1
|
Wang Y, Guo Z, Tian Y, Cong L, Zheng Y, Wu Z, Shan G, Xia Y, Zhu Y, Li X, Song Y. MAPK1 promotes the metastasis and invasion of gastric cancer as a bidirectional transcription factor. BMC Cancer 2023; 23:959. [PMID: 37817112 PMCID: PMC10563293 DOI: 10.1186/s12885-023-11480-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND The Mitogen-activated protein kinase 1 (MAPK1) has both independent functions of phosphorylating histones as a kinase and directly binding the promoter regions of genes to regulate gene expression as a transcription factor. Previous studies have identified elevated expression of MAPK1 in human gastric cancer, which is associated with its role as a kinase, facilitating the migration and invasion of gastric cancer cells. However, how MAPK1 binds to its target genes as a transcription factor and whether it modulates related gene expressions in gastric cancer remains unclear. RESULTS Here, we integrated biochemical assays (protein interactions and chromatin immunoprecipitation (ChIP)), cellular analysis assays (cell proliferation and migration), RNA sequencing, ChIP sequencing, and clinical analysis to investigate the potential genomic recognition patterns of MAPK1 in a human gastric adenocarcinoma cell-line (AGS) and to uncover its regulatory effect on gastric cancer progression. We confirmed that MAPK1 promotes AGS cells invasion and migration by regulating the target genes in different directions, up-regulating seven target genes (KRT13, KRT6A, KRT81, MYH15, STARD4, SYTL4, and TMEM267) and down-regulating one gene (FGG). Among them, five genes (FGG, MYH15, STARD4, SYTL4, and TMEM267) were first associated with cancer procession, while the other three (KRT81, KRT6A, and KRT13) have previously been confirmed to be related to cancer metastasis and migration. CONCLUSION Our data showed that MAPK1 can bind to the promoter regions of these target genes to control their transcription as a bidirectional transcription factor, promoting AGS cell motility and invasion. Our research has expanded the understanding of the regulatory roles of MAPK1, enriched our knowledge of transcription factors, and provided novel candidates for cancer therapeutics.
Collapse
Affiliation(s)
- Yue Wang
- Gastroenteric Medicine and Digestive Endoscopy Center, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Zheng Guo
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
| | - Yueli Tian
- Gastroenteric Medicine and Digestive Endoscopy Center, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Liang Cong
- Gastroenteric Medicine and Digestive Endoscopy Center, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yulu Zheng
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
| | - Zhiyuan Wu
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
| | - Guangle Shan
- Department of Bioinformatics, Thrive Bioresearch, Beijing, China
| | - Yao Xia
- School of Science, Edith Cowan University, Joondalup, WA, Australia
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yahong Zhu
- Department of Bioinformatics, Thrive Bioresearch, Beijing, China
| | - Xingang Li
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia.
| | - Ying Song
- Gastroenteric Medicine and Digestive Endoscopy Center, The Second Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
2
|
Meng C, Jiang B, Liu W, Wang L, Zhao Z, Bai R, Zhao Y. MiR-217 regulates autophagy through OPG/RANKL/RANK in giant cell tumors. J Orthop Surg Res 2023; 18:346. [PMID: 37165403 PMCID: PMC10170763 DOI: 10.1186/s13018-023-03826-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 05/04/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Increasing evidence suggests that microRNAs (miRNAs) play a crucial role in cancer development and progression. Our previous study showed remarkably lower levels of miR-217 in GCT cells and tissues, and miR-217 re-expression inhibited the occurrence and development of GCT in vitro; however, the associated mechanisms remain unknown. Thus, this study aimed to explore the mechanisms underlying the proliferation inhibitory effect of miR-217 in GCT cells. METHODS The proliferative potential of the GCT cells was measured with an MTT assay and BrdU straining. Changes in GCT cell migration and invasion was assessed by a transwell assay. Finally, Western blot and RT-PCR assays were employed to evaluate OPG/RANKL/RANK signaling pathway-related protein expression. RESULTS The excessive upregulation of miR-217 markedly suppressed GCT cell proliferation and tumorigenesis both in vitro and in vivo. miR-217 overexpression could inhibit the OPG/RANKL/RANK signaling pathway in vitro and in vivo. Furthermore, ALP activity was significantly decreased in GCT cells following miR-217 treatment. Importantly, miR-217 could inhibit autophagy-related protein expression and autophagosome/autolysosome formation in GCT cells and tissues. CONCLUSION These results suggest that miR-217 upregulation could inhibit the occurrence and development of GCT by blocking autophagy. These findings offer an effective therapeutic target to improve the survival rates of patients with CGT in the future.
