1
|
Chitkara S, Atilla-Gokcumen GE. Decoding ceramide function: how localization shapes cellular fate and how to study it. Trends Biochem Sci 2025; 50:356-367. [PMID: 40000311 DOI: 10.1016/j.tibs.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/07/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025]
Abstract
Recent studies emphasize that lipid synthesis, metabolism, and transport are crucial in modulating lipid function, underscoring the significance of lipid localization within the cell, in addition to their chemical structure. Ceramides stand out in this context because of their multifaceted roles in cellular processes. Here, we focus on the role of ceramides in apoptosis, senescence, and autophagy as these processes offer unique and contrasting perspectives on how ceramides function and can be intricately linked to their subcellular localization, providing critical insights into their complex biological interactions. Additionally, we highlight recent advancements in tools and techniques that have boosted our understanding of ceramide dynamics and different mechanisms of lipid functioning.
Collapse
Affiliation(s)
- Shweta Chitkara
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - G Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| |
Collapse
|
2
|
Narita D, Hishinuma E, Ebina-Shibuya R, Miyauchi E, Matsukawa N, Motoike IN, Kinoshita K, Koshiba S, Tsukita Y, Notsuda H, Kimura N, Saito R, Murakami K, Fujino N, Ichikawa T, Yamada M, Tamada T, Sugiura H. Histological and genetic features and therapeutic responses of lung cancers explored via the global analysis of their metabolome profile. Lung Cancer 2025; 200:108082. [PMID: 39884221 DOI: 10.1016/j.lungcan.2025.108082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 01/01/2025] [Accepted: 01/06/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Lung cancer is the deadliest disease globally, with more than 120,000 diagnosed cases and more than 75,000 deaths annually in Japan. Several treatment options for advanced lung cancer are available, and the discovery of biomarkers will be useful for personalized medicine. Using metabolome analysis, we aimed to identify biomarkers for diagnosis and treatment response by examining the changes in metabolites associated with lung cancer progression. METHODS Plasma samples from patients with recurrent or metastatic non-small cell lung carcinomas diagnosed at Tohoku University Hospital between 2019 and 2024 were used in this study. Metabolomic analysis was performed using the Biocrates Life Sciences MxP Quant 500 kit. Multivariate, principal component, and orthogonal partial least squares discriminant analyses were performed. RESULTS The triglyceride and phosphatidylcholine concentrations were higher in the patients with early than in those with advanced lung adenocarcinomas. However, the cholesterol ester concentrations were higher for the patients with advanced lung cancer. The concentrations of hexosylceramide were higher in patients with early lung adenocarcinoma than in those with squamous cell carcinoma. Relative to epidermal growth factor receptor (EGFR)-mutation negative cases, the EGFR-mutation positive cases showed marked differences between the ceramide and triglyceride concentrations. For the best therapeutic effect of EGFR-TKI treatment, the hexosylceramide (HexCer) (d18:1/24:0), ceramide (Cer) (d18:2/22:0), and ceramide (Cer) (d18:2/24:0) concentrations were higher for the stable and progressive disease groups. The concentrations of phosphatidylcholine (PC) ae C42:2, sphingomyelin (SM) C24:1, and lysophosphatidylcholine (lysoPC) a C18:2 were higher in the partial response group treated with immune checkpoint inhibitors and chemotherapy. CONCLUSION Metabolomic analysis may be useful for the diagnosis and treatment of lung cancer and may provide clues for new therapeutic strategies. PC ae C42:2, SM C24:1, and lysoPC a C18:2 can serve as predictive biomarkers for monitoring the therapeutic effects of the combination of immune checkpoint inhibitors and chemotherapy.
