1
|
李 菲, 向 俊, 刘 佳, 王 效, 江 浩. [Overexpression of lncRNA FEZF1-AS1 promotes progression of non-small cell lung cancer via the miR-130a-5p/CCND1 axis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:841-850. [PMID: 38862441 PMCID: PMC11166728 DOI: 10.12122/j.issn.1673-4254.2024.05.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Indexed: 06/13/2024]
Abstract
OBJECTIVE To explore the molecular mechanism by which FEZF1-AS1 overexpression promotes progression of nonsmall cell lung cancer (NSCLC) via the miR-130a-5p/CCND1 axis. METHODS TCGA database was used to analyze FEZF1-AS1 expression levels in NSCLC. FEZF1-AS1 expression was detected by qRT-PCR in clinical specimens of NSCLC tissues and NSCLC cell lines, and its correlation with clinical features of the patients were analyzed. The binding sites of FEZF1-AS1 with hsa-miR-130a-5p and those of hsa-miR-130a-5p with CCND1 were predicted. CCK8 assay, clone formation assay, scratch assay, and Transwell assay were employed to examine the effects of FEZF1-AS1 knockdown and hsa-miR-130a-5p inhibitor on proliferation, invasion, and migration abilities of lung cancer cell lines. Dual luciferase assay was used to verify the binding of FEZF1-AS1 with hsa-miR-130a-5p and the binding of hsa-miR-130a-5p with CCND1. Western blotting was performed to detect the changes in CCND1 protein expression level in H1299 and H358 cells following FEZF1-AS1 knockdown and treatment with hsa-miR-130a-5p inhibitor. RESULTS FEZF1-AS1 was highly expressed in NSCLC tissues in close correlation with lymph node metastasis and also in H1299 and H358 cell lines (all P < 0.05). FEZF1-AS1 knockdown obviously reduced proliferation, migration, and invasion abilities of NSCLC cells (P < 0.05). Dual luciferase assay confirmed the binding of hsa-miR-130a-5p with FEZF1-AS1 and CCND1 (P < 0.05), and hsa-miR-130a-5p inhibitor significantly inhibited proliferation, migration, and invasion of NSCLC cells (P < 0.05). FEZF1-AS1 knockdown significantly reduced CCND1 protein expression in NSCLC cells, and this effect was strongly inhibited by treatment with hsa-miR-130a-5p inhibitor (P < 0.05). CONCLUSION FEZF1-AS1 is highly expressed in NSCLC tissue in close correlation with lymph node metastasis to promote cancer progression through the miR-130a-5p/CCND1 axis.
Collapse
|
2
|
Fieuws C, Van der Meulen J, Proesmans K, De Jaeghere EA, Loontiens S, Van Dorpe J, Tummers P, Denys H, Van de Vijver K, Claes KBM. Identification of potentially actionable genetic variants in epithelial ovarian cancer: a retrospective cohort study. NPJ Precis Oncol 2024; 8:71. [PMID: 38519644 PMCID: PMC10959961 DOI: 10.1038/s41698-024-00565-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy, mainly due to late-stage diagnosis, frequent recurrences, and eventually therapy resistance. To identify potentially actionable genetic variants, sequencing data of 351 Belgian ovarian cancer patients were retrospectively captured from electronic health records. The cohort included 286 (81%) patients with high-grade serous ovarian cancer, 17 (5%) with low-grade serous ovarian cancer, and 48 (14%) with other histotypes. Firstly, an overview of the prevalence and spectrum of the BRCA1/2 variants highlighted germline variants in 4% (11/250) and somatic variants in 11% (37/348) of patients. Secondly, application of a multi-gene panel in 168 tumors revealed a total of 214 variants in 28 genes beyond BRCA1/2 with a median of 1 (IQR, 1-2) genetic variant per patient. The ten most often altered genes were (in descending order): TP53, BRCA1, PIK3CA, BRCA2, KRAS, ERBB2 (HER2), TERT promotor, RB1, PIK3R1 and PTEN. Of note, the genetic landscape vastly differed between the studied histotypes. Finally, using ESCAT the clinical evidence of utility for every genetic variant was scored. Only BRCA1/2 pathogenic variants were classified as tier-I. Nearly all patients (151/168; 90%) had an ESCAT tier-II variant, most frequently in TP53 (74%), PIK3CA (9%) and KRAS (7%). In conclusion, our findings imply that although only a small proportion of genetic variants currently have direct impact on ovarian cancer treatment decisions, other variants could help to identify novel (personalized) treatment options to address the poor prognosis of ovarian cancer, particularly in rare histotypes.