Collapse
Affiliation(s)
- Chenyang Meng
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010030, China
| | - Boyong Jiang
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010030, China
| | - Wanlin Liu
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010030, China
| | | | - Zhenqun Zhao
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010030, China
| | - Rui Bai
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010030, China.
| | - Yan Zhao
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010030, China.
| |
Collapse
|
3
|
Wang S, Zhang S. Systematic analyses of a novel circRNA-related miRNAs prognostic signature for Cervical Cancer. Genet Mol Biol 2022; 45:e20210405. [PMID: 35766420 PMCID: PMC9241030 DOI: 10.1590/1678-4685-gmb-2021-0405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/17/2022] [Indexed: 12/01/2022] Open
Abstract
Accumulating evidences shed light on the important roles of Circular RNAs (circRNAs) acting as competing endogenous RNAs (ceRNAs) in cervical cancer (CC) biology. The present study aimed to identify a novel circRNA-related prognostic signature for CC. The expression data and clinical information of CC were downloaded from the Gene Expression Omnibus (GEO) datasets to identify the differential circRNAs expression. Based on the targeted miRNA prediction, circRNA-related miRNAs were detected in training group and validation group of The Cancer Genome Atlas (TCGA) dataset to construct the novel prognostic signature of CC with least absolute shrinkage and selection operator (LASSO). Moreover, the Kaplan-Meier (K-M) analysis was applied to test the model. In the present study, three differentially expressed circRNAs (hsa_circ_0001498, hsa_circ_0066147, and hsa_circ_0006948) were identified in GSE102686 and GSE107472. Then, with the criteria 25 predicted miRNAs were analyzed in TCGA datasets to calculate the prognostic signature. Furthermore, we developed a six-miRNA signature (hsa-miR-217, hsa-miR-30b-3p, hsa-miR-136-5p, hsa-miR-185-3p, hsa-miR-501-5p and hsa-miR-658) based on their expression level and coefficients. We performed a Pearson correlation analysis to screen 47 mRNAs which are negatively regulated by these six miRNAs. Functional enrichment analysis indicated these mRNAs were mainly enriched in cancer-related biology, such as regulation of transcription, signal transduction, and cell cycle. The present study provides novel insight for better understanding of circRNA-related ceRNA network in CC and facilitates the identification of potential biomarkers for prognosis.
Collapse
Affiliation(s)
- Shasha Wang
- Zhejiang University, School of Medicine, Sir Run Run Shaw Hospital, Department of Obstetrics and Gynecology, Assisted Reproduction Unit, Hangzhou, China
| | - Songying Zhang
- Zhejiang University, School of Medicine, Sir Run Run Shaw Hospital, Department of Obstetrics and Gynecology, Assisted Reproduction Unit, Hangzhou, China
| |
Collapse
|
4
|
Zhang N, Zheng N, Luo D, Lin D, Que W, Wang H, Huang Q, Yang J, Ye J, Chen X. Long Non-Coding RNA NR-133666 Promotes the Proliferation and Migration of Fibroblast-Like Synoviocytes Through Regulating the miR-133c/MAPK1 Axis. Front Pharmacol 2022; 13:887330. [PMID: 35431959 PMCID: PMC9012539 DOI: 10.3389/fphar.2022.887330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/16/2022] [Indexed: 11/21/2022] Open
Abstract
Long non-coding RNA (lncRNA) is involved in the regulation of rheumatoid arthritis (RA) and many other diseases. In this study, a new lncRNA, NR-133666, was identified to be highly expressed in the adjuvant-induced arthritis rat model using the Agilent lncRNA microarray assay. qRT-PCR verified that NR-133666 was upregulated in fibroblast-like synoviocyte of a collagen-induced arthritis (CIA) rat model. Fluorescence in situ hybridization analysis showed that NR-133666 is mainly expressed in the cytoplasm of collagen-induced arthritis FLS. MTT assay and EdU staining results showed that the proliferation of CIA FLS was inhibited after NR-133666 was knocked down, and the wound healing assay showed that the migration of CIA FLS was also suppressed. Dual luciferase detection was used to confirm the relationship among NR-133666, miR-133c and MAPK1. MAPK1 is the target gene of miR-133c, where NR-133666 acts as a sponge of miR-133c to reduce the inhibitory effect of miR-133c on MAPK1. Overexpression of NR-133666 and MAPK1 can promote the proliferation and migration of CIA FLS, and overexpression of miR-133c can reverse this phenomenon. Western blot indicated that it may be related to the ERK/MAPK signaling pathway. Collectively, we identified that lncRNA NR-133666 acted as a miR-133c sponge that can promote the proliferation and migration of CIA FLS through regulating the miR-133c/MAPK1 axis.
