 19 with refractory disease and 11 who were bortezomib sensitive. Serum miRNA expression patterns were identified with miRCURY LNA miRNA miRNome PCR Panels I+II (Exiqon/Qiagen). Univariate analysis found a total of 21 miRNAs to be differentially expressed in patients with MM according to bortezomib sensitivity. Multivariate logistic regression was created and allowed us to discriminate refractory from sensitive patients with a very high AUC of 0.95 (95%CI: 0.84-1.00); sensitivity, specificity and accuracy were estimated as 0.95, 0.91, and 0.93. The model used expression of 3 miRNAs: miR-215-5p, miR-181a-5p and miR-376c-3p. This study is the first to demonstrate that serum expression of several miRNAs differs between patients who are bortezomib refractory and those who are sensitive which may prove useful in studies aimed at overcoming drug resistance in MM treatment.
Collapse
Affiliation(s)
- Paweł Robak
- Department of Experimental Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (P.R.); (P.S.)
| | - Izabela Dróżdż
- Department of Clinical Genetics, Medical University of Lodz, 92-213 Lodz, Poland;
| | - Dariusz Jarych
- Laboratory of Personalized Medicine, Bionanopark, Lodz, 93-465 Lodz, Poland; (D.J.); (E.W.)
| | - Damian Mikulski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (D.M.); (K.S.); (W.F.)
| | - Edyta Węgłowska
- Laboratory of Personalized Medicine, Bionanopark, Lodz, 93-465 Lodz, Poland; (D.J.); (E.W.)
| | - Monika Siemieniuk-Ryś
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (M.S.-R.); (M.M.)
| | - Małgorzata Misiewicz
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (M.S.-R.); (M.M.)
| | - Konrad Stawiski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (D.M.); (K.S.); (W.F.)
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (D.M.); (K.S.); (W.F.)
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Piotr Smolewski
- Department of Experimental Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (P.R.); (P.S.)
| | - Tadeusz Robak
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (M.S.-R.); (M.M.)
- Correspondence: ; Tel.: +48-42-689-51-91; Fax: +48 42-689-51-92
| |
Collapse
|
10
|
Zheng ZH, You HY, Feng YJ, Zhang ZT. LncRNA KCNQ1OT1 is a key factor in the reversal effect of curcumin on cisplatin resistance in the colorectal cancer cells. Mol Cell Biochem 2020; 476:2575-2585. [PMID: 32757174 DOI: 10.1007/s11010-020-03856-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/24/2020] [Indexed: 11/24/2022]
Abstract
The development of cisplatin resistance is a common cause of cancer recurrence in colorectal cancer (CRC). Though many studies have reported the oncogenic function of long non-coding RNA (LncRNA) KCNQ1OT1 in multiple cancers, few studies explored its role in cisplatin resistance of CRC. Curcumin is a natural phenolic compound extracted from turmeric, which can effectively suppress cisplatin resistance in CRC. This study aims to expound the role of KCNQ1OT1 in cisplatin resistance in CRC cells and whether KCNQ1OT1 participates in the reversal effect of curcumin on cisplatin resistance in CRC. The interplay between KCNQ1OT1 and miR-497 was determined using RNA pull-down assay and dual-luciferase reporter gene assay. The combination of B-cell lymphoma 2 (Bcl-2) and miR-497 was confirmed using dual-luciferase reporter gene assay. Compared with CRC cell line HCT8, the cisplatin-resistant CRC cell line HCT8/DDP exhibited a higher expression level of KCNQ1OT1. Functionally, the silence of KCNQ1OT1 suppressed proliferation and boosted apoptosis in HCT8/DDP cells. Subsequently, we found that KCNQ1OT1 could act as a sponge of miR-497 and remove the suppressive effect of miR-497 on Bcl-2 expression. Curcumin treatment restrained proliferation and facilitated apoptosis in HCT8/DDP cells. While KCNQ1OT1 overexpression removed the effect of curcumin on HCT8/DDP cells via miR-497/ Bcl-2 axis. Finally, the in vivo experiments showed that the inhibitory effect of curcumin on the growth of cisplatin-resistant CRC cells was reserved by the ectopic expression of KCNQ1OT1. In conclusion, KCNQ1OT1 aggravated cisplatin resistance in CRC cells via the miR-497/Bcl-2 axis. Administration of curcumin could effectively downregulate KCNQ1OT1 expression, thus reversing cisplatin resistance in CRC cells.
