1
|
Liu W, Nan F, Liu F, Yang X, Li Z, Jiang S, Zhang X, Li J, Yu M, Wang Y, Wang B. Isolation and identification of uric acid-dependent Aciduricibacillus chroicocephali gen. nov., sp. nov. from seagull feces and implications for hyperuricemia treatment. mSphere 2024; 9:e0002524. [PMID: 38814072 PMCID: PMC11332149 DOI: 10.1128/msphere.00025-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/10/2024] [Indexed: 05/31/2024] Open
Abstract
Hyperuricemia has become the second most prevalent metabolic disease after diabetes, but the limitations of urate-lowering treatment (ULT) drugs and patient nonadherence make ULT far less successful. Thus, more ULT approaches urgently need to be explored. Uric acid-degrading bacteria have potential application value in ULT. In this study, we isolated 44XBT, a uric acid-degrading bacterium, from black-headed gull (Chroicocephalus ridibundus) feces. Using a polyphasic taxonomic approach, strain 44XBT was identified as a novel genus within the family Bacillaceae; subsequently, the name Aciduricibacillus chroicocephali was proposed. Strain 44XBT had a unique uric acid-dependent phenotype and utilized uric acid and allantoin as the sole carbon and nitrogen sources, but not common carbon sources or complex media. In the genome, multiple copies of genes involved in uric acid metabolic pathway (pucL, pucM, uraD, and allB) were found. Six copies of pucL (encoding urate oxidase) were detected. Of these, five pucL copies were in a tandem arrangement and shared 70.42%-99.70% amino acid identity. In vivo experiments revealed that 44XBT reduced serum uric acid levels and attenuated kidney damage in hyperuricemic mice through uric acid catalysis in the gut and gut microbiota remodeling. In conclusion, our findings discover a strain for studying bacterial uric acid metabolism and may provide valuable insights into ULT. IMPORTANCE The increasing disease burden of hyperuricemia highlights the need for new therapeutic drugs and treatment strategies. Our study describes the developmental and application values of natural uric acid-degrading bacteria found in the gut of birds and broadened the source of bacteria with potential therapeutic value. Furthermore, the special physiology characteristics and genomic features of strain 44XBT are valuable for further study.
Collapse
Affiliation(s)
- Wenxuan Liu
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Fulong Nan
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Fengjun Liu
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiaoli Yang
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Zonghui Li
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Shasha Jiang
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xianjuan Zhang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jun Li
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Meng Yu
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yunyang Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bin Wang
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Zou ZP, Li JL, Zhang YF, Zhou Y, Ye BC. Empowering probiotics with high xanthine transport for effective hyperuricemia management. Gut Microbes 2024; 16:2399213. [PMID: 39288233 PMCID: PMC11409493 DOI: 10.1080/19490976.2024.2399213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Hyperuricemia, a prevalent metabolic disorder, poses a susceptibility to various complications. The conventional pharmacotherapeutic approaches for hyperuricemia often entail notable adverse effects, posing substantial clinical challenges. Hence, the imperative lies in the development of novel, safe and effective strategies for preventing and treating hyperuricemia. Here, we developed a probiotic Escherichia coli Nissle 1917 strain, designated as YES301, which contains a rationally designed xanthine importer XanQ, enabling efficient uptake of xanthine and hypoxanthine, consequently leading to reduced serum uric acid concentrations and amelioration of renal impairments in a murine model of hyperuricemia. Importantly, YES301 exhibited a therapeutic efficacy comparable to allopurinol, a conventional uric acid-lowering agent, and manifesting fewer adverse effects and enhanced biosafety. These findings highlight the promising potential of engineered probiotics in the management of hyperuricemia through reducing intestinal purine levels.
Collapse
Affiliation(s)
- Zhen-Ping Zou
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, Institute of Engineering Biology and Health, East China University of Science and Technology, Shanghai, China
| | - Ju-Ling Li
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, Institute of Engineering Biology and Health, East China University of Science and Technology, Shanghai, China
| | - Yi-Fan Zhang
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, Institute of Engineering Biology and Health, East China University of Science and Technology, Shanghai, China
| | - Ying Zhou
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, Institute of Engineering Biology and Health, East China University of Science and Technology, Shanghai, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, Institute of Engineering Biology and Health, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
3
|
Tran L, Das S, Zhao L, Finn MG, Gaucher EA. Oral Delivery of Nanoparticles Carrying Ancestral Uricase Enzyme Protects against Hyperuricemia in Knockout Mice. Biomacromolecules 2023; 24:2003-2008. [PMID: 37126604 PMCID: PMC10170503 DOI: 10.1021/acs.biomac.2c01388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The therapeutic value of delivering recombinant uricase to human patients has been appreciated for decades. The development of therapeutic uricases has been hampered by the fact that humans do not encode an endogenous uricase and therefore most recombinant forms of the protein are recognized as foreign by the immune system and are therefore highly immunogenic. In order to both shield and stabilize the active enzyme, we encapsulated a functional ancestral uricase in recombinant, noninfectious Qβ capsid nanoparticles and characterized its catalytic activity. Oral delivery of the nanoparticles moderated key symptoms of kidney dysfunction in uricase-knockout mice by lowering uric acid levels. Histological kidney samples of the treated mice suggest that delivery of recombinant uricase had a protective effect against the destructive effects of uric acid that lead to renal failure caused by hyperuricemia.