Collapse
Affiliation(s)
- Nanwen Zhang
- The School of Pharmacy, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou, China
| | - Ningning Zheng
- The School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Dunxiong Luo
- The Department of Physical Education, Fujian Medical University, Fuzhou, China
| | - Duoduo Lin
- The School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Wenzhong Que
- Department of Rheumatology, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou, China
| | - He Wang
- The School of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Qiuping Huang
- The School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Juhua Yang
- The School of Pharmacy, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou, China
- *Correspondence: Xiaole Chen, ; Jian Ye, ; Juhua Yang,
| | - Jian Ye
- The Department of Orthopedics, The First Hospital of Nanping, Nanping, China
- *Correspondence: Xiaole Chen, ; Jian Ye, ; Juhua Yang,
| | - Xiaole Chen
- The School of Pharmacy, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou, China
- *Correspondence: Xiaole Chen, ; Jian Ye, ; Juhua Yang,
| |
Collapse
|
5
|
Shen Q, Xia Y, Yang L, Wang B, Peng J. Midazolam Suppresses Hepatocellular Carcinoma Cell Metastasis and Enhances Apoptosis by Elevating miR-217. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2813521. [PMID: 35309842 PMCID: PMC8926537 DOI: 10.1155/2022/2813521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 01/10/2023]
Abstract
Background Hepatocellular carcinoma (HCC) is a significant cause of human death in the world. Recently, it is found that midazolam can modulate miRs to participate in HCC progression. This research project was designed to elucidate the impacts of midazolam and miR-217 on HCC cell metastasis and apoptosis. Methods Human HCC cell strains (Hep3B and SK-HEP-1) were selected and intervened by midazolam at different concentrations in our research. miR-217-inhibitor intervened in the two HCC cell strains to observe the alterations of cell migration, invasiveness, and apoptosis. The miR-217 level in HCC cells was identified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Results As midazolam concentration was elevated, Hep3B and SK-HEP-1 viabilities were more obviously suppressed. The 10 μg/mL concentration was selected for analysis since Hep3B and SK-HEP-1 had an IC50 of 10.57 μg/mL and 9.35 μg/m, respectively. The qRT-PCR results showed the decreased of miR-217 in HCC cells, which was enhanced notably by midazolam intervention. Compared with the blank group, the invasiveness and migration (Transwell assay) of miR-217-inhibitor-transfected HCC cells were distinctly enhanced and the apoptosis rate (flow cytometry) was noticeably reduced. Conclusion Midazolam can upregulate miR-217 in HCC cells, thus inhibiting HCC cell metastasis and apoptosis.
Collapse
Affiliation(s)
- Qian Shen
- Department of Anesthesiology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, China
| | - Yanqiong Xia
- Department of Anesthesiology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, China
| | - Leilei Yang
- Department of Anesthesiology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, China
| | - Bo Wang
- Department of Anesthesiology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, China
| | - Jian Peng
- Department of Anesthesiology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, China
| |
Collapse
|
6
|
Wang K, Li R, Zhang Y, Qi W, Fang T, Yue W, Tian H. Prognostic Significance and Therapeutic Target of CXC Chemokines in the Microenvironment of Lung Adenocarcinoma. Int J Gen Med 2022; 15:2283-2300. [PMID: 35250303 PMCID: PMC8896202 DOI: 10.2147/ijgm.s352511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/15/2022] [Indexed: 12/25/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD) is one of the most important subtypes of lung cancer and has a high morbidity and mortality. Inflammatory CXC chemokines in tumor microenvironment can stimulate tumor growth, invasion, and metastasis, affecting the prognosis of patients. However, the differential expression profiles, prognostic values, and specific mechanisms of the CXC chemokine family in LUAD have not been clarified. Methods Transcriptome expression profile data were extracted from TIMER and TCGA. GEPIA was used to compare the relationship between CXC chemokines and clinicopathologic parameters. The prognostic analysis was performed using a Kaplan–Meier curve in GEPIA. LinkedOmics and TRRUST were applied to conduct the enrichment analysis of the regulatory networks containing the kinase targets, miRNA targets, and transcriptional factor targets. The characteristics of immune infiltration and immune-related clinical outcomes were evaluated with TIMER algorithms. Single-cell RNA sequencing localization analysis of genes as prognostic biomarkers were performed by PanglaoDB. Results Nine differentially expressed genes were identified in LUAD compared to normal tissues. Aberrant expression of CXCL2 (P =0.0017), CXCL13 (P= 0.0271), CXCL16 (P= 0.016), and CXCL17 (P= 2.14e-5) was significantly correlated with clinical cancer stage. Furthermore, patients with low gene transcription of CXCL 7 (P = 0.017) and high expression of CXCL 17 (P = 0.00045) had a better prognosis in LUAD. We also found that immune cell infiltration was significantly correlated with LUAD microenvironment mediated by CXC chemokines. Cox proportional hazard model test was conducted and indicated that B cell infiltration could prolong the survival of the LUAD patients. CXCL17 exerted anti-tumors effect through pulmonary alveolar type II cells according to single-cell analysis. Conclusion Our research identified the aberrant expression profiles and prognostic biomarkers of CXC chemokines in LUAD. This detailed analysis of the regulatory factor networks for CXC chemokine gene expression may provide novel insights for selecting potential immunotherapeutic targets.
