1
|
Zhong X, Chen J, Wen B, Wu X, Li M, Du F, Chen Y, Deng S, Zhao Y, Shen J, Xiao Z. Potential role of mesenchymal stem cells in T cell aging. J Mol Med (Berl) 2023; 101:1365-1378. [PMID: 37750918 DOI: 10.1007/s00109-023-02371-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023]
Abstract
Immunosenescence occurs with progressive age. T cell aging is manifested by immunodeficiency and inflammation. The main mechanisms are thymic involution, mitochondrial dysfunction, genetic and epigenetic alterations, loss of protein stability, reduction of T cell receptor (TCR) repertoire, naïve-memory T cell ratio imbalance, T cell senescence, and lack of effector plasticity. Mesenchymal stem cells (MSCs) are thought to hold great potential as anti-aging therapy. However, the role of MCSs in T cell aging remains elusive. This review makes a tentative summary of the potential role of MSCs in the protection against T cell aging. It might provide a new idea to intervene in the aging of the immune system.
Collapse
Affiliation(s)
- Xianmei Zhong
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- Department of Pharmacy, People's Hospital of Nanbu County, Nanchong, 637300, China
| | - Jie Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
| | - Bo Wen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China.
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
2
|
Kim HY, Yoon HS, Lee Y, Kim YH, Cho KA, Woo SY, Kim HS, Ryu KH, Park JW. Matrix Metalloproteinase 1 as a Marker of Tonsil-Derived Mesenchymal Stem Cells to Assess Bone Marrow Cell Migration. Tissue Eng Regen Med 2023; 20:271-284. [PMID: 36462090 PMCID: PMC10070559 DOI: 10.1007/s13770-022-00501-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND To achieve optimal bone marrow engraftment during bone marrow transplantation, migration of donor bone marrow cells (BMCs) toward the recipient's bone marrow is critical. Despite the enhanced engraftment of BMCs by co-administration of mesenchymal stem cells (MSCs), the efficiency can be variable depending on MSC donor. The purpose of this study is to examine the functional heterogeneity of tonsil-derived MSCs (TMSCs) and to identify a marker to evaluate efficacy for the enhancement of BMC migration. METHODS To examine the donor-to-donor variation of TMSCs in potentiating BMC migration, we isolated TMSCs from 25 independent donors. Transcriptome of TMSCs and proteome of conditioned medium derived from TMSC were analyzed. RESULTS Enhanced BMC migration by conditioned medium derived from TMSCs was variable depending on TMSC donor. The TMSCs derived from 25 donors showed distinct expression profiles compared with other cells, including fibroblasts, adipose-derived MSCs and bone marrow-derived MSCs. TMSCs were distributed in two categories: high- and low-efficacy groups for potentiating BMC migration. Transcriptome analysis of TMSCs and proteome profiles of conditioned medium derived from TMSCs revealed higher expression and secretion of matrix metalloproteinase (MMP) 1 in the high-efficacy group. MMP1 knockdown in TMSCs abrogated the supportive efficacy of conditioned medium derived from TMSC cultures in BMC migration. CONCLUSION These data suggest that secreted MMP1 can be used as a marker to evaluate the efficacy of TMSCs in enhancing BMC migration. Furthermore, the strategy of analyzing transcriptomes and proteomes of the MSCs may be useful to set the standard for donor variation.
Collapse
Affiliation(s)
- Hee-Yeon Kim
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea
| | - Hee-Soo Yoon
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea
| | - Younghay Lee
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea
| | - Yu-Hee Kim
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea
| | - Kyung-Ah Cho
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea
| | - So-Youn Woo
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea
| | - Han Su Kim
- Department of Otolaryngology, College of Medicine, Ewha Womans University, Seoul, 07985, South Korea
| | - Kyung-Ha Ryu
- Department of Pediatrics, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea.
| | - Joo-Won Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea.
