1
|
Chang Y, Jia HQ, Xu B, Yang L, Xu YT, Zhang JY, Wang MQ, Yang LX, Song ZC. Metadherin inhibits chemosensitivity of triple-negative breast cancer to paclitaxel via activation of AKT/GSK-3β signaling pathway. Chem Biol Drug Des 2024; 103:e14416. [PMID: 38093418 DOI: 10.1111/cbdd.14416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/23/2023] [Accepted: 11/09/2023] [Indexed: 01/18/2024]
Abstract
Triple-negative breast cancer (TNBC) has an aggressive clinical course, and paclitaxel (PTX)-based chemotherapy remains the main therapeutic drug. Metadherin (MTDH) acts as an oncogene that regulates proliferation, invasion, metastasis, and chemoresistance. This study aimed to investigate whether TNBC chemosensitivity to PTX was related to the MTDH/AKT/glycogen synthase kinase-3beta (GSK-3β) pathway. Clinical baseline characteristics and immunohistochemistry (IHC) were used to evaluate the expression and prognosis of MTDH and AKT (protein kinase B, PKB) in TNBC patient samples. MTDH shRNA, MTDH overexpression vector, MK-2206, and PTX intervention were used in cell models and mouse tumor-bearing models. Afterwards, mRNA and protein levels were assessed using quantitative real-time polymerase chain reaction and Western blot. Evaluate the level of tumor cell apoptosis and cell cycle using flow cytometry. Cell viability was detected using Cell Count Kit 8. The in vivo imaging system is used to analyze the growth of tumors. We found that higher expression of MTDH or AKT resulted in poorer disease-free survival and a lower Miller-Payne grade. MTDH promotes cell proliferation and increases p-AKT and p-GSK-3β expression in TNBC cells. Notably, suppression of AKT terminated MTDH overexpression-induced cell proliferation and apoptosis. MTDH knockdown or the AKT inhibitor MK2206 reduced the p-AKT and p-GSK-3β ratio, reduced cell viability and proliferation, increased cell apoptosis, and increased chemosensitivity to PTX. In vivo, xenograft tumors of an MTDH knockdown+MK2206 group treated with PTX were the smallest compared to other groups. In short, MTDH inhibits TNBC chemosensitivity to PTX by activating the AKT/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Yan Chang
- Department of Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
- Department of Breast Surgery, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, P.R. China
| | - Hui-Qin Jia
- Department of Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Bin Xu
- Department of Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Liu Yang
- Department of Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Ye-Tong Xu
- Department of Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Jing-Yu Zhang
- Department of Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Mei-Qi Wang
- Department of Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
- Key Laboratory for Breast Cancer Molecular Medicine of Hebei Province, Shijiazhuang, Hebei, P.R. China
| | - Li-Xian Yang
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, Hebei, P.R. China
| | - Zhen-Chuan Song
- Department of Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
- Key Laboratory for Breast Cancer Molecular Medicine of Hebei Province, Shijiazhuang, Hebei, P.R. China
| |
Collapse
|
2
|
Rafat S, Singh P, Pandey KK, Almatroodi SA, Alsahli MA, Almatroudi A, Rahmani AH, Dev K. SMAC Mimetic BV6 Co-Treatment Downregulates the Factors Involved in Resistance and Relapse of Cancer: IAPs and Autophagy. BIOLOGY 2022; 11:1581. [PMID: 36358282 PMCID: PMC9687886 DOI: 10.3390/biology11111581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 07/29/2023]
Abstract
Cancer is the utmost common disease-causing death worldwide, characterized by uncontrollable cell division with the potential of metastasis. Overexpression of the Inhibitors of Apoptosis proteins (IAPs) and autophagy correlates with tumorigenesis, therapeutic resistance, and reoccurrence after anticancer therapies. This study illuminates the role and efficacy of smac mimetic compound BV6 alone and in co-treatment with death ligands such as TRAIL and TNFα in the regulation of cell death mechanisms, i.e., apoptosis and autophagy. In this study, MTT assays, wound healing assays, and cellular and nuclear morphological studies were done. DAPI staining, AO/EtBr staining and AnnexinV/PI FACS was done to study the apoptosis. The expression of IAPs and autophagy biomarkers was analyzed using Real time-PCR and western blotting. Meanwhile, TEM demonstrated autophagy and cellular autophagic vacuoles in response to the BV6. The result shows a promising anti-cancer effect of BV6 alone as well as in combinational treatment with TRAIL and TNFα, compared to the lone treatment of TRAIL and TNFα in both breast cancer cell lines. The smac mimetic compound might provide an alternative combinational therapy with conventional anticancer therapies to tackle their inefficiency at the advanced stage of cancer, cancer resistance, and reoccurrence. Also, IAPs and autophagic proteins could act as potent target molecules for the development of novel anti-cancer drugs in pathogenesis and the betterment of regimens for cancer.