Collapse
Affiliation(s)
- Kun Wang
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Rongyang Li
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Yu Zhang
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Weifeng Qi
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Tao Fang
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Weiming Yue
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Hui Tian
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Correspondence: Hui Tian, Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China, Email
| |
Collapse
|
7
|
Dong Y, Ma WM, Yang W, Hao L, Zhang SQ, Fang K, Hu CH, Zhang QJ, Shi ZD, Zhang WD, Fan T, Xia T, Han CH. Identification of C3 and FN1 as potential biomarkers associated with progression and prognosis for clear cell renal cell carcinoma. BMC Cancer 2021; 21:1135. [PMID: 34688260 PMCID: PMC8539775 DOI: 10.1186/s12885-021-08818-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/27/2021] [Indexed: 12/28/2022] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is one of the most lethal urological malignancies, but the pathogenesis and prognosis of ccRCC remain obscure, which need to be better understand. Methods Differentially expressed genes were identified and function enrichment analyses were performed using three publicly available ccRCC gene expression profiles downloaded from the Gene Expression Omnibus database. The protein-protein interaction and the competing endogenous RNA (ceRNA) networks were visualized by Cytoscape. Multivariate Cox analysis was used to predict an optimal risk mode, and the survival analysis was performed with the Kaplan-Meier curve and log-rank test. Protein expression data were downloaded from Clinical Proteomic Tumor Analysis Consortium database and Human Protein Atlas database, and the clinical information as well as the corresponding lncRNA and miRNA expression data were obtained via The Cancer Genome Atlas database. The co-expressed genes and potential function of candidate genes were explored using data exacted from the Cancer Cell Line Encyclopedia database. Results Of the 1044 differentially expressed genes shared across the three datasets, 461 were upregulated, and 583 were downregulated, which significantly enriched in multiple immunoregulatory-related biological process and tumor-associated pathways, such as HIF-1, PI3K-AKT, P53 and Rap1 signaling pathways. In the most significant module, 36 hub genes were identified and were predominantly enriched in inflammatory response and immune and biotic stimulus pathways. Survival analysis and validation of the hub genes at the mRNA and protein expression levels suggested that these genes, particularly complement component 3 (C3) and fibronectin 1 (FN1), were primarily responsible for ccRCC tumorigenesis and progression. Increased expression of C3 or FN1 was also associated with advanced clinical stage, high pathological grade, and poor survival in patients with ccRCC. Univariate and multivariate Cox regression analysis qualified the expression levels of the two genes as candidate biomarkers for predicting poor survival. FN1 was potentially regulated by miR-429, miR-216b and miR-217, and constructed a bridge to C3 and C3AR1 in the ceRNA network, indicating a critical position of FN1. Conclusions The biomarkers C3 and FN1 could provide theoretical support for the development of a novel prognostic tool to advance ccRCC diagnosis and targeted therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08818-0.
Collapse
Affiliation(s)
- Yang Dong
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China.,Medical College of Soochow University, Suzhou, China
| | - Wei-Ming Ma
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China.,Medical College of Soochow University, Suzhou, China
| | - Wen Yang
- Department of Nephrology, The First Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, China
| | - Lin Hao
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China.,Medical College of Soochow University, Suzhou, China
| | - Shao-Qi Zhang
- Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Kun Fang
- Department of Nephrology, The First Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, China.,Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Chun-Hui Hu
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Qian-Jin Zhang
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Zhen-Duo Shi
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Wen-da Zhang
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Tao Fan
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Tian Xia
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Cong-Hui Han
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China. .,Department of Nephrology, The First Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, China. .,Jiangsu Normal University, Xuzhou, China.