| |
Collapse
|
3
|
Garrigós MM, de Oliveira FA, Nucci MP, Nucci LP, Alves ADH, Dias OFM, Gamarra LF. How mesenchymal stem cell cotransplantation with hematopoietic stem cells can improve engraftment in animal models. World J Stem Cells 2022; 14:658-679. [PMID: 36157912 PMCID: PMC9453272 DOI: 10.4252/wjsc.v14.i8.658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/27/2022] [Accepted: 07/26/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Bone marrow transplantation (BMT) can be applied to both hematopoietic and nonhematopoietic diseases; nonetheless, it still comes with a number of challenges and limitations that contribute to treatment failure. Bearing this in mind, a possible way to increase the success rate of BMT would be cotransplantation of mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) to improve the bone marrow niche and secrete molecules that enhance the hematopoietic engraftment.
AIM To analyze HSC and MSC characteristics and their interactions through cotransplantation in murine models.
METHODS We searched for original articles indexed in PubMed and Scopus during the last decade that used HSC and MSC cotransplantation and in vivo BMT in animal models while evaluating cell engraftment. We excluded in vitro studies or studies that involved graft versus host disease or other hematological diseases and publications in languages other than English. In PubMed, we initially identified 555 articles and after selection, only 12 were chosen. In Scopus, 2010 were identified, and six were left after the screening and eligibility process.
RESULTS Of the 2565 articles found in the databases, only 18 original studies met the eligibility criteria. HSC distribution by source showed similar ratios, with human umbilical cord blood or animal bone marrow being administered mainly with a dose of 1 × 107 cells by intravenous or intrabone routes. However, MSCs had a high prevalence of human donors with a variety of sources (umbilical cord blood, bone marrow, tonsil, adipose tissue or fetal lung), using a lower dose, mainly 106 cells and ranging 104 to 1.5 × 107 cells, utilizing the same routes. MSCs were characterized prior to administration in almost every experiment. The recipient used was mostly immunodeficient mice submitted to low-dose irradiation or chemotherapy. The main technique of engraftment for HSC and MSC cotransplantation evaluation was chimerism, followed by hematopoietic reconstitution and survival analysis. Besides the engraftment, homing and cellularity were also evaluated in some studies.
CONCLUSION The preclinical findings validate the potential of MSCs to enable HSC engraftment in vivo in both xenogeneic and allogeneic hematopoietic cell transplantation animal models, in the absence of toxicity.
Collapse
Affiliation(s)
- Murilo Montenegro Garrigós
- Hospital Israelita Albert Einstein, São Paulo 05652-900, São Paulo, Brazil
- Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, São Paulo, Brazil
| | | | - Mariana Penteado Nucci
- Hospital Israelita Albert Einstein, São Paulo 05652-900, São Paulo, Brazil
- LIM44-Hospital das Clínicas, Faculdade Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Leopoldo Penteado Nucci
- Centro Universitário do Planalto Central, Área Especial para Industria nº 02 Setor Leste - Gama-DF, Brasília 72445-020, Distrito Federal, Brazil
| | | | | | | |
Collapse
|
4
|
Yoon HS, Kim HY, Cho KA, Kim YH, Woo SY, Kim HS, Kang JL, Ryu KH, Park JW. Procollagen C-Endopeptidase Enhancer 2 Secreted by Tonsil-Derived Mesenchymal Stem Cells Increases the Oxidative Burst of Promyelocytic HL-60 Cells. BIOLOGY 2022; 11:biology11020255. [PMID: 35205121 PMCID: PMC8869569 DOI: 10.3390/biology11020255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 12/19/2022]
Abstract