Collapse
Affiliation(s)
- Sahar Rafat
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Prabhakar Singh
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110025, India
| | - Kamlesh Kumar Pandey
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110025, India
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah 51452, Saudi Arabia
| | - Mohammed A. Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah 51452, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah 51452, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah 51452, Saudi Arabia
| | - Kapil Dev
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
3
|
Yong L, Tang S, Yu H, Zhang H, Zhang Y, Wan Y, Cai F. The role of hypoxia-inducible factor-1 alpha in multidrug-resistant breast cancer. Front Oncol 2022; 12:964934. [PMID: 36003773 PMCID: PMC9393754 DOI: 10.3389/fonc.2022.964934] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
Breast cancer is the most common cancer in women worldwide with increasing incidence. Significant therapeutics advances in the field of breast cancer have resulted in a growing number of treatment options, whereas de novo or acquired resistance is still a persistent clinical challenge. Drug resistance involves a variety of mechanisms, and hypoxia is one of the many causes. Hypoxia-inducible Factor-1 Alpha (HIF-1α) is a key transcription factor which can regulate the response of cells to hypoxia. HIF-1α can trigger anaerobic glycolysis of tumor cells, induce angiogenesis, promote the proliferation, invasion, and migration of tumor cells, and lead to multidrug resistance. This review mainly discusses the role of HIF-1α in the drug-resistant breast cancer and highlighted the potential of HIF-1α -targeted therapy.
Collapse
Affiliation(s)
- Liyun Yong
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shasha Tang
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haixin Yu
- Department of Orthopedic Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hongyi Zhang
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Zhang
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuan Wan
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University—SUNY, Binghamton, NY, United States
- *Correspondence: Fengfeng Cai, ; Yuan Wan,
| | - Fengfeng Cai
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Fengfeng Cai, ; Yuan Wan,
| |
Collapse
|
4
|
Li X, Su S, Ye D, Yu Z, Lu W, Liu L. Hsa_circ_0020850 promotes the malignant behaviors of lung adenocarcinoma by regulating miR-326/BECN1 axis. World J Surg Oncol 2022; 20:13. [PMID: 35012553 PMCID: PMC8750879 DOI: 10.1186/s12957-021-02480-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 12/17/2021] [Indexed: 11/10/2022] Open
Abstract
Background Circular RNAs (circRNAs) are a novel type of endogenous RNAs and play vital roles in lung adenocarcinoma. However, the function and underlying mechanism of circ_0020850 in lung adenocarcinoma remain unknown. Methods The levels of circ_0020850, microRNA-326 (miR-326), and Beclin1 (BECN1) were analyzed by real-time quantitative polymerase chain reaction and western blot analyses. The migration and invasion were determined by wound healing and transwell assays, respectively. Colony formation assay was used to assess cell proliferation ability. The angiogenic ability was analyzed by Matrigel angiogenesis assay. The apoptosis rate was calculated by flow cytometry assay. Dual-luciferase reporter, RNA immunoprecipitation (RIP), and RNA pull-down assays were conducted to confirm the interaction relationship among circ_0020850, miR-326, and BECN1. A xenograft mice model was established to assess the role of circ_0020850 in vivo. Results We found that circ_0020850 was obviously overexpressed in lung adenocarcinoma tissues and cells. Knockdown of circ_0020850 inhibited migration, invasion, proliferation, and angiogenesis but induced apoptosis in lung adenocarcinoma cells in vitro, as well as curbed tumor growth in vivo. MiR-326 was a target of circ_0020850, and knockdown of miR-326 abolished the suppression effect of circ_0020850 on the malignant behaviors of lung adenocarcinoma cells. Additionally, miR-326 could negatively regulate BECN1 expression, thereby regulating lung adenocarcinoma cell phenotypes. Importantly, circ_0020850 could directly bind to miR-326 and thus relieve miR-326-mediated inhibition on BECN1. Conclusion Circ_0020850 promoted the malignant development of lung adenocarcinoma by regulating miR-326/BECN1 axis, indicating that circ_0020850 might serve as a promising target for the diagnosis and treatment of lung adenocarcinoma patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-021-02480-3.
Collapse
Affiliation(s)
- Xiaoju Li
- Department of Oncology, Xiantao First People's Hospital of Yangtze University, No. 29, Middle Section of Mianzhou Avenue, Xiantao, 433000, Hubei Province, People's Republic of China
| | - Shengtian Su
- Department of Oncology, Xiantao First People's Hospital of Yangtze University, No. 29, Middle Section of Mianzhou Avenue, Xiantao, 433000, Hubei Province, People's Republic of China
| | - Dan Ye
- Department of Oncology, Xiantao First People's Hospital of Yangtze University, No. 29, Middle Section of Mianzhou Avenue, Xiantao, 433000, Hubei Province, People's Republic of China
| | - Zhigao Yu
- Department of Oncology, Xiantao First People's Hospital of Yangtze University, No. 29, Middle Section of Mianzhou Avenue, Xiantao, 433000, Hubei Province, People's Republic of China
| | - Wenjing Lu
- Department of Oncology, Xiantao First People's Hospital of Yangtze University, No. 29, Middle Section of Mianzhou Avenue, Xiantao, 433000, Hubei Province, People's Republic of China
| | - Liang Liu
- Department of Oncology, Xiantao First People's Hospital of Yangtze University, No. 29, Middle Section of Mianzhou Avenue, Xiantao, 433000, Hubei Province, People's Republic of China.