Collapse
Affiliation(s)
- Charlotte Fieuws
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Joni Van der Meulen
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | | | - Emiel A De Jaeghere
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium
| | - Siebe Loontiens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Jo Van Dorpe
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium
| | - Philippe Tummers
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium
| | - Hannelore Denys
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium
| | - Koen Van de Vijver
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Kathleen B M Claes
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.
- Cancer Research Institute Ghent, Ghent, Belgium.
| |
Collapse
|
3
|
Uppaluri KR, Challa HJ, Gaur A, Jain R, Krishna Vardhani K, Geddam A, Natya K, Aswini K, Palasamudram K, K SM. Unlocking the potential of non-coding RNAs in cancer research and therapy. Transl Oncol 2023; 35:101730. [PMID: 37406550 PMCID: PMC10366642 DOI: 10.1016/j.tranon.2023.101730] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/30/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023] Open
Abstract
Non-coding RNAs (ncRNAs) have emerged as key regulators of gene expression, with growing evidence implicating their involvement in cancer development and progression. The potential of ncRNAs as diagnostic and prognostic biomarkers for cancer is promising, with emphasis on their use in liquid biopsy and tissue-based diagnostics. In a nutshell, the review comprehensively summarizes the diverse classes of ncRNAs implicated in cancer, including microRNAs, long non-coding RNAs, and circular RNAs, and their functions and mechanisms of action. Furthermore, we describe the potential therapeutic applications of ncRNAs, including anti-miRNA oligonucleotides, siRNAs, and other RNA-based therapeutics in cancer treatment. However, significant challenges remain in developing effective ncRNA-based diagnostics and therapeutics, including the lack of specificity, limited understanding of mechanisms, and delivery challenges. This review also covers the current state-of-the-art non-coding RNA research technologies and bioinformatic analysis tools. Lastly, we outline future research directions in non-coding RNA research in cancer, including developing novel biomarkers, therapeutic targets, and modalities. In summary, this review provides a comprehensive understanding of non-coding RNAs in cancer and their potential clinical applications, highlighting both the opportunities and challenges in this rapidly evolving field.
Collapse
Affiliation(s)
- Kalyan Ram Uppaluri
- GenepoweRx, Uppaluri K&H Personalized Medicine Clinic, Suit #2B, Plot No. 240, Nirvana, Road No. 36, Jawahar Colony, Jubilee Hills, Hyderabad, Telangana 500033, India.
| | - Hima J Challa
- GenepoweRx, Uppaluri K&H Personalized Medicine Clinic, Suit #2B, Plot No. 240, Nirvana, Road No. 36, Jawahar Colony, Jubilee Hills, Hyderabad, Telangana 500033, India
| | - Ashish Gaur
- Department of Biotechnology, GLA University, Mathura, India
| | - Rajul Jain
- Dayalbagh Educational Institute, Agra, India
| | - K Krishna Vardhani
- GenepoweRx, Uppaluri K&H Personalized Medicine Clinic, Suit #2B, Plot No. 240, Nirvana, Road No. 36, Jawahar Colony, Jubilee Hills, Hyderabad, Telangana 500033, India
| | - Anusha Geddam
- GenepoweRx, Uppaluri K&H Personalized Medicine Clinic, Suit #2B, Plot No. 240, Nirvana, Road No. 36, Jawahar Colony, Jubilee Hills, Hyderabad, Telangana 500033, India
| | - K Natya
- GenepoweRx, Uppaluri K&H Personalized Medicine Clinic, Suit #2B, Plot No. 240, Nirvana, Road No. 36, Jawahar Colony, Jubilee Hills, Hyderabad, Telangana 500033, India
| | - K Aswini
- GenepoweRx, Uppaluri K&H Personalized Medicine Clinic, Suit #2B, Plot No. 240, Nirvana, Road No. 36, Jawahar Colony, Jubilee Hills, Hyderabad, Telangana 500033, India
| | - Kalyani Palasamudram
- GenepoweRx, Uppaluri K&H Personalized Medicine Clinic, Suit #2B, Plot No. 240, Nirvana, Road No. 36, Jawahar Colony, Jubilee Hills, Hyderabad, Telangana 500033, India
| | - Sri Manjari K
- GenepoweRx, Uppaluri K&H Personalized Medicine Clinic, Suit #2B, Plot No. 240, Nirvana, Road No. 36, Jawahar Colony, Jubilee Hills, Hyderabad, Telangana 500033, India.