Simple Summary Tonsil-derived mesenchymal stem cells (TMSCs) improved the reactive oxygen species (ROS) production in human promyelocytic leukaemia cells (HL-60) differentiated into neutrophil-like cells (dHL-60). TMSC-induced enhancement of ROS generation in dHL-60 cells was different depending on the TMSC donor. Comparison of RNA-sequencing data between high and low potentiating TMSC groups for ROS generation in dHL-60 cells showed elevated expressions of four genes: secreted frizzled-related protein 4, mesenteric estrogen-dependent adipogenesis, microfibrillar associated protein 5, and procollagen C-endopeptidase enhancer 2 (PCOLCE2). Real-time PCR and Western blotting confirmed high levels of PCOLCE2 in the high potentiating TMSC group for ROS generation in dHL-60 cells. In addition, knockdown of PCOLCE2 in TMSCs reduced the enhancing efficacy of TMSCs regarding ROS generation in dHL-60 cells. Finally, treatment of recombinant PCOLCE2 protein augmented ROS production in dHL-60 cells with concomitant increases of NADPH oxidase (NOX) 3, NOX4, NOX5, and dual oxidase 2. Taken together, this study showed that PCOLCE2 levels in TMSCs could be used to select TMSCs with the high potentiating ability for ROS generation in neutrophils, and both TMSCs and PCOLCE2 may have the potential to enhance a frontline defence by increasing the efficiency of ROS generation in neutrophils. Abstract Reactive oxygen species (ROS) generated by neutrophils provide a frontline defence against invading pathogens. We investigated the supportive effect of tonsil-derived mesenchymal stem cells (TMSCs) on ROS generation from neutrophils using promyelocytic HL-60 cells. Methods: Differentiated HL-60 (dHL-60) cells were cocultured with TMSCs isolated from 25 independent donors, and ROS generation in dHL-60 cells was measured using luminescence. RNA sequencing and real-time PCR were performed to identify the candidate genes of TMSCs involved in augmenting the oxidative burst of dHL-60 cells. Transcriptome analysis of TMSCs derived from 25 independent donors revealed high levels of procollagen C-endopeptidase enhancer 2 (PCOLCE2) in TMSCs, which were highly effective in potentiating ROS generation in dHL-60 cells. In addition, PCOLCE2 knockdown in TMSCs abrogated TMSC-induced enhancement of ROS production in dHL-60 cells, indicating that TMSCs increased the oxidative burst in dHL-60 cells via PCOLCE2. Furthermore, the direct addition of recombinant PCOLCE2 protein increased ROS production in dHL-60 cells. These results suggest that PCOLCE2 secreted by TMSCs may be used as a therapeutic candidate to enhance host defences by increasing neutrophil oxidative bursts. PCOLCE2 levels in TMSCs could be used as a marker to select TMSCs exhibiting high efficacy for enhancing neutrophil oxidative bursts.
Collapse
Affiliation(s)
- Hee-Soo Yoon
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07084, Korea; (H.-S.Y.); (H.-Y.K.)
| | - Hee-Yeon Kim
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07084, Korea; (H.-S.Y.); (H.-Y.K.)
| | - Kyung-Ah Cho
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul 07084, Korea; (K.-A.C.); (Y.-H.K.); (S.-Y.W.)
| | - Yu-Hee Kim
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul 07084, Korea; (K.-A.C.); (Y.-H.K.); (S.-Y.W.)
| | - So-Youn Woo
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul 07084, Korea; (K.-A.C.); (Y.-H.K.); (S.-Y.W.)
| | - Han-Su Kim
- Department of Otorhinolaryngology, College of Medicine, Ewha Womans University, Seoul 07985, Korea;
| | - Jihee-Lee Kang
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul 07084, Korea;
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07084, Korea
| | - Kyung-Ha Ryu
- Department of Pediatrics, College of Medicine, Ewha Womans University, Seoul 07084, Korea
- Correspondence: (K.-H.R.); (J.-W.P.); Tel.: +82-2-2653-3718 (K.-H.R.); +82-2-6986-6201 (J.-W.P.)
| | - Joo-Won Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07084, Korea; (H.-S.Y.); (H.-Y.K.)
