1
|
Siew WS, Tang YQ, Goh BH, Yap WH. The senescent marker p16INK4a enhances macrophage foam cells formation. Mol Biol Rep 2024; 51:1021. [PMID: 39331194 DOI: 10.1007/s11033-024-09946-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND The senescence marker p16INK4a, which constitutes part of the genome 9p21.3 cardiovascular disease (CVD) risk allele, is believed to play a role in foam cells formation. This study aims to unravel the role of p16INK4a in mediating macrophage foam cells formation, cellular senescence, and autophagy lysosomal functions. METHODS The mammalian expression plasmid pCMV-p16INK4a was used to induce p16INK4a overexpression in THP-1 macrophages. Next, wild-type and p16INK4a-overexpressed macrophages were incubated with oxidized LDL to induce foam cells formation. Lipids accumulation was evaluated using Oil-red-O staining and cholesterol efflux assay, as well as expression of scavenger receptors CD36 and LOX-1. Cellular senescence in macrophage foam cells were determined through analysis of senescence-associated β-galactosidase activity and other SASP factors expression. Meanwhile, autophagy induction was assessed through detection of autophagosome formation and LC3B/p62 markers expression. RESULTS The findings showed that p16INK4a enhanced foam cells formation with increased scavenger receptors CD36 and LOX-1 expression and reduced cholesterol efflux in THP-1 macrophages. Besides, β-galactosidase activity was enhanced, and SASP factors such as IL-1α, TNF-α, and MMP9 were up-regulated. In addition, p16INK4a is also shown to induce autophagy, as well as increasing autophagy markers LC3B and p62 expression. CONCLUSIONS This study provides insights on p16INK4a in mediating macrophages foam cells formation, cellular senescence, and foam cells formation.
Collapse
Affiliation(s)
- Wei Sheng Siew
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, 47500, Malaysia
| | - Yin Quan Tang
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, 47500, Malaysia
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Selangor, Malaysia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia
| | - Wei Hsum Yap
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, 47500, Malaysia.
| |
Collapse
|
2
|
Zhu M, Wei C, Wang H, Han S, Cai L, Li X, Liao X, Che X, Li X, Fan L, Qiu G. SIRT1 mediated gastric cancer progression under glucose deprivation through the FoxO1-Rab7-autophagy axis. Front Oncol 2023; 13:1175151. [PMID: 37293593 PMCID: PMC10244632 DOI: 10.3389/fonc.2023.1175151] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/28/2023] [Indexed: 06/10/2023] Open
Abstract
Purpose Silent mating type information regulator 2 homolog 1 (SIRT1) and autophagy have a two-way action (promoting cell death or survival) on the progression and treatment of gastric cancer (GC) under different conditions or environments. This study aimed to investigate the effects and underlying mechanism of SIRT1 on autophagy and the malignant biological behavior of GC cells under conditions of glucose deprivation (GD). Materials and methods Human immortalized gastric mucosal cell GES-1 and GC cell lines SGC-7901, BGC-823, MKN-45 and MKN-28 were utilized. A sugar-free or low-sugar (glucose concentration, 2.5 mmol/L) DMEM medium was used to simulate GD. Additionally, CCK8, colony formation, scratches, transwell, siRNA interference, mRFP-GFP-LC3 adenovirus infection, flow cytometry and western blot assays were performed to investigate the role of SIRT1 in autophagy and malignant biological behaviors (proliferation, migration, invasion, apoptosis and cell cycle) of GC under GD and the underlying mechanism. Results SGC-7901 cells had the longest tolerance time to GD culture conditions, which had the highest expression of SIRT1 protein and the level of basal autophagy. With the extension of GD time, the autophagy activity in SGC-7901 cells also increased. Under GD conditions, we found a close relationship between SIRT1, FoxO1 and Rab7 in SGC-7901 cells. SIRT1 regulated the activity of FoxO1 and upregulated the expression of Rab7 through deacetylation, which ultimately affected autophagy in GC cells. In addition, changing the expression of FoxO1 provided feedback on the expression of SIRT1 in the cell. Reducing SIRT1, FoxO1 or Rab7 expression significantly inhibited the autophagy levels of GC cells under GD conditions, decreased the tolerance of GC cells to GD, enhanced the inhibition of GD in GC cell proliferation, migration and invasion and increased apoptosis induced by GD. Conclusion The SIRT1-FoxO1-Rab7 pathway is crucial for the autophagy and malignant biological behaviors of GC cells under GD conditions, which could be a new target for the treatment of GC.