| |
Collapse
|
4
|
Role of a small GTPase Cdc42 in aging and age-related diseases. Biogerontology 2023; 24:27-46. [PMID: 36598630 DOI: 10.1007/s10522-022-10008-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023]
Abstract
A small GTPase, Cdc42 is evolutionarily one of the most ancient members of the Rho family, which is ubiquitously expressed and involved in a wide range of fundamental cellular functions. The crucial role of Cdc42 includes regulation of the actin cytoskeleton, cell polarity, morphology and migration, endocytosis and exocytosis, cell cycle, and proliferation in many different cell types. Many studies have provided compelling yet contradicting evidence that Cdc42 dysregulation plays an important role in cellular and tissue aging. Furthermore, Cdc42 is a critical factor in the development and progression of aging-related pathologies, such as neurodegenerative and cardiovascular disorders, diabetes type 2, and aging-related disorders of the joints and bones, and the inhibition of the Cdc42 demonstrates potentially significant therapeutic and anti-aging effects in animal models of aging and disease. However, regulation of Cdc42 expression and activity is very complex and depends on many factors, such as the origin and complexity of the tissues, hormonal status, etc. Therefore, this review is focused on current advances in understanding the underlying cellular and molecular mechanisms associated with Cdc42 activity and regulation of senescence in different cell types since they may provide a foundation for novel therapeutic strategies and targeted drugs to reverse the aging process and treat aging-associated disorders.
Collapse
|
5
|
Saklani N, Chauhan V, Akhtar J, Upadhyay SK, Sirdeshmukh R, Gautam P. In silico analysis to identify novel ceRNA regulatory axes associated with gallbladder cancer. Front Genet 2023; 14:1107614. [PMID: 36873948 PMCID: PMC9978489 DOI: 10.3389/fgene.2023.1107614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
Competitive endogenous RNA (ceRNA) networks are reported to play a crucial role in regulating cancer-associated genes. Identification of novel ceRNA networks in gallbladder cancer (GBC) may improve the understanding of its pathogenesis and might yield useful leads on potential therapeutic targets for GBC. For this, a literature survey was done to identify differentially expressed lncRNAs (DELs), miRNAs (DEMs), mRNAs (DEGs) and proteins (DEPs) in GBC. Ingenuity pathway analysis (IPA) using DEMs, DEGs and DEPs in GBC identified 242 experimentally observed miRNA-mRNA interactions with 183 miRNA targets, of these 9 (CDX2, MTDH, TAGLN, TOP2A, TSPAN8, EZH2, TAGLN2, LMNB1, and PTMA) were reported at both mRNA and protein levels. Pathway analysis of 183 targets revealed p53 signaling among the top pathway. Protein-protein interaction (PPI) analysis of 183 targets using the STRING database and cytoHubba plug-in of Cytoscape software revealed 5 hub molecules, of which 3 of them (TP53, CCND1 and CTNNB1) were associated with the p53 signaling pathway. Further, using Diana tools and Cytoscape software, novel lncRNA-miRNA-mRNA networks regulating the expression of TP53, CCND1, CTNNB1, CDX2, MTDH, TOP2A, TSPAN8, EZH2, TAGLN2, LMNB1, and PTMA were constructed. These regulatory networks may be experimentally validated in GBC and explored for therapeutic applications.