| |
Collapse
|
8
|
Gunel NS, Birden N, Kurt CC, Bagca BG, Shademan B, Sogutlu F, Ozates NP, Avci CB. Effect of valproic acid on miRNAs affecting histone deacetylase in a model of anaplastic thyroid cancer. Mol Biol Rep 2021; 48:6085-6091. [PMID: 34374891 DOI: 10.1007/s11033-021-06616-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/29/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Thyroid cancer is the most common malignant tumor of the endocrine system seen in the thyroid gland. More than 90% of thyroid cancers comprise papillary thyroid cancer (PTC) and follicular thyroid cancer (FTC). Although anaplastic thyroid carcinoma (ATC) accounts for less than 2% of thyroid cancer. But patients' lifespan after diagnosis is about 6 months. Surgical interventions, radioactive iodine use, and chemotherapy are not sufficient in the treatment of ATC, so alternative therapies are needed. METHODS AND RESULTS The WST-1 assay test was performed to evaluate the anti-proliferative effects of Valproic acid (VPA). Also, the effect of VPA on miRNAs affecting histone deacetylase was determined by Quantitative RT-PCR. In the SW1736 cell line, IC50 dose for VPA was found 1.6 mg/ml. In our study, the level of oncogenic genes expression in cells treated with VPA, including miR-184, miR-222-5p, miR-124-3p, and miR-328-3p, decreased. Also, the expression of tumor inhibitory genes including miR-323-5p, miR-182-5p, miR-138-5p, miR-217, miR-15a-5p, miR-29b-3p, miR-324-5p and miR-101-5p increased significantly. CONCLUSIONS VPA can ad-just countless gene expression patterns, including microRNAs (miRNAs), by targeting histone deacetylase (HDAC). However, further studies are required for more accurate results.
Collapse
Affiliation(s)
- Nur Selvi Gunel
- Department of Medical Biology, Ege University Medical School, Izmir, Turkey
| | - Nihal Birden
- Department of Medical Biology, Ege University Medical School, Izmir, Turkey
| | | | - Bakiye Goker Bagca
- Department of Medical Biology, Ege University Medical School, Izmir, Turkey
| | - Behrouz Shademan
- Department of Medical Biology, Ege University Medical School, Izmir, Turkey
| | - Fatma Sogutlu
- Department of Medical Biology, Ege University Medical School, Izmir, Turkey
| | | | - Cigir Biray Avci
- Department of Medical Biology, Ege University Medical School, Izmir, Turkey.
| |
Collapse
|
9
|
LncRNA SNHG20 promotes cell proliferation and invasion by suppressing miR-217 in ovarian cancer. Genes Genomics 2021; 43:1095-1104. [PMID: 34302635 PMCID: PMC8376724 DOI: 10.1007/s13258-021-01138-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 07/06/2021] [Indexed: 12/24/2022]
Abstract
Background Ovarian cancer is the most common female gynecological malignancy. SNHG20, as a long non-coding RNA, has been proven to be an important regulator in the occurrence and development of various tumors. However, the potential mechanism of SNHG20 in ovarian cancer is unclear. Objective The present study was aimed to investigate the functions and mechanisms of SNHG20 in ovarian cancer. Methods The expression of SNHG20 and miR-217 in ovarian cancer tissues and cell lines was detected by qRT-PCR. CCK-8 assay was used to measure cell proliferation in transfected cells. The transwell assay was used to detect the relative invasion rate of transfected cells. The putative binding sites between SNHG20 and miR-217 were predicted by software LncBase v.2, and the interaction between SNHG20 and miR-217 was confirmed by dual-luciferase reporter assays and RIP assay. The rescue experiments were used to illustrate potential mechanisms. Results SNHG20 was upregulated in ovarian cancer tissues and cell lines. Overexpression of SNHG20 promoted ovarian cancer cell proliferation and invasion. MiR-217 was downregulated in ovarian cancer tissues and cells, and was negatively regulated by SNHG20. Moreover, miR-217 overexpression inhibited ovarian cancer cell proliferation and invasion. Furthermore, miR-217 mimic reversed the inhibitory effect of SNHG20 overexpression on the biological behavior of ovarian cancer cells. Conclusions SNHG20 promoted cell proliferation and invasion by sponging miR-217 in ovarian cancer. These results suggested that SNHG20 and miR-217 might provide new targets for therapeutic application in ovarian cancer. Supplementary Information The online version contains supplementary material available at 10.1007/s13258-021-01138-4.