Collapse
Affiliation(s)
- Mengke Zhu
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Chao Wei
- Clinical Medicine Teaching and Research Section, Xi’an Health School, Xi’an, Shaanxi, China
| | - Haijiang Wang
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shangning Han
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Lindi Cai
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiaowen Li
- Department of General Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xinhua Liao
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiangming Che
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xuqi Li
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Lin Fan
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Guanglin Qiu
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
3
|
Mishra E, Thakur MK. Mitophagy: A promising therapeutic target for neuroprotection during ageing and age-related diseases. Br J Pharmacol 2023; 180:1542-1561. [PMID: 36792062 DOI: 10.1111/bph.16062] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/17/2022] [Accepted: 02/04/2023] [Indexed: 02/17/2023] Open
Abstract
Mitochondria and mitochondria-mediated signalling pathways are known to control synaptic signalling, as well as long-lasting changes in neuronal structure and function. Mitochondrial impairment is linked to synaptic dysfunction in normal ageing and age-associated neurodegenerative ailments, including Parkinson's disease (PD) and Alzheimer's disease (AD). Both proteolysis and mitophagy perform a major role in neuroprotection, by maintaining a healthy mitochondrial population during ageing. Mitophagy, a highly evolutionarily conserved cellular process, helps in the clearance of damaged mitochondria and thereby maintains the mitochondrial and metabolic balance, energy supply, neuronal survival and neuronal health. Besides the maintenance of brain homeostasis, hippocampal mitophagy also helps in synapse formation, axonal development, dopamine release and long-term depression. In contrast, defective mitophagy contributes to ageing and age-related neurodegeneration by promoting the accumulation of damaged mitochondria leading to cellular dysfunction. Exercise, stress management, maintaining healthy mitochondrial dynamics and administering natural or synthetic pharmacological compounds are some of the strategies used for neuroprotection during ageing and age-related neurological diseases. The current review discusses the impact of defective mitophagy in ageing and age-associated neurodegenerative conditions, the underlying molecular pathways and potential therapies based on recently elucidated mitophagy-inducing strategies.
Collapse
Affiliation(s)
- Ela Mishra
- Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mahendra Kumar Thakur
- Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
4
|
Garba MS, Bouderbala S. Olive cake reduces blood pressure, oxidative stress, aortic endothelial dysfunction and vascular remodeling, in dexamethasone-induced hypertensive rats. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2022. [DOI: 10.3233/mnm-220001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND/AIM: Hypertension is a global public health problem and a leading cause of cardiovascular morbidity and mortality. In this paper, we study the effect of olive cake (OC) on blood pressure, endothelial dysfunction, redox status and vascular remodeling in dexamethasone-induced hypertensive (HT) rats. METHODS: HT rats were divided into two groups fed standard diet supplemented (HT-OC) or not (HT) with OC at 7.5% for 28 days. A control (C) was submitted to standard diet for the same experimental period. RESULTS: Systolic, diastolic and mean blood pressures were higher in the HT vs C and decreased in HT-OC vs HT. Aortic nitric oxide value was decreased in the HT vs the C and increased in HT-OC vs HT. Aortic lipid and protein oxidation products were higher in the HT than C and lower in the HT-OC vs HT. Aortic antioxidant enzymes activities were reduced in HT than control and increased in the HT-OC vs HT. The aortic wall thickness, medial cross-sectional area, media to lumen ratio and the number of VSMCs were higher in the HT and the OC has regressed vascular redemptions. CONCLUSION: In hypertensive rats, OC may alleviate blood pressure and arterial remodeling by suppressing oxidative stress, increasing antioxidant activity, improving endothelial function, preventing smooth muscle proliferation and thickening of the tunica media.