Collapse
Affiliation(s)
- Daisuke Narita
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Eiji Hishinuma
- Advanced Research Center for Innovations in Next Generation Medicine, Tohoku University, Sendai, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Risa Ebina-Shibuya
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Eisaku Miyauchi
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naomi Matsukawa
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Ikuko N Motoike
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Systems Bioinformatics, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Kengo Kinoshita
- Advanced Research Center for Innovations in Next Generation Medicine, Tohoku University, Sendai, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Systems Bioinformatics, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Seizo Koshiba
- Advanced Research Center for Innovations in Next Generation Medicine, Tohoku University, Sendai, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Yoko Tsukita
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hirotsugu Notsuda
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Nozomu Kimura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryota Saito
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Koji Murakami
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoya Fujino
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Ichikawa
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mitsuhiro Yamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tsutomu Tamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hisatoshi Sugiura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
3
|
Du Y, Wang Q, Zheng Z, Zhou H, Han Y, Qi A, Jiao L, Gong Y. Gut microbiota influence on lung cancer risk through blood metabolite mediation: from a comprehensive Mendelian randomization analysis and genetic analysis. Front Nutr 2024; 11:1425802. [PMID: 39323566 PMCID: PMC11423778 DOI: 10.3389/fnut.2024.1425802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
Background Gut microbiota (GM) and metabolic alterations play pivotal roles in lung cancer (LC) development and host genetic variations are known to contribute to LC susceptibility by modulating the GM. However, the causal links among GM, metabolite, host genes, and LC remain to be fully delineated. Method Through bidirectional MR analyses, we examined the causal links between GM and LC, and utilized two-step mediation analysis to identify potential mediating blood metabolite. We employed diverse MR methods, including inverse-variance-weighted (IVW), weighted median, MR-Egger, weighted mode, and simple mode, to ensure a robust examination of the data. MR-Egger intercept test, Radial MR, MR-PRESSO, Cochran Q test and Leave-one-out (LOO) analysis were used for sensitivity analyses. Analyses were adjusted for smoking, alcohol intake frequency and air pollution. Linkage disequilibrium score regression and Steiger test were used to probe genetic causality. The study also explored the association between specific host genes and the abundance of gut microbes in LC patients. Results The presence of Bacteroides clarus was associated with an increased risk of LC (odds ratio [OR] = 1.07, 95% confidence interval [CI]: 1.03-1.11, p = 0.012), whereas the Eubacteriaceae showed a protective effect (OR = 0.82, 95% CI: 0.75-0.89, p = 0.001). These findings remained robust after False Discovery Rate (FDR) correction. Our mediator screening identified 13 blood metabolites that significantly influence LC risk after FDR correction, underscoring cystine and propionylcarnitine in reducing LC risk, while linking specific lipids and hydroxy acids to an increased risk. Our two-step mediation analysis demonstrated that the association between the bacterial pathway of synthesis of guanosine ribonucleotides and LC was mediated by Fructosyllysine, with mediated proportions of 11.38% (p = 0.037). LDSC analysis confirmed the robustness of these associations. Our study unveiled significant host genes ROBO2 may influence the abundance of pathogenic gut microbes in LC patients. Metabolic pathway analysis revealed glutathione metabolism and glutamate metabolism are the pathways most enriched with significant metabolites related to LC. Conclusion These findings underscore the importance of GM in the development of LC, with metabolites partly mediating this effect, and provide dietary and lifestyle recommendations for high-risk lung cancer populations.