- Correspondence: (K.-H.R.); (J.-W.P.); Tel.: +82-2-2653-3718 (K.-H.R.); +82-2-6986-6201 (J.-W.P.)
| |
Collapse
|
5
|
Kim YH, Lee HJ, Cho KA, Kim J, Park JW, Woo SY, Ryu KH. Promotion of Platelet Production by Co-Transplantation of Mesenchymal Stem Cells in Bone Marrow Transplantation. Tissue Eng Regen Med 2022; 19:131-139. [PMID: 35013919 PMCID: PMC8782979 DOI: 10.1007/s13770-021-00401-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/27/2021] [Accepted: 09/14/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Therapeutic strategies that can promote platelet production are in demand to enhance clinical outcomes of bone marrow transplantation (BMT). Our research group has studied human tonsil-derived mesenchymal stem cells (T-MSCs) and their effectiveness in promoting bone marrow (BM) engraftment. Here, we analyzed the effects of T-MSCs on platelet production and hemostasis. METHODS Donor BM cells (BMCs) were isolated from C57BL/6 mice and transplanted with or without T-MSCs to BALB/c recipient mice. Mice were sacrificed and blood cells were counted using an Auto Hematology Analyzer. Femur sections were stained with CD41 antibody to analyze megakaryocytes in the BM. Growth factor secretion from MSCs was analyzed using the Quantibody Array. Effects of T-MSC conditioned medium (CM) on megakaryopoiesis were investigated using the MegaCult assay. In a mouse model of BMT, T-MSC CM was injected with or without anti-placental growth factor (α-PlGF) blocking antibody, and blood cell numbers and coagulation were analyzed. RESULTS T-MSC co-transplantation increased percent survival of BMT mice. Platelet numbers were significantly lower in the BMC-only group, whereas T-MSC co-transplantation restored circulating platelets to levels similar to those of the control group. Significantly reduced numbers of CD41 + megakaryocytes in Bu-Cy and BMC groups were increased by T-MSC co-transplantation. PlGF secretion from T-MSCs were detected and enhanced megakaryopoiesis, platelet production, and coagulation by T-MCS CM were disrupted in the presence of the α-PlGF blocking antibody. CONCLUSION We demonstrated the effectiveness of T-MSC co-transplantation in promoting platelet production and coagulation after BMT. These findings highlight the potential therapeutic relevance of T-MSCs for preventing thrombocytopenia after BMT.
Collapse
Affiliation(s)
- Yu-Hee Kim
- Department of Microbiology, Ewha Womans University College of Medicine, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804 Republic of Korea ,Advanced Biomedical Research Institute, Ewha Womans University Seoul Hospital, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804 Republic of Korea
| | - Hyun-Ji Lee
- Department of Microbiology, Ewha Womans University College of Medicine, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804 Republic of Korea
| | - Kyung-Ah Cho
- Department of Microbiology, Ewha Womans University College of Medicine, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804 Republic of Korea
| | - Jungwoo Kim
- Department of Microbiology, Ewha Womans University College of Medicine, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804 Republic of Korea
| | - Joo-Won Park
- Department of Biochemistry, Ewha Womans University College of Medicine, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804 Republic of Korea
| | - So-Youn Woo
- Department of Microbiology, Ewha Womans University College of Medicine, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804 Republic of Korea
| | - Kyung-Ha Ryu
- Department of Pediatrics, Ewha Womans University College of Medicine, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804 Republic of Korea
| |
Collapse
|
6
|
Li M, Zheng K, Ma S, Hu P, Yuan B, Yue X, Li Q. Pilose antler polypeptides promote chemosensitization and T-cell infiltration of triple-negative breast cancer. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
7
|
Mesenchymal Stem Cell-Derived Exosomes Protect Muscle Loss by miR-145-5p Activity Targeting Activin A Receptors. Cells 2021; 10:cells10082169. [PMID: 34440938 PMCID: PMC8394132 DOI: 10.3390/cells10082169] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 01/24/2023] Open
Abstract
Skeletal muscle mass is decreased under a wide range of pathologic conditions. In particular, chemotherapy is well known for inducing muscle loss and atrophy. Previous studies using tonsil-derived mesenchymal stem cells (T-MSCs) or a T-MSC-conditioned medium showed effective recovery of total body weight in the chemotherapy-preconditioned bone marrow transplantation mouse model. This study investigated whether extracellular vesicles of T-MSCs, such as exosomes, are a key player in the recovery of body weight and skeletal muscle mass in chemotherapy-treated mice. T-MSC exosomes transplantation significantly decreased loss of total body weight and muscle mass in the busulfan-cyclophosphamide conditioning regimen in BALB/c recipient mice containing elevated serum activin A. Additionally, T-MSC exosomes rescued impaired C2C12 cell differentiation in the presence of activin A in vitro. We found that T-MSC exosomes possess abundant miR-145-5p, which targets activin A receptors, ACVR2A, and ACVR1B. Indeed, T-MSC exosomes rescue muscle atrophy both in vivo and in vitro via miR-145-5p dependent manner. These results suggest that T-MSC exosomes have therapeutic potential to maintain or improve skeletal muscle mass in various activin A elevated pathologic conditions.
