1
|
Guo X, Xu L, Nie L, Zhang C, Liu Y, Zhao R, Cao J, Tian L, Liu M. B cells in head and neck squamous cell carcinoma: current opinion and novel therapy. Cancer Cell Int 2024; 24:41. [PMID: 38245714 PMCID: PMC10799521 DOI: 10.1186/s12935-024-03218-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/06/2024] [Indexed: 01/22/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a common malignant tumour. Despite advancements in surgery, radiotherapy and chemotherapy, which have improved the prognosis of most patients, a subset of patients with poor prognoses still exist due to loss of surgical opportunities, postoperative recurrence, and metastasis, among other reasons. The tumour microenvironment (TME) is a complex organization composed of tumour, stromal, and endothelial cells. Communication and interaction between tumours and immune cells within the TME are increasingly being recognized as pivotal in inhibiting or promoting tumour development. Previous studies on T cells in the TME of HNSCC have yielded novel therapeutic possibilities. However, the function of B cells, another adaptive immune cell type, in the TME of HNSCC patients has yet to be determined. Recent studies have revealed various distinct subtypes of B cells and tertiary lymphoid structures (TLSs) in the TME of HNSCC patients, which are believed to impact the efficacy of immune checkpoint inhibitors (ICIs). Therefore, this paper focuses on B cells in the TME to explore potential directions for future immunotherapy for HNSCC.
Collapse
Affiliation(s)
- Xinyue Guo
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Licheng Xu
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Luan Nie
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chenyu Zhang
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yaohui Liu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Zhao
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Jing Cao
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Linli Tian
- Department of Otorhinolaryngology, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Ming Liu
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Tasoulas J, Srivastava S, Xu X, Tarasova V, Maniakas A, Karreth FA, Amelio AL. Genetically engineered mouse models of head and neck cancers. Oncogene 2023; 42:2593-2609. [PMID: 37474617 PMCID: PMC10457205 DOI: 10.1038/s41388-023-02783-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023]
Abstract
The head and neck region is one of the anatomic sites commonly afflicted by cancer, with ~1.5 million new diagnoses reported worldwide in 2020 alone. Remarkable progress has been made in understanding the underlying disease mechanisms, personalizing care based on each tumor's individual molecular characteristics, and even therapeutically exploiting the inherent vulnerabilities of these neoplasms. In this regard, genetically engineered mouse models (GEMMs) have played an instrumental role. While progress in the development of GEMMs has been slower than in other major cancer types, several GEMMs are now available that recapitulate most of the heterogeneous characteristics of head and neck cancers such as the tumor microenvironment. Different approaches have been employed in GEMM development and implementation, though each can generally recapitulate only certain disease aspects. As a result, appropriate model selection is essential for addressing specific research questions. In this review, we present an overview of all currently available head and neck cancer GEMMs, encompassing models for head and neck squamous cell carcinoma, nasopharyngeal carcinoma, and salivary and thyroid gland carcinomas.
Collapse
Affiliation(s)
- Jason Tasoulas
- Department of Otolaryngology-Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sonal Srivastava
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Xiaonan Xu
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Valentina Tarasova
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Anastasios Maniakas
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Florian A Karreth
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Antonio L Amelio
- Department of Otolaryngology-Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
3
|
Seliger B, Al-Samadi A, Yang B, Salo T, Wickenhauser C. In vitro models as tools for screening treatment options of head and neck cancer. Front Med (Lausanne) 2022; 9:971726. [PMID: 36160162 PMCID: PMC9489836 DOI: 10.3389/fmed.2022.971726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022] Open
Abstract
Various in vitro models using primary and established 2- and 3-dimensional cultures, multicellular tumor spheroids, standardized tumor slice cultures, tumor organoids, and microfluidic systems obtained from tumor lesions/biopsies of head and neck cancer (HNC) have been employed for exploring and monitoring treatment options. All of these in vitro models are to a different degree able to capture the diversity of tumors, recapitulate the disease genetically, histologically, and functionally and retain their tumorigenic potential upon xenotransplantation. The models were used for the characterization of the malignant features of the tumors and for in vitro screens of drugs approved for the treatment of HNC, including chemotherapy and radiotherapy as well as recently developed targeted therapies and immunotherapies, or for novel treatments not yet licensed for these tumor entities. The implementation of the best suitable model will enlarge our knowledge of the oncogenic properties of HNC, expand the drug repertoire and help to develop individually tailored treatment strategies resulting in the translation of these findings into the clinic. This review summarizes the different approaches using preclinical in vitro systems with their advantages and disadvantages and their implementation as preclinical platforms to predict disease course, evaluate biomarkers and test therapy efficacy.
Collapse
Affiliation(s)
- Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- *Correspondence: Barbara Seliger,
| | - Ahmed Al-Samadi
- Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Translational Immunology Research Program, Research Program Unit, University of Helsinki, Helsinki, Finland
| | - Bo Yang
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Translational Immunology Research Program, Research Program Unit, University of Helsinki, Helsinki, Finland
- Cancer Research and Translational Medicine Research Unit, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
4
|
Chai AWY, Yee PS, Cheong SC. Rational Combinations of Targeted Therapy and Immune Checkpoint Inhibitors in Head and Neck Cancers. Front Oncol 2022; 12:837835. [PMID: 35372020 PMCID: PMC8968950 DOI: 10.3389/fonc.2022.837835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/17/2022] [Indexed: 12/21/2022] Open
Abstract
Immunotherapy, especially the immune checkpoint inhibitors (ICIs) such as the pembrolizumab and nivolumab have contributed to significant improvements in treatment outcomes and survival of head and neck cancer (HNC) patients. Still, only a subset of patients benefits from ICIs and hence the race is on to identify combination therapies that could improve response rates. Increasingly, genetic alterations that occur within cancer cells have been shown to modulate the tumor microenvironment resulting in immune evasion, and these have led to the emergence of trials that rationalize a combination of targeted therapy with immunotherapy. In this review, we aim to provide an overview of the biological rationale and current strategies of combining targeted therapy with the approved ICIs in HNC. We summarize the ongoing combinatorial clinical trials and discuss emerging immunomodulatory targets. We also discuss the challenges and gaps that have yet to be addressed, as well as future perspectives in combining these different drug classes.
Collapse
Affiliation(s)
- Annie Wai Yeeng Chai
- Translational Cancer Biology Research Unit, Cancer Research Malaysia, Subang Jaya, Malaysia
| | - Pei San Yee
- Translational Cancer Biology Research Unit, Cancer Research Malaysia, Subang Jaya, Malaysia
| | - Sok Ching Cheong
- Translational Cancer Biology Research Unit, Cancer Research Malaysia, Subang Jaya, Malaysia
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|