Collapse
Affiliation(s)
- Yizhao Du
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qin Wang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zongmei Zheng
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hailun Zhou
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Han
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ao Qi
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lijing Jiao
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Translational Cancer Research for Integrated Chinese and Western Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yabin Gong
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Qian S, Liu J, Liao W, Wang F. METTL14 drives growth and metastasis of non-small cell lung cancer by regulating pri-miR-93-5p maturation and TXNIP expression. Genes Genomics 2024; 46:213-229. [PMID: 37594665 DOI: 10.1007/s13258-023-01436-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/26/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is a prevalent and aggressive malignancy responsible for a significant number of cancer-related deaths worldwide. Unraveling the molecular mechanisms governing NSCLC growth and metastasis is crucial for the identification of novel therapeutic targets and the development of effective anti-cancer strategies. One such mechanism of interest is the involvement of METTL14, an RNA methyltransferase implicated in various cellular processes, in NSCLC progression. OBJECTIVE The objective of this study was to investigate the role of METTL14 in NSCLC development and metastasis and to elucidate the underlying molecular mechanisms. By understanding the impact of METTL14 on NSCLC pathogenesis, the study aimed to identify potential avenues for targeted therapies in NSCLC treatment. METHODS We used bioinformatics and high-throughput transcriptome sequencing analyses to screen regulatory mechanisms affecting NSCLC. The Kaplan-Meier method assessed the correlation between METTL14 expression and the prognosis of NSCLC patients. The effects of manipulated METTL14 on malignant phenotypes of NSCLC cells were examined by colony formation assay, flow cytometry, scratch assay, and Transwell assay. The tumorigenic capacity and metastatic potential of NSCLC cells in vivo were evaluated in nude mice. RESULTS METTL14 was overexpressed in NSCLC tissues and cell lines. Its high expression indicated a poor prognosis for NSCLC patients. METTL14 silencing promoted apoptosis and repressed proliferation, migration, and invasion of NSCLC cells. miR-93-5p targeted and inhibited TXNIP. METTL14 increased miR-93-5p expression and matured pri-miR-93-5p through m6A alteration to inhibit TXNIP, thereby inhibiting NSCLC cell apoptosis. By controlling the miR-93-5p/TXNIP axis, METTL14 increased the tumorigenic potential and lung metastasis of NSCLC cells in nude mice. CONCLUSION This study revealed a role for METTL14 in the contribution to NSCLC development and metastasis and identified METTL14 as a potential target for NSCLC treatment.
Collapse
Affiliation(s)
- Shuai Qian
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, No. 100, Minjiang Avenue, Kecheng District, Quzhou, 324000, Zhejiang, People's Republic of China
| | - Jun Liu
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, No. 100, Minjiang Avenue, Kecheng District, Quzhou, 324000, Zhejiang, People's Republic of China
| | - Wenliang Liao
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, No. 100, Minjiang Avenue, Kecheng District, Quzhou, 324000, Zhejiang, People's Republic of China
| | - Fengping Wang
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, No. 100, Minjiang Avenue, Kecheng District, Quzhou, 324000, Zhejiang, People's Republic of China.
| |
Collapse
|
5
|
Dai L, Goyal N, Liu J, Foroozesh M, Qin Z. Developing new ceramide analogs against non-small cell lung cancer (NSCLC). Am J Cancer Res 2024; 14:86-96. [PMID: 38323290 PMCID: PMC10839310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/07/2024] [Indexed: 02/08/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) constitutes the predominant form of lung cancer and stands as the leading cause of cancer-related mortality in the United States. Conventional chemotherapy and radiotherapy yield suboptimal responses in a significant portion of lung cancer patients, resulting in a discouraging 5-year survival rate of approximately 15%. Despite advancements in targeted therapy and immunotherapy, many NSCLC patients exhibit either negligible or partial responses, emphasizing the pressing necessity for the discovery of innovative anti-cancer agents. Our previous study demonstrated that ABC294640, an inhibitor of one of the key enzymes in sphingolipid metabolism, sphingosine kinase 2 (SphK2), displayed anti-NSCLC activities in vitro and in vivo. In the current study, through the screening of a series of newly synthesized ceramide analogs, we have identified new compounds, particularly analogs 403 and 953, that exhibit potent anti-NSCLC activities. These compounds induce significant NSCLC apoptosis by elevating intracellular pre-apoptotic ceramide and dihydro(dh)-ceramide production. Lipidomics analyses further elucidate the alterations in ceramide and dh-ceramide species signature/proportion across different NSCLC cell-lines induced by these novel ceramide analogs. Treatments with ceramide analogs 403 and 953 remarkably inhibit NSCLC progression in vivo without observable toxicity. Collectively, these findings establish a foundation for the development of promising sphingolipid-based therapies aimed at enhancing the prognosis of NSCLC.