Collapse
|
8
|
Lee HJ, Kim YH, Choi DW, Cho KA, Park JW, Shin SJ, Jo I, Woo SY, Ryu KH. Tonsil-derived mesenchymal stem cells enhance allogeneic bone marrow engraftment via collagen IV degradation. Stem Cell Res Ther 2021; 12:329. [PMID: 34090520 PMCID: PMC8180137 DOI: 10.1186/s13287-021-02414-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Co-transplantation of bone marrow cells (BMCs) and mesenchymal stem cells (MSCs) is used as a strategy to improve the outcomes of bone marrow transplantation. Tonsil-derived MSCs (TMSCs) are a promising source of MSCs for co-transplantation. Previous studies have shown that TMSCs or conditioned media from TMSCs (TMSC-CM) enhance BMC engraftment. However, the factors in TMSCs that promote better engraftment have not yet been identified. METHODS Mice were subjected to a myeloablative regimen of busulfan and cyclophosphamide, and the mRNA expression in the bone marrow was analyzed using an extracellular matrix (ECM) and adhesion molecule-targeted polymerase chain reaction (PCR) array. Nano-liquid chromatography with tandem mass spectrometry, real-time quantitative PCR, western blots, and enzyme-linked immunosorbent assays were used to compare the expression levels of metalloproteinase 3 (MMP3) in MSCs derived from various tissues, including the tonsils, bone marrow, adipose tissue, and umbilical cord. Recipient mice were conditioned with busulfan and cyclophosphamide, and BMCs, either as a sole population or with control or MMP3-knockdown TMSCs, were co-transplanted into these mice. The effects of TMSC-expressed MMP3 were investigated. Additionally, Enzchek collagenase and Transwell migration assays were used to confirm that the collagenase activity of TMSC-expressed MMP3 enhanced BMC migration. RESULTS Mice subjected to the myeloablative regimen exhibited increased mRNA expression of collagen type IV alpha 1/2 (Col4a1 and Col4a2). Among the various extracellular matrix-modulating proteins secreted by TMSCs, MMP3 was expressed at higher levels in TMSCs than in other MSCs. Mice co-transplanted with BMCs and control TMSCs exhibited a higher survival rate, weight recovery, and bone marrow cellularity compared with mice co-transplanted with BMCs and MMP3-knockdown TMSCs. Control TMSC-CM possessed higher collagenase activity against collagen IV than MMP3-knockdown TMSC-CM. TMSC-CM also accelerated BMC migration by degrading collagen IV in vitro. CONCLUSIONS Collectively, these results indicate that TMSCs enhance BMC engraftment by the secretion of MMP3 for the modulation of the bone marrow extracellular matrix.