Collapse
|
10
|
Zhou R, Jia Y, Wang Y, Li Z, Qi J, Yang Y. Elevating miR-378 strengthens the isoflurane-mediated effects on myocardial ischemia-reperfusion injury in mice via suppression of MAPK1. Am J Transl Res 2021; 13:2350-2364. [PMID: 34017394 PMCID: PMC8129231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE Myocardial ischemia reperfusion (MI/RI) stresses the pathological process of progressive aggravation of tissue damage in ischemic myocardium. Isoflurane (ISO) is cardioprotective in MI/RI. Thus, this work aimed to identify the mechanism of isoflurane (ISO) post-treatment in MI/RI by regulating microRNA-378 (miR-378) and mitogen-activated protein kinase 1 (MAPK1). METHODS A MI/RI model was established by ligating the left anterior descending coronary artery in mice. The modeled mice were injected with ISO or miR-378 or MAPK1 to define their roles in hemodynamics, myocardial injury, cell apoptosis and inflammatory infiltration of mice. CD45, miR-378 and MAPK1 levels were detected. Dual luciferase reporter gene assay was utilized for detection of the targeting connection of miR-378 and MAPK1. RESULTS Reduced miR-378 and elevated MAPK1 existed in MI/RI. ISO elevated miR-378 to target MAPK1. ISO improved hemodynamics and myocardial injury, reduced apoptosis rate and inflammatory infiltration in MI/RI mice. Up-regulated miR-378 further enhanced the protective effect of ISO on MI/RI mice. Depleting MAPK1 reversed the effects of suppressed miR-378 on MI/RI. CONCLUSION This study highlights that elevating miR-378 strengthens the isoflurane-mediated effects on MI/RI in mice via suppressing MAPK1, which provides a potential treatment for MI/RI.
Collapse
Affiliation(s)
- Rui Zhou
- Anesthesia and Perioperative Medicine, The Affiliated Children’s Hospital of Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s HospitalZhengzhou 450018, Henan, China
| | - Yingping Jia
- Anesthesia and Perioperative Medicine, The Affiliated Children’s Hospital of Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s HospitalZhengzhou 450018, Henan, China
| | - Yuan Wang
- Anesthesia and Perioperative Medicine, The Affiliated Children’s Hospital of Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s HospitalZhengzhou 450018, Henan, China
| | - Zhengchen Li
- Anesthesia and Perioperative Medicine, The Affiliated Children’s Hospital of Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s HospitalZhengzhou 450018, Henan, China
| | - Jinlian Qi
- Anesthesia and Perioperative Medicine, The Affiliated Children’s Hospital of Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s HospitalZhengzhou 450018, Henan, China
| | - Yanmei Yang
- Anesthesiology Department, Kaifeng District of No.988 Hospital, PLA’s Logistic Support DepartmentKaifeng 475003, Henan, China
| |
Collapse
|
11
|
Li G, Zhong S. MicroRNA-217 inhibits the proliferation and invasion, and promotes apoptosis of non-small cell lung cancer cells by targeting sirtuin 1. Oncol Lett 2021; 21:386. [PMID: 33777209 PMCID: PMC7988702 DOI: 10.3892/ol.2021.12647] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 10/22/2020] [Indexed: 11/17/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is a common malignancy worldwide. MicroRNA (miR)-217 and sirtuin 1 (SIRT1) have been reported to play significant roles in different types of cancer, such as osteosarcoma and prostate cancer; however, the association between miR-217 and SIRT1 in the cell proliferation, apoptosis and invasion of NSCLC remain unknown. Thus, the present study aimed to investigate the roles of miR-217 and SIRT1 in NSCLC. The expression levels of miR-217 and SIRT1 were detected via reverse transcription-quantitative (RT-q)PCR and western blot analyses. The effect of miR-217 on A549 and H1299 cell proliferation, apoptosis and invasion was assessed via the Cell Counting Kit-8, flow cytometry and Transwell assays, respectively. In addition, the association between SIRT1 and miR-217 was predicted using the TargetScan database, and verified via the dual-luciferase reporter assay, and RT-qPCR and western blot analyses. The results demonstrated that miR-217 expression was significantly downregulated, while SIRT1 expression was significantly upregulated in A549 and H1299 cells compared with the human bronchial epithelial cells. Furthermore, transfection with miR-217 mimic significantly inhibited A549 and H1299 cell proliferation and invasion, and induced A549 and H1299 cell apoptosis. The results of the dual-luciferase reporter assay and western blot analysis confirmed that SIRT1 is a target gene of miR-217. In addition, miR-217 inhibited the activation of AMP-activated protein kinase (AMPK) and mTOR signaling. Taken together, the results of the present study suggest that miR-217 inhibits A549 and H1299 cell proliferation and invasion, and induces A549 and H1299 cell apoptosis by targeting SIRT1 and inactivating the SIRT1-mediated AMPK/mTOR signaling pathway. Thus, miR-217 may be used as a potential therapeutic target for the treatment of patients with NSCLC.