Collapse
Affiliation(s)
- Lu Dai
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences4301 W. Markham St., Little Rock, AR 72205, USA
| | - Navneet Goyal
- Department of Chemistry, Xavier University of Louisiana1 Drexel Drive, New Orleans, LA 70125, USA
| | - Jiawang Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science CenterMemphis, TN 38163, USA
| | - Maryam Foroozesh
- Department of Chemistry, Xavier University of Louisiana1 Drexel Drive, New Orleans, LA 70125, USA
| | - Zhiqiang Qin
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences4301 W. Markham St., Little Rock, AR 72205, USA
| |
Collapse
|
6
|
Alizadeh J, da Silva Rosa SC, Weng X, Jacobs J, Lorzadeh S, Ravandi A, Vitorino R, Pecic S, Zivkovic A, Stark H, Shojaei S, Ghavami S. Ceramides and ceramide synthases in cancer: Focus on apoptosis and autophagy. Eur J Cell Biol 2023; 102:151337. [PMID: 37392580 DOI: 10.1016/j.ejcb.2023.151337] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/18/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023] Open
Abstract
Different studies corroborate a role for ceramide synthases and their downstream products, ceramides, in modulation of apoptosis and autophagy in the context of cancer. These mechanisms of regulation, however, appear to be context dependent in terms of ceramides' fatty acid chain length, subcellular localization, and the presence or absence of their downstream targets. Our current understanding of the role of ceramide synthases and ceramides in regulation of apoptosis and autophagy could be harnessed to pioneer the development of new treatments to activate or inhibit a single type of ceramide synthase, thereby regulating the apoptosis induction or cross talk of apoptosis and autophagy in cancer cells. Moreover, the apoptotic function of ceramide suggests that ceramide analogues can pave the way for the development of novel cancer treatments. Therefore, in the current review paper we discuss the impact of ceramide synthases and ceramides in regulation of apoptosis and autophagy in context of different types of cancers. We also briefly introduce the latest information on ceramide synthase inhibitors, their application in diseases including cancer therapy, and discuss approaches for drug discovery in the field of ceramide synthase inhibitors. We finally discussed strategies for developing strategies to use lipids and ceramides analysis in biological fluids for developing early biomarkers for cancer.
Collapse
Affiliation(s)
- Javad Alizadeh
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Simone C da Silva Rosa
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Xiaohui Weng
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Joadi Jacobs
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Amir Ravandi
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, 66 Chancellors Cir, Winnipeg, MB R3T 2N2, Canada
| | - Rui Vitorino
- UnIC, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; Department of Medical Sciences, Institute of Biomedicine iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Stevan Pecic
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Aleksandra Zivkovic
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetstrasse 1, 40225 Duesseldorf, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetstrasse 1, 40225 Duesseldorf, Germany
| | - Shahla Shojaei
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
7
|
Pilátová MB, Solárová Z, Mezencev R, Solár P. Ceramides and their roles in programmed cell death. Adv Med Sci 2023; 68:417-425. [PMID: 37866204 DOI: 10.1016/j.advms.2023.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/14/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
Programmed cell death plays a crucial role in maintaining the homeostasis and integrity of multicellular organisms, and its dysregulation contributes to the pathogenesis of many diseases. Programmed cell death is regulated by a range of macromolecules and low-molecular messengers, including ceramides. Endogenous ceramides have different functions, that are influenced by their localization and the presence of their target molecules. This article provides an overview of the current understanding of ceramides and their impact on various types of programmed cell death, including apoptosis, anoikis, macroautophagy and mitophagy, and necroptosis. Moreover, it highlights the emergence of dihydroceramides as a new class of bioactive sphingolipids and their downstream targets as well as their future roles in cancer cell growth, drug resistance and tumor metastasis.