Collapse
Affiliation(s)
- Mansourou Samba Garba
- Laboratoire de Nutrition Clinique et Métabolique, Département de Biologie, Faculté des Sciences de la Nature et de la Vie. Université Oran1 Ahmed Ben Bella, Oran, Algérie
| | - Sherazede Bouderbala
- Laboratoire de Nutrition Clinique et Métabolique, Département de Biologie, Faculté des Sciences de la Nature et de la Vie. Université Oran1 Ahmed Ben Bella, Oran, Algérie
| |
Collapse
|
5
|
Serreli G, Le Sayec M, Diotallevi C, Teissier A, Deiana M, Corona G. Conjugated Metabolites of Hydroxytyrosol and Tyrosol Contribute to the Maintenance of Nitric Oxide Balance in Human Aortic Endothelial Cells at Physiologically Relevant Concentrations. Molecules 2021; 26:molecules26247480. [PMID: 34946563 PMCID: PMC8707355 DOI: 10.3390/molecules26247480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022] Open
Abstract
Nitric oxide (NO) is an important signaling molecule involved in many pathophysiological processes. NO mediates vasodilation and blood flow in the arteries, and its action contributes to maintaining vascular homeostasis by inhibiting vascular smooth muscle contraction and growth, platelet aggregation, and leukocyte adhesion to the endothelium. Dietary antioxidants and their metabolites have been found to be directly and/or indirectly involved in the modulation of the intracellular signals that lead to the production of NO. The purpose of this study was to investigate the contribution of conjugated metabolites of hydroxytyrosol (HT) and tyrosol (TYR) to the release of NO at the vascular level, and the related mechanism of action, in comparison to their parental forms. Experiments were performed in human aortic endothelial cells (HAEC) to evaluate the superoxide production, the release of NO and production of cyclic guanosine monophosphate (cGMP), the activation of serine/threonine-protein kinase 1 (Akt1), and the activation state of endothelial nitric oxide synthase (eNOS). It was observed that the tested phenolic compounds enhanced NO and cGMP concentration, inhibiting its depletion caused by superoxide overproduction. Moreover, some of them enhanced the activation of Akt (TYR, HT metabolites) and eNOS (HT, HVA, TYR-S, HT-3S). Overall, the obtained data showed that these compounds promote NO production and availability, suggesting that HT and TYR conjugated metabolites may contribute to the effects of parental extra virgin olive oil (EVOO) phenolics in the prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Gabriele Serreli
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK;
- Department of Biomedical Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy;
| | - Melanie Le Sayec
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK;
| | - Camilla Diotallevi
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK;
| | - Alice Teissier
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK;
| | - Monica Deiana
- Department of Biomedical Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy;
| | - Giulia Corona
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK;
- Correspondence: ; Tel.: +44-(0)20-8392-3622
| |
Collapse
|
6
|
Zhang SP, Zhou J, Fan QZ, Lv XM, Wang T, Wang F, Chen Y, Hong SY, Liu XP, Xu BS, Hu L, Zhang C, Zhang YM. Discovery of hydroxytyrosol as thioredoxin reductase 1 inhibitor to induce apoptosis and G 1/S cell cycle arrest in human colorectal cancer cells via ROS generation. Exp Ther Med 2021; 22:829. [PMID: 34149875 PMCID: PMC8200807 DOI: 10.3892/etm.2021.10261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 04/30/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancer types and a leading cause of cancer-associated mortality in China. Increased thioredoxin reductase 1 (TrxR1) levels have been previously identified as possible target for CRC. The present study revealed that the natural product hydroxytyrosol (HT), which exhibits a polyphenol scaffold, is a potent inhibitor of TrxR1. Inhibition of TrxR1 was indicated to result in accumulation of reactive oxygen species, inhibit proliferation and induce apoptosis and G1/S cell cycle arrest of CRC cells. Using a C-terminal mutant TrxR1 enzyme activity assay, TrxR1 RNA interference assay and HT binding model assay, the present study demonstrated the core character of the selenocysteine residue in the interaction between HT and TrxR1. HT can serve as polyphenol scaffold to develop novel TrxR1 inhibitors for CRC treatment in the future.
