1
|
Huang Z, Chen P, Liu Y. WTAP-mediated m6A modification of circ_0032463 promotes osteosarcoma progression by sponging miR-145-5p and regulating GFRA1 expression. J Biochem Mol Toxicol 2024; 38:e23833. [PMID: 39243199 DOI: 10.1002/jbt.23833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/05/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024]
Abstract
Osteosarcoma (OS) is the most frequent bone malignancy in humans. Previous evidence suggest that circ_0032463 is an oncogenic circular RNA (circRNA) in various cancers, including OS. However, the molecular mechanism of circ_0032463 involved in OS is still unclear. Circ_0032463, microRNA-145-5p (miR-145-5p), GDNF receptor alpha 1 (GFRA1), and Wilms tumor 1-associated protein (WTAP) levels were determined using real-time quantitative polymerase chain reaction (RT-qPCR). Cell proliferation, apoptosis, migration, invasion, and angiogenesis were analyzed using 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, transwell, and tube formation assays. Western blot analysis was performed to measure matrix metalloproteinase 2 (MMP2), MMP9, GFRA1, and WTAP protein levels. Binding between miR-145-5p and circ_0032463 or GFRA1 was confirmed using a dual-luciferase reporter and pull-down assay. The biological role of circ_0032463 on OS cell growth was also analyzed using a xenograft tumor model in vivo. Methylated RNA immunoprecipitation assay validated the interaction between WTAP and circ_0032463. Circ_0032463, GFRA1, and WTAP levels were increased, and miR-145-5p was decreased in OS tissues and cells. Circ_0032463 deficiency might hinder OS cell proliferation, migration, invasion, angiogenesis, and promote apoptosis in vitro. Mechanically, circ_0032463 worked as a miR-145-5p sponge to increase GFRA1 expression. Repression of circ_0032463 knockdown on tumor cell growth was proved in vivo. Besides, N6-methyladenosine (m6A) modification facilitates the biogenesis of circ_0032463. Taken together, m6A-mediated biogenesis of circ_0032463 facilitates OS cell malignant biological behavior partly via regulating the miR-145-5p/GFRA1 axis, suggesting a promising molecular marker for OS treatment.
Collapse
Affiliation(s)
- Zhong Huang
- Orthopedic Center, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| | - Pengcheng Chen
- Orthopedic Center, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| | - Yiheng Liu
- Orthopedic Center, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| |
Collapse
|
2
|
Mosca N, Alessio N, Di Paola A, Marrapodi MM, Galderisi U, Russo A, Rossi F, Potenza N. Osteosarcoma in a ceRNET perspective. J Biomed Sci 2024; 31:59. [PMID: 38835012 DOI: 10.1186/s12929-024-01049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/24/2024] [Indexed: 06/06/2024] Open
Abstract
Osteosarcoma (OS) is the most prevalent and fatal type of bone tumor. It is characterized by great heterogeneity of genomic aberrations, mutated genes, and cell types contribution, making therapy and patients management particularly challenging. A unifying picture of molecular mechanisms underlying the disease could help to transform those challenges into opportunities.This review deeply explores the occurrence in OS of large-scale RNA regulatory networks, denominated "competing endogenous RNA network" (ceRNET), wherein different RNA biotypes, such as long non-coding RNAs, circular RNAs and mRNAs can functionally interact each other by competitively binding to shared microRNAs. Here, we discuss how the unbalancing of any network component can derail the entire circuit, driving OS onset and progression by impacting on cell proliferation, migration, invasion, tumor growth and metastasis, and even chemotherapeutic resistance, as distilled from many studies. Intriguingly, the aberrant expression of the networks components in OS cells can be triggered also by the surroundings, through cytokines and vesicles, with their bioactive cargo of proteins and non-coding RNAs, highlighting the relevance of tumor microenvironment. A comprehensive picture of RNA regulatory networks underlying OS could pave the way for the development of innovative RNA-targeted and RNA-based therapies and new diagnostic tools, also in the perspective of precision oncology.