Collapse
Affiliation(s)
- Martina Bago Pilátová
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovak Republic
| | - Zuzana Solárová
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovak Republic
| | - Roman Mezencev
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Peter Solár
- Department of Medical Biology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovak Republic.
| |
Collapse
|
8
|
Zhang M, Ding ZX, Huang W, Luo J, Ye S, Hu SL, Zhou P, Cai B. Chrysophanol exerts a protective effect against Aβ 25-35-induced Alzheimer's disease model through regulating the ROS/TXNIP/NLRP3 pathway. Inflammopharmacology 2023; 31:1511-1527. [PMID: 36976486 DOI: 10.1007/s10787-023-01201-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND The primary pathogenic factors of Alzheimer's disease (AD) have been identified as oxidative stress, inflammatory damage, and apoptosis. Chrysophanol (CHR) has a good neuroprotective effect on AD, however, the potential mechanism of CHR remains unclear. PURPOSE In this study, we focused on the ROS/TXNIP/NLRP3 pathway to determine whether CHR regulates oxidative stress and neuroinflammation. METHODS D-galactose and Aβ25-35 combination were used to build an in vivo model of AD, and the Y-maze test was used to evaluate the learning and memory function of rats. Morphological changes of neurons in the rat hippocampus were observed using hematoxylin and eosin (HE) staining. AD cell model was established by Aβ25-35 in PC12 cells. The DCFH-DA test identified reactive oxygen species (ROS). The apoptosis rate was determined using Hoechst33258 and flow cytometry. In addition, the levels of MDA, LDH, T-SOD, CAT, and GSH in serum, cell, and cell culture supernatant were detected by colorimetric method. The protein and mRNA expressions of the targets were detected by Western blot and RT-PCR. Finally, molecular docking was used to further verify the in vivo and in vitro experimental results. RESULTS CHR could significantly improve learning and memory impairment, reduce hippocampal neuron damage, and reduce ROS production and apoptosis in AD rats. CHR could improve the survival rate, and reduce the oxidative stress and apoptosis in the AD cell model. Moreover, CHR significantly decreased the levels of MDA and LDH, and increased the activities of T-SOD, CAT, and GSH in the AD model. Mechanically, CHR significantly reduced the protein and mRNA expression of TXNIP, NLRP3, Caspase-1, IL-1β, and IL-18, and increase TRX. CONCLUSIONS CHR exerts neuroprotective effects on the Aβ25-35-induced AD model mainly by reducing oxidative stress and neuroinflammation, and the mechanism may be related to ROS/TXNIP/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Zhi-Xian Ding
- Department of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Wei Huang
- Department of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Jing Luo
- Department of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Shu Ye
- Department of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Sheng-Lin Hu
- Department of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Peng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China.
| | - Biao Cai
- Department of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China.
| |
Collapse
|
9
|
Katturajan R, Nithiyanandam S, Parthasarathy M, Valsala Gopalakrishnan A, Sathiyamoorthi E, Lee J, Ramesh T, Iyer M, Prince SE, Ganesan R. Immunomodulatory Role of Thioredoxin Interacting Protein in Cancer's Impediments: Current Understanding and Therapeutic Implications. Vaccines (Basel) 2022; 10:1902. [PMID: 36366411 PMCID: PMC9699629 DOI: 10.3390/vaccines10111902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 10/30/2023] Open
Abstract
Cancer, which killed ten million people in 2020, is expected to become the world's leading health problem and financial burden. Despite the development of effective therapeutic approaches, cancer-related deaths have increased by 25.4% in the last ten years. Current therapies promote apoptosis and oxidative stress DNA damage and inhibit inflammatory mediators and angiogenesis from providing temporary relief. Thioredoxin-binding protein (TXNIP) causes oxidative stress by inhibiting the function of the thioredoxin system. It is an important regulator of many redox-related signal transduction pathways in cells. In cancer cells, it functions as a tumor suppressor protein that inhibits cell proliferation. In addition, TXNIP levels in hemocytes increased after immune stimulation, suggesting that TXNIP plays an important role in immunity. Several studies have provided experimental evidence for the immune modulatory role of TXNIP in cancer impediments. TXNIP also has the potential to act against immune cells in cancer by mediating the JAK-STAT, MAPK, and PI3K/Akt pathways. To date, therapies targeting TXNIP in cancer are still under investigation. This review highlights the role of TXNIP in preventing cancer, as well as recent reports describing its functions in various immune cells, signaling pathways, and promoting action against cancer.
