1
|
Chen Z, Xie Z, Han M, Jin Q, Li Z, Zhai Y, Zhang M, Hu G, Zhang H. Global Transcriptomic Study of Circular-RNA Expression Profile in Osteoclasts Infected by Intracellular Staphylococcus aureus. Infect Immun 2023; 91:e0035722. [PMID: 37212691 PMCID: PMC10269070 DOI: 10.1128/iai.00357-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 05/01/2023] [Indexed: 05/23/2023] Open
Abstract
Osteomyelitis is difficult to cure, and the rapidly rising morbidity is a thorny problem accompanied by a large number of joint replacement applications. Staphylococcus aureus is the main pathogen of osteomyelitis. Circular RNAs (circRNAs), as emerging noncoding RNAs, play important roles in multiple physiopathological processes which could provide novel insights into osteomyelitis. However, little is known about the roles of circRNAs in the pathogenesis of osteomyelitis. Osteoclasts, considered bone sentinels, are the resident macrophages in bone and may play the immune defense roles in osteomyelitis. It has been reported that S. aureus can survive in osteoclasts, but the function of osteoclast circRNAs in response to intracellular S. aureus infection remains unclear. In this study, we investigated the profile of circRNAs in osteoclasts infected by intracellular S. aureus through high-throughput RNA sequencing. In total, 24 upregulated and 62 downregulated differentially expressed circRNAs were identified and subsequently analyzed to demonstrate their potential functions. On this basis, three circRNAs (chr4:130718154-130728164+, chr8:77409548-77413627-, and chr1:190871592-190899571-) were confirmed as potential novel biomarkers for the diagnosis of osteomyelitis through the murine model of osteomyelitis. Most importantly, we verified that the circRNA chr4:130718154-130728164+ named circPum1 could regulate the host autophagy to affect the intracellular infection of S. aureus through miR-767. In addition, circPum1 could serve as a promising serum biomarker in osteomyelitis patients caused by S. aureus infection. Taken together, this study provided the first global transcriptomic profile analysis of circRNAs in osteoclasts infected by intracellular S. aureus and first proposed a novel perspective for the pathogenesis and immunotherapy of S. aureus-induced osteomyelitis from the term of circRNAs.
Collapse
Affiliation(s)
- Zhihao Chen
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Zonggang Xie
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Mingxiao Han
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Qiyuan Jin
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Ziyuan Li
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Yaxuan Zhai
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Minxing Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Gangfeng Hu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Haifang Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| |
Collapse
|
2
|
Zhang C, Li Y, Li J. Dysregulated autophagy contributes to the pathogenesis of enterovirus A71 infection. Cell Biosci 2020; 10:142. [PMID: 33298183 PMCID: PMC7724827 DOI: 10.1186/s13578-020-00503-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/25/2020] [Indexed: 11/29/2022] Open
Abstract
Enterovirus A71 (EVA71) infection continues to remain a vital threat to global public health, especially in the Asia–Pacific region. It is one of the most predominant pathogens that cause hand, foot, and mouth disease (HFMD), which occurs mainly in children below 5 years old. Although EVA71 prevalence has decreased sharply in China with the use of vaccines, epidemiological studies still indicate that EVA71 infection involves severe and even fatal HFMD cases. As a result, it remains more fundamental research into the pathogenesis of EVA71 as well as to develop specific anti-viral therapy. Autophagy is a conserved, self-degradation system that is critical for maintaining cellular homeostasis. It involves a variety of biological functions, such as development, cellular differentiation, nutritional starvation, and defense against pathogens. However, accumulating evidence has indicated that EVA71 induces autophagy and hijacks the process of autophagy for their optimal infection during the different stages of life cycle. This review provides a perspective on the emerging evidence that the “positive feedback” between autophagy induction and EVA71 infection, as well as its potential mechanisms. Furthermore, autophagy may be involved in EVA71-induced nervous system impairment through mediating intracranial viral spread and dysregulating host regulator involved self-damage. Autophagy is a promising therapeutic target in EVA71 infection.