Collapse
Affiliation(s)
- Guangshun Li
- Department of Thoracic, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Shouping Zhong
- Department of Thoracic, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| |
Collapse
|
12
|
Yan J, Fang T, Zhang M, Zhou Q. LINC00467 facilitates osteosarcoma progression by sponging miR‑217 to regulate KPNA4 expression. Int J Mol Med 2021; 47:26. [PMID: 33537823 PMCID: PMC7895521 DOI: 10.3892/ijmm.2021.4859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma (OS) is a musculoskeletal malignancy that originates from interstitial cells. An increasing number of studies have verified that long non-coding RNAs (lncRNAs) participate in the progression of numerous types of cancer. It has been reported that LINC00467 is a cancer-promoting gene in some types of cancer; however, the regulatory mechanism of LINC00467 in OS remains unknown. In the present study, reverse transcription-quantitative PCR was used to determine LINC00467 expression in OS tissues and cells. Additionally, the impact of LINC00467-knockdown on OS cell proliferation, migration and invasion was analyzed using Cell Counting Kit-8, colony formation and Transwell assays, as well as western blot analysis. RNA pulldown and luciferase reporter assays were conducted to investigate the regulatory mechanism of LINC00467 in OS. The results delineated that LINC00467 expression was elevated in OS tissues and cells, and that high LINC00467 expression was associated with a poor prognosis in patients with OS. LINC00467 inhibition suppressed OS progression by inhibiting cell proliferation, migration, invasion and epithelial-mesenchymal transition. LINC00467 served as a molecular sponge for microRNA (miR)-217, while karyopherin subunit α4 (KPNA4) was a downstream target gene of miR-217. Moreover, the overexpression of KPNA4 reversed the inhibitory effects of LINC00467 inhibition on OS progression. Therefore, the present study elucidated the potential mechanism of LINC00467 in OS and indicated that LINC00467 exerted its carcinogenic effects on OS through the miR-217/KPNA4 axis, implying that LINC00467 may be a novel potential therapeutic target for OS.
Collapse
Affiliation(s)
- Jing Yan
- Department of Orthopaedics, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, Jiangsu 223002, P.R. China
| | - Tao Fang
- Department of Orthopaedics, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, Jiangsu 223002, P.R. China
| | - Ming Zhang
- Department of Orthopaedics, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, Jiangsu 223002, P.R. China
| | - Quan Zhou
- Department of Orthopaedics, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, Jiangsu 223002, P.R. China
| |
Collapse
|
13
|
MiR-217 promotes endothelial cell senescence through the SIRT1/p53 signaling pathway. J Mol Histol 2021; 52:257-267. [PMID: 33392891 DOI: 10.1007/s10735-020-09945-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/07/2020] [Indexed: 01/11/2023]
Abstract
Studies have shown that miR-217 can induce cell senescence, but its mechanism of action in vascular endothelial cell senescence is less reported. Therefore, this study aimed to investigate how miR-217 plays a role in endothelial cell senescence. Human umbilical vein endothelial cells (HUVECs) were used to replicate the aging model, and the population doubling levels (PDLs) during cell passage were counted. Senescence-associated β-galactosidase (SA-β-gal) staining, Real-time quantitative PCR (RT-qPCR), MTT assay, Transwell, and tube formation were used to detect the effects of miR-217 on young and senescent HUVECs. Targetscan7.2 and luciferase assay predicted and verified the relationship between miR-217 and the target gene, and the expression of silent information regulator 1 (SIRT1) and p53 was detected by RT-qPCR and western blot. In addition, SA-β-gal staining detected the effects of miR-217 inhibitor and SIRT1 on senescent HUVECs. MiR-217 was upregulated in senescent endothelial cells. Overexpression of miR-217 promoted the increase of SA-β-gal positive cells, and inhibited proliferation, migration and angiogenesis during endothelial cell growth. Furthermore, SIRT1 was a target gene of miR-217. Simultaneous silencing of SIRT1 reversed the effect of miR-217 inhibitor on the reduction of SA-β-gal positive-staining cells. Our data suggest that overexpression of miR-217 promoted vascular endothelial cell senescence by targeting the SIRT1/p53 signaling pathway, which may provide a new basis for studying the mechanism of action in vascular endothelial cell senescence.