| |
Collapse
|
5
|
Niklaus NJ, Tokarchuk I, Zbinden M, Schläfli AM, Maycotte P, Tschan MP. The Multifaceted Functions of Autophagy in Breast Cancer Development and Treatment. Cells 2021; 10:cells10061447. [PMID: 34207792 PMCID: PMC8229352 DOI: 10.3390/cells10061447] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
Macroautophagy (herein referred to as autophagy) is a complex catabolic process characterized by the formation of double-membrane vesicles called autophagosomes. During this process, autophagosomes engulf and deliver their intracellular content to lysosomes, where they are degraded by hydrolytic enzymes. Thereby, autophagy provides energy and building blocks to maintain cellular homeostasis and represents a dynamic recycling mechanism. Importantly, the clearance of damaged organelles and aggregated molecules by autophagy in normal cells contributes to cancer prevention. Therefore, the dysfunction of autophagy has a major impact on the cell fate and can contribute to tumorigenesis. Breast cancer is the most common cancer in women and has the highest mortality rate among all cancers in women worldwide. Breast cancer patients often have a good short-term prognosis, but long-term survivors often experience aggressive recurrence. This phenomenon might be explained by the high heterogeneity of breast cancer tumors rendering mammary tumors difficult to target. This review focuses on the mechanisms of autophagy during breast carcinogenesis and sheds light on the role of autophagy in the traits of aggressive breast cancer cells such as migration, invasion, and therapeutic resistance.
Collapse
Affiliation(s)
- Nicolas J. Niklaus
- Institute of Pathology, University of Bern, CH-3008 Bern, Switzerland; (N.J.N.); (I.T.); (M.Z.); (A.M.S.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Igor Tokarchuk
- Institute of Pathology, University of Bern, CH-3008 Bern, Switzerland; (N.J.N.); (I.T.); (M.Z.); (A.M.S.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Mara Zbinden
- Institute of Pathology, University of Bern, CH-3008 Bern, Switzerland; (N.J.N.); (I.T.); (M.Z.); (A.M.S.)
| | - Anna M. Schläfli
- Institute of Pathology, University of Bern, CH-3008 Bern, Switzerland; (N.J.N.); (I.T.); (M.Z.); (A.M.S.)
| | - Paola Maycotte
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Puebla 74360, Mexico;
| | - Mario P. Tschan
- Institute of Pathology, University of Bern, CH-3008 Bern, Switzerland; (N.J.N.); (I.T.); (M.Z.); (A.M.S.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
- Correspondence: ; Tel.: +41-31-632-87-80
| |
Collapse
|
6
|
Xiao M, Benoit A, Hasmim M, Duhem C, Vogin G, Berchem G, Noman MZ, Janji B. Targeting Cytoprotective Autophagy to Enhance Anticancer Therapies. Front Oncol 2021; 11:626309. [PMID: 33718194 PMCID: PMC7951055 DOI: 10.3389/fonc.2021.626309] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/15/2021] [Indexed: 12/21/2022] Open
Abstract
Autophagy is a highly regulated multi-step process that occurs at the basal level in almost all cells. Although the deregulation of the autophagy process has been described in several pathologies, the role of autophagy in cancer as a cytoprotective mechanism is currently well established and supported by experimental and clinical evidence. Our understanding of the molecular mechanism of the autophagy process has largely contributed to defining how we can harness this process to improve the benefit of cancer therapies. While the role of autophagy in tumor resistance to chemotherapy is extensively documented, emerging data point toward autophagy as a mechanism of cancer resistance to radiotherapy, targeted therapy, and immunotherapy. Therefore, manipulating autophagy has emerged as a promising strategy to overcome tumor resistance to various anti-cancer therapies, and autophagy modulators are currently evaluated in combination therapies in several clinical trials. In this review, we will summarize our current knowledge of the impact of genetically and pharmacologically modulating autophagy genes and proteins, involved in the different steps of the autophagy process, on the therapeutic benefit of various cancer therapies. We will also briefly discuss the challenges and limitations to developing potent and selective autophagy inhibitors that could be used in ongoing clinical trials.
Collapse
Affiliation(s)
- Malina Xiao
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Alice Benoit
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Meriem Hasmim
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Caroline Duhem
- Department of Hemato-oncology, Centre Hospitalier du Luxembourg, Luxembourg City, Luxembourg
| | - Guillaume Vogin
- Université de Lorraine - UMR 7365, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Vandoeuvre-lès-Nancy, France.,Centre François Baclesse, Esch-sur-Alzette, Luxembourg
| | - Guy Berchem
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg.,Department of Hemato-oncology, Centre Hospitalier du Luxembourg, Luxembourg City, Luxembourg
| | - Muhammad Zaeem Noman
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Bassam Janji
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| |
Collapse
|