Collapse
Affiliation(s)
- Neeraj Saklani
- Laboratory of Molecular Oncology, ICMR- National Institute of Pathology, New Delhi, India
| | - Varnit Chauhan
- Department of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, India
| | - Javed Akhtar
- Laboratory of Molecular Oncology, ICMR- National Institute of Pathology, New Delhi, India
| | - Santosh Kumar Upadhyay
- Department of Biotechnology, Sir J. C. Bose Technical Campus, Bhimtal, Kumaun University, Nainital, Uttarakhand, India
| | - Ravi Sirdeshmukh
- Manipal Academy of Higher Education (MAHE), Manipal, India.,Institute of Bioinformatics, International Tech Park, Bangalore, India
| | - Poonam Gautam
- Laboratory of Molecular Oncology, ICMR- National Institute of Pathology, New Delhi, India
| |
Collapse
|
6
|
Han L, Guo X, Du R, Guo K, Qi P, Bian H. Identification of key genes and pathways related to cancer-associated fibroblasts in chemoresistance of ovarian cancer cells based on GEO and TCGA databases. J Ovarian Res 2022; 15:75. [PMID: 35739532 PMCID: PMC9219195 DOI: 10.1186/s13048-022-01003-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 05/24/2022] [Indexed: 01/09/2023] Open
Abstract
Background Studies have revealed the implications of cancer-associated fibroblasts (CAFs) in tumor progression, metastasis, and treatment resistance. Here, in silico analyses were performed to reveal the key genes and pathways by which CAFs affected chemoresistance in ovarian cancer. Methods Candidate genes were obtained from the intersected differentially expressed genes in ovarian cancer, ovarian cancer chemoresistance, and ovarian CAF-related microarrays and chemoresistance-related genes from GeneCards databases. Kyoto Encyclopedia of Genes and Genomes enrichment analysis and Gene Set Enrichment Analysis were employed to identify the pathways engaged in ovarian cancer chemoresistance and ovarian CAF-related pathways. The top genes with high Degree in the protein-protein interaction network were intersected with the top genes enriched in the key pathways, followed by correlation analyses between key genes and chemotherapeutic response. The expression profiles of key genes were obtained from Human Protein Atlas database and TCGA-ovarian cancer data. Results p53, cell cycle, PI3K-Akt, and MAPK pathways were the key pathways related to the implication of CAFs in ovarian cancer chemoresistance. 276 candidate genes differentially expressed in CAFs were associated with ovarian cancer chemoresistance. MYC, IGF1, HRAS, CCND1, AKT1, RAC1, KDR, FGF2, FAS, and EGFR were enriched in the key chemoresistance-related ways. Furthermore, MYC, EGFR, CCND1 exhibited close association with chemotherapeutic response to platinum and showed a high expression in ovarian cancer tissues and platinum-resistant ovarian cancer cells. Conclusion The study suggests the key genes (MYC, EGFR, and CCND1) and pathways (p53, cell cycle, PI3K-Akt, and MAPK) responsible for the effect of CAFs on ovarian cancer chemoresistance.
Collapse
Affiliation(s)
- Li Han
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, PR China.,Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang, 473004, Henan Province, PR China
| | - Xiaojuan Guo
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, PR China.,Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang, 473004, Henan Province, PR China
| | - Ruijuan Du
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, PR China.,Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang, 473004, Henan Province, PR China
| | - Kelei Guo
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, PR China.,Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang, 473004, Henan Province, PR China
| | - Pei Qi
- Nanyang Traditional Chinese Medicine Hospital, Nanyang, 473007, PR China
| | - Hua Bian
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, PR China. .,Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang, 473004, Henan Province, PR China.