Collapse
Affiliation(s)
- Zhi-Hai Zheng
- Department of General Surgery, Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - He-Yi You
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu-Jie Feng
- Department of General Surgery, Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhong-Tao Zhang
- Department of General Surgery, Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
11
|
Ghetti M, Vannini I, Storlazzi CT, Martinelli G, Simonetti G. Linear and circular PVT1 in hematological malignancies and immune response: two faces of the same coin. Mol Cancer 2020; 19:69. [PMID: 32228602 PMCID: PMC7104523 DOI: 10.1186/s12943-020-01187-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/18/2020] [Indexed: 12/19/2022] Open
Abstract
Non coding RNAs (ncRNAs) have emerged as regulators of human carcinogenesis by affecting the expression of key tumor suppressor genes and oncogenes. They are divided into short and long ncRNAs, according to their length. Circular RNAs (circRNAs) are included in the second group and were recently discovered as being originated by back-splicing, joining either single or multiple exons, or exons with retained introns. The human Plasmacytoma Variant Translocation 1 (PVT1) gene maps on the long arm of chromosome 8 (8q24) and encodes for 52 ncRNAs variants, including 26 linear and 26 circular isoforms, and 6 microRNAs. PVT1 genomic locus is 54 Kb downstream to MYC and several interactions have been described among these two genes, including a feedback regulatory mechanism. MYC-independent functions of PVT1/circPVT1 have been also reported, especially in the regulation of immune responses. We here review and discuss the role of both PVT1 and circPVT1 in the hematopoietic system. No information is currently available concerning their transforming ability in hematopoietic cells. However, present literature supports their cooperation with a more aggressive and/or undifferentiated cell phenotype, thus contributing to cancer progression. PVT1/circPVT1 upregulation through genomic amplification or rearrangements and/or increased transcription, provides a proliferative advantage to malignant cells in acute myeloid leukemia, acute promyelocytic leukemia, Burkitt lymphoma, multiple myeloma (linear PVT1) and acute lymphoblastic leukemia (circPVT1). In addition, PVT1 and circPVT1 regulate immune responses: the overexpression of the linear form in myeloid derived suppressor cells induced immune tolerance in preclinical tumor models and circPVT1 showed immunosuppressive properties in myeloid and lymphoid cell subsets. Overall, these recent data on PVT1 and circPVT1 functions in hematological malignancies and immune responses reflect two faces of the same coin: involvement in cancer progression by promoting a more aggressive phenotype of malignant cells and negative regulation of the immune system as a novel potential therapy-resistance mechanism.
Collapse
Affiliation(s)
- Martina Ghetti
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC, Italy
| | - Ivan Vannini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC, Italy.
| | | | - Giovanni Martinelli
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC, Italy
| | - Giorgia Simonetti
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC, Italy
| |
Collapse
|
12
|
The Role and Function of microRNA in the Pathogenesis of Multiple Myeloma. Cancers (Basel) 2019; 11:cancers11111738. [PMID: 31698726 PMCID: PMC6896016 DOI: 10.3390/cancers11111738] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
Recently, attention has been drawn to the role of non-coding regions of the genome in cancer pathogenesis. MicroRNAs (miRNAs) are small non-coding RNAs with 19–25 bases of length that control gene expression by destroying messenger RNA or inhibiting its translation. In multiple myeloma (MM), the expression of several miRNAs, such as miR-15a and miR-16, is markedly decreased and their target genes upregulated, suggesting their role as tumor-suppressing miRNAs. In contrast, miRNAs such as miR-21 and miR-221 are highly expressed and function as oncogenes (oncomiRs). In addition, several miRNAs, such as those belonging to the miR-34 family, are transcriptional targets of p53 and mediate its tumor-suppressive functions. Many miRNAs are associated with drug resistance, and the modulation of their expression or activity might be explored to reverse it. Moreover, miRNA expression patterns in either MM cells or serum exosomes have been shown to be good prognostic markers. miRNA regulation mechanisms have not been fully elucidated. Many miRNAs are epigenetically controlled by DNA methylation and histone modification, and others regulate the expression of epigenetic modifiers, indicating that miRNA and other epigenetic effectors are part of a network. In this review, we outlined the roles of miRNAs in MM and their potential to predict MM prognosis and develop novel therapies.
Collapse
|
13
|
Wang JD, Zhou HS, Tu XX, He Y, Liu QF, Liu Q, Long ZJ. Prediction of competing endogenous RNA coexpression network as prognostic markers in AML. Aging (Albany NY) 2019; 11:3333-3347. [PMID: 31141496 PMCID: PMC6555472 DOI: 10.18632/aging.101985] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/19/2019] [Indexed: 12/16/2022]
Abstract
Recently, competing endogenous RNAs (ceRNAs) hypothesis has gained a great interest in the study of molecular biological mechanisms of cancer occurrence and progression. However, studies on leukemia are limited, and there is still a lack of comprehensive analysis of lncRNA-miRNA-mRNA ceRNA regulatory network of AML based on high-throughput sequencing and large-scale sample size. We obtained RNA-Seq data and compared the expression profiles between 407 normal whole blood (GTEx) and 151 bone marrows of AML (TCGA). The similarity between two sets of genes with trait in the network was analyzed by weighted correlation network analysis (WGCNA). MiRcode, starBase, miRTarBase, miRDB and TargetScan was used to predict interactions between lncRNAs, miRNAs and target mRNAs. At last, we identified 108 lncRNAs, 10 miRNAs and 8 mRNAs to construct a lncRNA-miRNA-mRNA ceRNA network, which might act as prognostic biomarkers of AML. Among the network, a survival model with 8 target mRNAs (HOXA9+INSR+KRIT1+MYB+SPRY2+UBE2V1+WEE1+ZNF711) was set up by univariate and multivariate cox proportional hazard regression analysis, of which the AUC was 0.831, indicating its sensitivity and specificity in AML prognostic prediction. CeRNA networks could provide further insight into the study on gene regulation and AML prognosis.
Collapse
Affiliation(s)
- Jun-Dan Wang
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
- Institute of Hematology, Sun Yat-sen University, Guangzhou 510630, China
- Equal contribution
| | - Hong-Sheng Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
- Equal contribution
| | - Xi-Xiang Tu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Yi He
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
- Institute of Hematology, Sun Yat-sen University, Guangzhou 510630, China
| | - Qi-Fa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Quentin Liu
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
- Institute of Hematology, Sun Yat-sen University, Guangzhou 510630, China
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116000, China
| | - Zi-Jie Long
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
- Institute of Hematology, Sun Yat-sen University, Guangzhou 510630, China
| |
Collapse
|