Collapse
Affiliation(s)
- Hyun-Ji Lee
- Department of Microbiology, College of Medicine, Ewha Womans University, Gangseo-Gu, Seoul, Republic of Korea.,Graduate Program in System Health Science and Engineering, Ewha Womans University, Seodaemun-gu, Seoul, Republic of Korea
| | - Yu-Hee Kim
- Department of Microbiology, College of Medicine, Ewha Womans University, Gangseo-Gu, Seoul, Republic of Korea
| | - Da-Won Choi
- Department of Microbiology, College of Medicine, Ewha Womans University, Gangseo-Gu, Seoul, Republic of Korea.,Graduate Program in System Health Science and Engineering, Ewha Womans University, Seodaemun-gu, Seoul, Republic of Korea
| | - Kyung-Ah Cho
- Department of Microbiology, College of Medicine, Ewha Womans University, Gangseo-Gu, Seoul, Republic of Korea
| | - Joo-Won Park
- Department of Biochemistry, Ewha Womans University, Gangseo-Gu, Seoul, Republic of Korea
| | - Sang-Jin Shin
- Department of Orthopaedic Surgery, Ewha Womans University, Gangseo-Gu, Seoul, Republic of Korea
| | - Inho Jo
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seodaemun-gu, Seoul, Republic of Korea.,Department of Molecular Medicine, Ewha Womans University, Gangseo-Gu, Seoul, Republic of Korea
| | - So-Youn Woo
- Department of Microbiology, College of Medicine, Ewha Womans University, Gangseo-Gu, Seoul, Republic of Korea
| | - Kyung-Ha Ryu
- Department of Pediatrics, College of Medicine, Ewha Womans University, Gangseo-Gu, Seoul, 07804, Republic of Korea.
| |
Collapse
|
9
|
Yanir A, Schulz A, Lawitschka A, Nierkens S, Eyrich M. Immune Reconstitution After Allogeneic Haematopoietic Cell Transplantation: From Observational Studies to Targeted Interventions. Front Pediatr 2021; 9:786017. [PMID: 35087775 PMCID: PMC8789272 DOI: 10.3389/fped.2021.786017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
Immune reconstitution (IR) after allogeneic haematopoietic cell transplantation (HCT) represents a central determinant of the clinical post-transplant course, since the majority of transplant-related outcome parameters such as graft-vs.-host disease (GvHD), infectious complications, and relapse are related to the velocity, quantity and quality of immune cell recovery. Younger age at transplant has been identified as the most important positive prognostic factor for favourable IR post-transplant and, indeed, accelerated immune cell recovery in children is most likely the pivotal contributing factor to lower incidences of GvHD and infectious complications in paediatric allogeneic HCT. Although our knowledge about the mechanisms of IR has significantly increased over the recent years, strategies to influence IR are just evolving. In this review, we will discuss different patterns of IR during various time points post-transplant and their impact on outcome. Besides IR patterns and cellular phenotypes, recovery of antigen-specific immune cells, for example virus-specific T cells, has recently gained increasing interest, as certain threshold levels of antigen-specific T cells seem to confer protection against severe viral disease courses. In contrast, the association between IR and a possible graft-vs. leukaemia effect is less well-understood. Finally, we will present current concepts of how to improve IR and how this could change transplant procedures in the near future.
Collapse
Affiliation(s)
- Asaf Yanir
- Bone Marrow Transplant Unit, Division of Haematology and Oncology, Schneider Children's Medical Center of Israel, Petach-Tikva, Israel.,The Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ansgar Schulz
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Anita Lawitschka
- St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Matthias Eyrich
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Children's Hospital, University Medical Center, University of Würzburg, Würzburg, Germany
| |
Collapse
|
10
|
Abstract
Following periods of haematopoietic cell stress, such as after chemotherapy, radiotherapy, infection and transplantation, patient outcomes are linked to the degree of immune reconstitution, specifically of T cells. Delayed or defective recovery of the T cell pool has significant clinical consequences, including prolonged immunosuppression, poor vaccine responses and increased risks of infections and malignancies. Thus, strategies that restore thymic function and enhance T cell reconstitution can provide considerable benefit to individuals whose immune system has been decimated in various settings. In this Review, we focus on the causes and consequences of impaired adaptive immunity and discuss therapeutic strategies that can recover immune function, with a particular emphasis on approaches that can promote a diverse repertoire of T cells through de novo T cell formation.
Collapse
|