Collapse
Affiliation(s)
- Sheng-Peng Zhang
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Ji Zhou
- Center for Reproductive Medicine, The First Affiliated Hospital, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Qing-Zhu Fan
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Xiao-Mei Lv
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Tian Wang
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Fan Wang
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Yang Chen
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Sen-Yan Hong
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Xiao-Ping Liu
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Bing-Song Xu
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Lei Hu
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Chao Zhang
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Ye-Ming Zhang
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| |
Collapse
|
7
|
Leri M, Scuto M, Ontario ML, Calabrese V, Calabrese EJ, Bucciantini M, Stefani M. Healthy Effects of Plant Polyphenols: Molecular Mechanisms. Int J Mol Sci 2020; 21:E1250. [PMID: 32070025 PMCID: PMC7072974 DOI: 10.3390/ijms21041250] [Citation(s) in RCA: 237] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 02/08/2023] Open
Abstract
The increasing extension in life expectancy of human beings in developed countries is accompanied by a progressively greater rate of degenerative diseases associated with lifestyle and aging, most of which are still waiting for effective, not merely symptomatic, therapies. Accordingly, at present, the recommendations aimed at reducing the prevalence of these conditions in the population are limited to a safer lifestyle including physical/mental exercise, a reduced caloric intake, and a proper diet in a convivial environment. The claimed health benefits of the Mediterranean and Asian diets have been confirmed in many clinical trials and epidemiological surveys. These diets are characterized by several features, including low meat consumption, the intake of oils instead of fats as lipid sources, moderate amounts of red wine, and significant amounts of fresh fruit and vegetables. In particular, the latter have attracted popular and scientific attention for their content, though in reduced amounts, of a number of molecules increasingly investigated for their healthy properties. Among the latter, plant polyphenols have raised remarkable interest in the scientific community; in fact, several clinical trials have confirmed that many health benefits of the Mediterranean/Asian diets can be traced back to the presence of significant amounts of these molecules, even though, in some cases, contradictory results have been reported, which highlights the need for further investigation. In light of the results of these trials, recent research has sought to provide information on the biochemical, molecular, epigenetic, and cell biology modifications by plant polyphenols in cell, organismal, animal, and human models of cancer, metabolic, and neurodegenerative pathologies, notably Alzheimer's and Parkinson disease. The findings reported in the last decade are starting to help to decipher the complex relations between plant polyphenols and cell homeostatic systems including metabolic and redox equilibrium, proteostasis, and the inflammatory response, establishing an increasingly solid molecular basis for the healthy effects of these molecules. Taken together, the data currently available, though still incomplete, are providing a rationale for the possible use of natural polyphenols, or their molecular scaffolds, as nutraceuticals to contrast aging and to combat many associated pathologies.
Collapse
Affiliation(s)
- Manuela Leri
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.B.); (M.S.)
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Firenze, 50139 Florence, Italy
| | - Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia, 97-95125 Catania, Italy; (M.S.); (M.L.O.); (V.C.)
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia, 97-95125 Catania, Italy; (M.S.); (M.L.O.); (V.C.)
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia, 97-95125 Catania, Italy; (M.S.); (M.L.O.); (V.C.)
| | - Edward J. Calabrese
- Department of Environmental Health Sciences, School of Public Health and Health Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Monica Bucciantini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.B.); (M.S.)
| | - Massimo Stefani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.B.); (M.S.)
| |
Collapse
|