Collapse
Affiliation(s)
- Chuanjie Zhang
- Department of Children Health Care, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, People's Republic of China
| | - Yawei Li
- Department of Health Services, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Jingfeng Li
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.
| |
Collapse
|
3
|
Interaction between PHB2 and Enterovirus A71 VP1 Induces Autophagy and Affects EV-A71 Infection. Viruses 2020; 12:v12040414. [PMID: 32276428 PMCID: PMC7232526 DOI: 10.3390/v12040414] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022] Open
Abstract
Enterovirus A71 (EV-A71) is a major pathogen that causes severe and fatal cases of hand-foot-and-mouth disease (HFMD). HFMD caused by EV-A71 seriously endangers children’s health. Although autophagy is an important antiviral defense mechanism, some viruses have evolved strategies to utilize autophagy to promote self-replication. EV-A71 can utilize autophagy vesicles as replication scaffolds, indicating that EV-A71 infection is closely related to its autophagy induction mechanism. VP1, a structural protein of EV-A71, has been reported to induce autophagy, but the underlying mechanism is still unclear. In this study, we found that the C-terminus (aa 251–297) of VP1 induces autophagy. Mass spectrometry analysis suggested that prohibitin 2 (PHB2) interacts with the C-terminus of the EV-A71 VP1 protein, and this was further verified by coimmunoprecipitation assays. After PHB2 knockdown, EV-A71 replication, viral particle release, and viral protein synthesis were reduced, and autophagy was inhibited. The results suggest that PHB2 interaction with VP1 is essential for induction of autophagy and the infectivity of EV-A71. Furthermore, we confirmed that EV-A71 induced complete autophagy that required autolysosomal acidification, thus affecting EV-A71 infection. In summary, this study revealed that the host protein PHB2 is involved in an autophagy mechanism during EV-A71 infection.
Collapse
|
4
|
Yang S, Kang Q, Hou Y, Wang L, Li L, Liu S, Liao H, Cao Z, Yang L, Xiao Z. Mutant BCL11B in a Patient With a Neurodevelopmental Disorder and T-Cell Abnormalities. Front Pediatr 2020; 8:544894. [PMID: 33194885 PMCID: PMC7641641 DOI: 10.3389/fped.2020.544894] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/28/2020] [Indexed: 11/13/2022] Open
Abstract
Background: BCL11B encodes B-cell lymphoma/leukemia 11B, a transcription factor that participates in the differentiation and migration of neurons and lymphocyte cells. De novo mutations of BCL11B have been associated with neurodevelopmental disorder and immunodeficiency, such as immunodeficiency 49 (IMD49) and intellectual developmental disorder with speech delay, dysmorphic facies, and T-cell abnormalities (IDDSFTA). However, the pathogenesis of the neurodevelopmental disorder and T-cell deficiency is still mysterious. The strategy to distinguish these two diseases in detail is also unclear. Methods: A patient with unique clinical features was identified. Multiple examinations were applied for evaluation. Whole-exome sequencing (WES) and Sanger sequencing were also performed for the identification of the disease-causing mutation. Results: We reported a 17-month-old girl with intellectual disability, speech impairment, and delay in motor development. She presented with mild dysmorphic facial features and weak functional movement. MRI indicated the abnormal myelination of the white matter. Immunological analysis showed normal levels of RTEs and γδT cells but a deficiency of naive T cells. Genetic sequencing identified a de novo heterozygous frameshift mutation c.1192_1196delAGCCC in BCL11B. Conclusions: An IDDSFTA patient of East Asian origin was reported. The unreported neurological display, immunophenotype, and a novel disease-causing mutation of the patient extended the spectrum of clinical features and genotypes of IDDSFTA.