Collapse
Affiliation(s)
- Ramkumar Katturajan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Sangeetha Nithiyanandam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Manisha Parthasarathy
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | | | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Mahalaxmi Iyer
- Livestock Farming and Bioresource Technology, Coimbatore 641003, Tamil Nadu, India
| | - Sabina Evan Prince
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Raja Ganesan
- Institute for Liver and Digestive Disease, College of Medicine, Hallym University, Chuncheon 24253, Korea
| |
Collapse
|
10
|
Downregulation of Inflammatory Response via Nrf2/Trx1/TXNIP Axis in Oxidative Stress-Induced ARPE-19 Cells and Mouse Model of AMD. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1497813. [PMID: 35993020 PMCID: PMC9391142 DOI: 10.1155/2022/1497813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/01/2022] [Accepted: 07/20/2022] [Indexed: 12/14/2022]
Abstract
Aim Chronic inflammation is crucial for age-related macular degeneration (AMD) pathogenesis. However, the mechanism involved in activating inflammation remains unclear. This study is aimed at investigating whether nuclear factor erythrocyte-associated factor 2 (Nrf2) negatively regulated the Nod-like receptor protein 3 (NLRP3) inflammasomes through the thioredoxin 1 (Trx1)/thioredoxin interaction protein (TXNIP) complex. Methods We determined the optimal hydrogen peroxide (H2O2) concentration, time, and changes in reactive oxygen species (ROS) levels. We also constructed animal models using blue LED irradiation. Then, the expression of Nrf2, TXNIP, Trx1, NLRP3, and inflammation-related factors and proteins, along with the changes in retinal thickness and functional status, was analyzed. Results The oxidative stress model was established after 1 h intervention with 100 μM H2O2. Nrf2 reduced ROS production, protected the ultrastructure of mitochondria, increased the thickness of the ONL layer, and increased the amplitude of a- and b-wave amplitudes in ERG. Trx1 knockdown increased the production of ROS, damaged the ultrastructure of mitochondria, reduced the thickness of the other ONL layer, and reduced the amplitudes of a- and b-waves in the electroretinogram (ERG). Thus, TXNIP in the cytoplasm activated the inflammasomes. Conclusions Nrf2 showed antioxidant and anti-inflammatory activity in the H2O2-induced cell stress model and blue LED-induced retinal light damage model. TXNIP transferred from the nucleus to the cytoplasm, activated NLRP3, and aggravated the retinal injury in both the cell stress model and the animal blue LED model. In contrast, Trx1 knockout promoted this process. This study revealed the possible role of the thioredoxin system in developing AMD while also providing newer insights for the future treatment of AMD.
Collapse
|
11
|
Sphingolipid Metabolism and Signaling in Lung Cancer: A Potential Therapeutic Target. JOURNAL OF ONCOLOGY 2022; 2022:9099612. [PMID: 35799611 PMCID: PMC9256431 DOI: 10.1155/2022/9099612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/22/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022]
Abstract
Sphingolipids are important bioactive lipids that not only play an important role in maintaining the barrier function and fluidity of cell membranes but also regulate multiple processes in cancer development by controlling multiple signaling pathways in the signal transduction network. Dysregulation of sphingolipid metabolism is thought to be one of the most important dysregulated pathways in lung cancer, the most prevalent type of cancer in terms of incidence and mortality worldwide. This article focuses on lung cancer, reviewing the important lipids in sphingolipid metabolism and the related enzymes in relation to lung cancer progression and their effects on the tumor microenvironment and discussing their roles in the diagnosis and treatment of lung cancer.
Collapse
|
12
|
Jiang J, Ouyang H, Zhou Q, Tang S, Fang P, Xie G, Yang J, Sun G. LPS induces pulmonary microvascular endothelial cell barrier dysfunction by upregulating ceramide production. Cell Signal 2022; 92:110250. [DOI: 10.1016/j.cellsig.2022.110250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/22/2022]
|