Collapse
Affiliation(s)
- Lily Tran
- Department of Biology, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Soumen Das
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30306, United States
| | - Liangjun Zhao
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30306, United States
| | - M G Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30306, United States
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30306, United States
| | - Eric A Gaucher
- Department of Biology, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
4
|
Tátrai P, Erdő F, Dörnyei G, Krajcsi P. Modulation of Urate Transport by Drugs. Pharmaceutics 2021; 13:pharmaceutics13060899. [PMID: 34204277 PMCID: PMC8235739 DOI: 10.3390/pharmaceutics13060899] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Serum urate (SU) levels in primates are extraordinarily high among mammals. Urate is a Janus-faced molecule that acts physiologically as a protective antioxidant but provokes inflammation and gout when it precipitates at high concentrations. Transporters play crucial roles in urate disposition, and drugs that interact with urate transporters either by intention or by accident may modulate SU levels. We examined whether in vitro transporter interaction studies may clarify and predict such effects. METHODS Transporter interaction profiles of clinically proven urate-lowering (uricosuric) and hyperuricemic drugs were compiled from the literature, and the predictive value of in vitro-derived cut-offs like Cmax/IC50 on the in vivo outcome (clinically relevant decrease or increase of SU) was assessed. RESULTS Interaction with the major reabsorptive urate transporter URAT1 appears to be dominant over interactions with secretory transporters in determining the net effect of a drug on SU levels. In vitro inhibition interpreted using the recommended cut-offs is useful at predicting the clinical outcome. CONCLUSIONS In vitro safety assessments regarding urate transport should be done early in drug development to identify candidates at risk of causing major imbalances. Attention should be paid both to the inhibition of secretory transporters and inhibition or trans-stimulation of reabsorptive transporters, especially URAT1.
Collapse
Affiliation(s)
- Péter Tátrai
- Solvo Biotechnology, Science Park, Building B2, 4-20 Irinyi József utca, H-1117 Budapest, Hungary;
| | - Franciska Erdő
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, H-1083 Budapest, Hungary;
| | - Gabriella Dörnyei
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, H-1088 Budapest, Hungary;
| | - Péter Krajcsi
- Solvo Biotechnology, Science Park, Building B2, 4-20 Irinyi József utca, H-1117 Budapest, Hungary;
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, H-1083 Budapest, Hungary;
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, H-1088 Budapest, Hungary;
- Correspondence:
| |
Collapse
|
5
|
Aboriginal Bacterial Flora in the Uricase-Deficient Rat Gut is Not the Main Factor Affecting Serum Uric Acid. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5587642. [PMID: 34113389 PMCID: PMC8154307 DOI: 10.1155/2021/5587642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/22/2021] [Accepted: 05/07/2021] [Indexed: 12/27/2022]
Abstract
The relationship between intestinal bacteria and hyperuricemia is a hot research topic. To better understand this relationship, uricase-deficient Sprague–Dawley rats (Kunming-DY rats) were used. The wild-type rats and Kunming-DY rats were used as controls. Kunming-DY rats were treated with ampicillin (90 mg/kg) and ciprofloxacin (150 mg/kg) for 5 days. Bacterial 16S rDNA in the fresh stool was sequenced, and the abundance was calculated. The rats' serum uric acid (SUA) level was assayed, and the rats' intake and output in 24 h were recorded. The bacterial diversity in three groups' fresh stool was analyzed. The gut bacterial diversity and abundance changed in the Kunming-DY rats. More than 99% of bacteria were inhibited or killed by the combination of antibiotics. In contrast to each of the antibiotics alone, the combination of antibiotics lowered the Kunming-DY rats' SUA level; it also caused mild diarrhea, which increased uric acid excretion through stool. These results suggested that the aboriginal gut bacteria in uricase-deficient rats play a minor role in determining the SUA levels. It is too early to conclude that aboriginal gut bacteria are a tempting target for lowering SUA levels.
Collapse
|