Collapse
Affiliation(s)
- Sai Yang
- Department of Neurology, Hunan Children's Hospital, Changsha, China
| | - Qingyun Kang
- Department of Neurology, Hunan Children's Hospital, Changsha, China
| | | | - Lili Wang
- Research Institute of Pediatrics, Hunan Children's Hospital, Changsha, China
| | - Liping Li
- Research Institute of Pediatrics, Hunan Children's Hospital, Changsha, China
| | - Shulei Liu
- Department of Neurology, Hunan Children's Hospital, Changsha, China
| | - Hongmei Liao
- Department of Neurology, Hunan Children's Hospital, Changsha, China
| | | | - Liming Yang
- Department of Neurology, Hunan Children's Hospital, Changsha, China
| | - Zhenghui Xiao
- Department of Neurology, Hunan Children's Hospital, Changsha, China.,Research Institute of Pediatrics, Hunan Children's Hospital, Changsha, China.,Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
| |
Collapse
|
5
|
Liu ZW, Zhuang ZC, Chen R, Wang XR, Zhang HL, Li SH, Wang ZY, Wen HL. Enterovirus 71 VP1 Protein Regulates Viral Replication in SH-SY5Y Cells via the mTOR Autophagy Signaling Pathway. Viruses 2019; 12:v12010011. [PMID: 31861844 PMCID: PMC7019657 DOI: 10.3390/v12010011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 12/23/2022] Open
Abstract
Background: Enterovirus 71 (EV71) is the main pathogen that causes severe hand, foot, and mouth disease with fatal neurological complications. However, its neurovirulence mechanism is still unclear. Candidate virulence sites were screened out at structural protein VP1, but the function of these candidate virulence sites remains unclear. Several studies have shown that autophagy is associated with viral replication. However, the relationship between VP1 and autophagy in human neurons has not been studied. Methods: A recombinant virus—SDLY107-VP1, obtained by replacing the VP1 full-length gene of the SDLY107 strain with the VP1 full-length gene of the attenuated strain SDJN2015-01—was constructed and tested for replication and virulence. We then tested the effect of the recombinant virus on autophagy in nerve cells. The effect of autophagy on virus replication was detected by western blot and plaque test. Finally, the changes of mTOR signaling molecules during EV71 infection and the effect of mTOR on virus replication at the RNA level were detected. Results: Viral recombination triggered virulence attenuation. The replication ability of recombinant virus SDLY107-VP1 was significantly weaker than that of the parent strain SDLY107. The SDLY107 strain could inhibit autophagic flux and led to accumulation of autophagosomes, while the SDLY107-VP1 strain could not cause autophagosome accumulation. The synthesis of EV71 RNA was inhibited by inhibiting mTOR. Conclusions: Replacement of VP1 weakened the replication ability of virulent strains and reduced the level of autophagy in nerve cells. This autophagy facilitates the replication of virulent strains in nerve cells. VP1 is an important neurovirulence determinant of EV71, which affects virus replication by regulating cell autophagy. mTOR is a key molecule in this type of autophagy.
Collapse
Affiliation(s)
- Zi-Wei Liu
- Key Laboratory for Infectious Disease Control and Prevention, Department of Microbiological Laboratory Technology, School of Public Health, Shandong University, Jinan 250012, China
| | - Zhi-Chao Zhuang
- Department of pathogenic microbiology, Tianjin Center for Disease Control and Prevention, Tianjin 300000, China;
| | - Rui Chen
- Key Laboratory for Infectious Disease Control and Prevention, Department of Microbiological Laboratory Technology, School of Public Health, Shandong University, Jinan 250012, China
| | - Xiao-Rui Wang
- Key Laboratory for Infectious Disease Control and Prevention, Department of Microbiological Laboratory Technology, School of Public Health, Shandong University, Jinan 250012, China
| | - Hai-Lu Zhang
- Key Laboratory for Infectious Disease Control and Prevention, Department of Microbiological Laboratory Technology, School of Public Health, Shandong University, Jinan 250012, China
| | - Shu-Han Li
- Key Laboratory for Infectious Disease Control and Prevention, Department of Microbiological Laboratory Technology, School of Public Health, Shandong University, Jinan 250012, China
| | - Zhi-Yu Wang
- Key Laboratory for Infectious Disease Control and Prevention, Department of Microbiological Laboratory Technology, School of Public Health, Shandong University, Jinan 250012, China
| | - Hong-Ling Wen
- Key Laboratory for Infectious Disease Control and Prevention, Department of Microbiological Laboratory Technology, School of Public Health, Shandong University, Jinan 250012, China
- Correspondence:
| |
Collapse
|