Collapse
|
14
|
Huang B, Zhou D, Huang X, Xu X, Xu Z. Silencing circSLC19A1 Inhibits Prostate Cancer Cell Proliferation, Migration and Invasion Through Regulating miR-326/MAPK1 Axis. Cancer Manag Res 2020; 12:11883-11895. [PMID: 33239918 PMCID: PMC7682465 DOI: 10.2147/cmar.s267927] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/03/2020] [Indexed: 12/18/2022] Open
Abstract
Background Emerging evidence indicates that circular RNAs (circRNAs), which form as covalently closed loops, play a regulatory role in various types of cancer, including prostate cancer (PCa). CircSLC19A1, one kind of circRNA, was subjected to the study and its role in PCa was explored. Methods Expressions of circSLC19A1, miR-326 and MAPK1 in PCa tissues and cells were assessed by qRT-PCR. CircSLC19A1 was identified by RNase R treatment. The binding relations between circSLC19A1 and miR-326 and between miR-326 and MAPK1 were predicted by RegRNA2.0 or Targetscan7.2 and further confirmed by dual-luciferase reporter assay. Pearson correlation analysis of the correlation among circSLC19A1, miR-326 and MAPK1 was performed. CCK-8, cell colony formation, wound healing and Transwell assays were used to assess PCa cell viability, proliferation, migration and invasion, respectively. Results CircSLC19A1 expression was up-regulated in PCa tissue and cell cytoplasm. Silencing circSLC19A1 inhibited PCa cell viability, proliferation, migration, invasion and miR-326 expression. MiR-326 inhibitor promoted the luciferase activities of circSLC19A1 and MAPK1, increased MAPK1 expression and facilitated PCa cell progression. MiR-326 expression was down-regulated in PCa tissue and there was a negative correlation between miR-326 and circSLC19A1 expressions. MAPK1 expression was up-regulated in PCa tissue. There was a negative correlation between MAPK1 and miR-326 expressions as well as a positive correlation between MAPK1 and circSLC19A1 expressions. Silencing MAPK1 promoted the viability, proliferation, migration, and invasion of PCa cells co-transfected with siRNA-circSLC19A1a and miR-326 inhibitor. Conclusion CircSLC19A1 silencing inhibited PCa cell proliferation, migration and invasion through regulating miR-326/MAPK1 axis.
Collapse
Affiliation(s)
- Banggao Huang
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| | - Danhong Zhou
- Department of Surgery, The Third People's Hospital of Hangzhou, Hangzhou, Zhejiang Province, People's Republic of China
| | - Xinmian Huang
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| | - Xiaobo Xu
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| | - Zhihui Xu
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
15
|
Zeng Q, Sun S, Li Y, Li X, Li Z, Liang H. Identification of Therapeutic Targets and Prognostic Biomarkers Among CXC Chemokines in the Renal Cell Carcinoma Microenvironment. Front Oncol 2020; 9:1555. [PMID: 32117786 PMCID: PMC7012904 DOI: 10.3389/fonc.2019.01555] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/23/2019] [Indexed: 01/11/2023] Open
Abstract
Background: Renal cell carcinoma (RCC) is one of the most common malignances with an ever-increasing incidence and high mortality. Cross-talk between cancer cells and interstitial cells exerts significant effects on neoplasia and tumor development and is modulated in part by chemokines. CXC chemokines in the tumor microenvironment can modulate immune cell trafficking and regulate tumor cell activities, thus exerting anti-tumor immunological effects and affecting patient outcomes; however, the expression and prognostic values of CXC chemokines in RCC have not been clarified. Methods: ONCOMINE, GEPIA, UALCAN, cBioPortal, GeneMANIA, DAVID 6.8, Metascape, TRRUST, LinkedOmics, and TIMER were utilized in this study. Results: The transcriptional levels of CXCL1/2/5/6/9/10/11/16 in RCC tissues were significantly elevated while the transcriptional levels of CXCL3/7/12/13 were significantly reduced. A significant correlation was found between the expression of CXC1/5/9/10/11/13 and the pathological stage of RCC patients. RCC patients with low transcriptional levels of CXCL1/2/3/5/13 were associated with a significantly better prognosis. The functions of differentially expressed CXC chemokines are primarily related to the chemokine signaling pathway, cytokine–cytokine receptor interactions, and the ILK signaling pathway. Our data suggest that RELA, NFKB1, and SP1 are key transcription factors for CXC chemokines, and the SRC family of tyrosine kinases (LCK, LYN, and FYN), mitogen-activated protein kinases (MAPK1 and MAPK3), and CSNK1D are CXC chemokine targets. We found significant correlations among the expression of CXC chemokines and the infiltration of six types of immune cells (B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells). Conclusions: Our results may provide novel insights for the selection of immunotherapeutic targets and prognostic biomarkers for renal cell carcinoma.
Collapse
Affiliation(s)
- Qingquan Zeng
- Department of Nephrology, Maoming People's Hospital, Maoming, China
| | - Shuolei Sun
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yaxian Li
- Department of Urology, Maoming People's Hospital, Maoming, China
| | - Xiaoling Li
- Department of Nephrology, Maonan People's Hospital, Maoming, China
| | - Zuwei Li
- Department of Urology, Gaozhou People's Hospital, Maoming, China
| | - Hao Liang
- Department of Hepatology, Gaozhou People's Hospital, Maoming, China
| |
Collapse
|