| |
Collapse
|
7
|
Identification of Immune-Related lncRNA Pairs and Construction and Validation of a New Prognostic Signature of Colon Cancer. Can J Gastroenterol Hepatol 2022; 2022:5827544. [PMID: 35399646 PMCID: PMC8986404 DOI: 10.1155/2022/5827544] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND More and more evidence has shown that immune-related long noncoding ribonucleic acid (irlncRNAs) is a potential prognostic factor for colon cancer. The relevant gene pair pattern can improve the sensitivity of the prognostic model. Therefore, our present study aimed to identify irlncRNA Pairs and construct and validate a new prognostic signature in colon cancer. METHODS We downloaded the expression matrix of mRNA and lncRNA of patients with colon cancer and their clinical information from the public TCGA database. We obtained immune genes from the ImmPort database. Coexpression analysis was performed to identify irlncRNAs. We built an irlncRNA pair matrix by comparing the expression levels of each lncRNA pair in a cycle. Univariate Cox regression analysis, LASSO penalized regression analysis, and multivariate Cox regression analysis were performed to determine the final variables to construct the prognostic risk score model (a new signature). We draw the receiver operating characteristic (ROC) curves of the signature and clinical characteristics and determine the optimal cutoff value by the optimal Akaike Information Criterion (AIC) value. Based on the optimal cutoff value of the ROC curve of the signature, colon cancer patients were divided into the high- and low-risk groups. Then, the signature was evaluated by clinicopathological features, tumor-infiltrating immune cells, checkpoint-related biomarkers, targeted therapy, and chemotherapy. RESULTS We identified 8 lncRNA pairs including AC103740.1|LEF1-AS1, LINC02391|AC053503.5, WWC2-AS2|AL355916.2, AC104090.1|NEURL1-AS1, AC099524.1|AL161908.1, AC074011.1|AL078601.2, AL355916.2|LINC01723, and AP003392.4|LINC00598 from 71 differently expressed irlncRNAs. We constructed a prognostic risk score model (a new signature) using these optimal eight irlncRNA pairs. ROC curve analysis revealed that the highest AUC value of the signature was 0.776 at 1 year, with the optimal cutoff value of 1.283. Our present study also showed that the constructed signature could accurately identify adverse survival outcomes, prognostic clinicopathological features, and specify tumor invasion status. The expression of immune checkpoint-related genes and chemical drug sensitivity were related to different risk groups. CONCLUSION In our present study, we constructed a new irlncRNA signature of colon cancer based on the irlncRNA pairs instead of the special expression level of lncRNA. We found this signature had not only good prognostic value but also certain clinical value, which might provide a new insight into the treatment and prognosis of colon cancer.
Collapse
|
8
|
Lack of Conserved miRNA Deregulation in HPV-Induced Squamous Cell Carcinomas. Biomolecules 2021; 11:biom11050764. [PMID: 34065237 PMCID: PMC8160722 DOI: 10.3390/biom11050764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 12/26/2022] Open
Abstract
Squamous cell carcinomas (SCCs) in the anogenital and head and neck regions are associated with high-risk types of human papillomaviruses (HR-HPV). Deregulation of miRNA expression is an important contributor to carcinogenesis. This study aimed to pinpoint commonly and uniquely deregulated miRNAs in cervical, anal, vulvar, and tonsillar tumors of viral or non-viral etiology, searching for a common set of deregulated miRNAs linked to HPV-induced carcinogenesis. RNA was extracted from tumors and nonmalignant tissues from the same locations. The miRNA expression level was determined by next-generation sequencing. Differential expression of miRNAs was calculated, and the patterns of miRNA deregulation were compared between tumors. The total of deregulated miRNAs varied between tumors of different locations by two orders of magnitude, ranging from 1 to 282. The deregulated miRNA pool was largely tumor-specific. In tumors of the same location, a low proportion of miRNAs were exclusively deregulated and no deregulated miRNA was shared by all four types of HPV-positive tumors. The most significant overlap of deregulated miRNAs was found between tumors which differed in location and HPV status (HPV-positive cervical tumors vs. HPV-negative vulvar tumors). Our results imply that HPV infection does not elicit a conserved miRNA deregulation in SCCs.
Collapse
|