Collapse
Affiliation(s)
- Nicola Mosca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Nicola Alessio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandra Di Paola
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Maddalena Marrapodi
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Aniello Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Francesca Rossi
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Nicoletta Potenza
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy.
| |
Collapse
|
3
|
Piccinno E, Scalavino V, Labarile N, De Marinis L, Armentano R, Giannelli G, Serino G. Identification of a Novel miR-195-5p/PNN Axis in Colorectal Cancer. Int J Mol Sci 2024; 25:5980. [PMID: 38892168 PMCID: PMC11172886 DOI: 10.3390/ijms25115980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Pinin (PNN) is a desmosome-associated protein that reinforces the organization of keratin intermediate filaments and stabilizes the anchoring of the cytoskeleton network to the lateral surface of the plasma membrane. The aberrant expression of PNN affects the strength of cell adhesion as well as modifies the intracellular signal transduction pathways leading to the onset of CRC. In our previous studies, we characterized the role of miR-195-5p in the regulation of desmosome junctions and in CRC progression. Here, with the aim of investigating additional mechanisms related to the desmosome complex, we identified PNN as a miR-195-5p putative target. Using a public data repository, we found that PNN was a negative prognostic factor and was overexpressed in colon cancer tissues from stage 1 of the disease. Then, we assessed PNN expression in CRC tissue specimens, confirming the overexpression of PNN in tumor sections. The increase in intracellular levels of miR-195-5p revealed a significant decrease in PNN at the mRNA and protein levels. As a consequence of PNN regulation by miR-195-5p, the expression of KRT8 and KRT19, closely connected to PNN, was affected. Finally, we investigated the in vivo effect of miR-195-5p on PNN expression in the colon of AOM/DSS-treated mice. In conclusion, we have revealed a new mechanism driven by miR-195-5p in the regulation of desmosome components, suggesting a potential pharmacological target for CRC therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Grazia Serino
- National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, 70013 Castellana Grotte, BA, Italy; (E.P.); (V.S.); (N.L.); (L.D.M.); (R.A.); (G.G.)
| |
Collapse
|
4
|
Yang M, Su Y, Zheng H, Xu K, Yuan Q, Cai Y, Aihaiti Y, Xu P. Identification of the potential regulatory interactions in rheumatoid arthritis through a comprehensive analysis of lncRNA-related ceRNA networks. BMC Musculoskelet Disord 2023; 24:799. [PMID: 37814309 PMCID: PMC10561475 DOI: 10.1186/s12891-023-06936-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/04/2023] [Indexed: 10/11/2023] Open
Abstract
OBJECTIVE This study aimed at constructing a network of competing endogenous RNA (ceRNA) in the synovial tissues of rheumatoid arthritis (RA). It seeks to discern potential biomarkers and explore the long non-coding RNA (lncRNA)-microRNA (miRNA)-messenger RNA (mRNA) axes that are intricately linked to the pathophysiological mechanisms underpinning RA, and providing a scientific basis for the pathogenesis and treatment of RA. METHODS Microarray data pertaining to RA synovial tissue, GSE103578, GSE128813, and GSE83147, were acquired from the Gene Expression Omnibus (GEO) database ( http://www.ncbi.nlm.nih.gov/geo ). Conducted to discern both differentially expressed lncRNAs (DELncRNAs) and differentially expressed genes (DEGs). A ceRNA network was obtained through key lncRNAs, key miRNAs, and key genes. Further investigations involved co-expression analyses to uncover the lncRNA-miRNA-mRNA axes contributing to the pathogenesis of RA. To delineate the immune-relevant facets of this axis, we conducted an assessment of key genes, emphasizing those with the most substantial immunological correlations, employing the GeneCards database. Finally, gene set enrichment analysis (GSEA) was executed on the identified key lncRNAs to elucidate their functional implications in RA. RESULTS The 2 key lncRNAs, 7 key miRNAs and 6 key genes related to the pathogenesis of RA were obtained, as well as 2 key lncRNA-miRNA-mRNA axes (KRTAP5-AS1-hsa-miR-30b-5p-PNN, XIST-hsa-miR-511-3p/hsa-miR-1277-5p-F2RL1). GSEA of two key lncRNAs obtained biological processes and signaling pathways related to RA synovial lesions. CONCLUSION The findings of this investigation hold promise in furnishing a foundational framework and guiding future research endeavors aimed at comprehending the etiology and therapeutic interventions for RA.
Collapse
Affiliation(s)
- Mingyi Yang
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Yani Su
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Haishi Zheng
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Ke Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Qiling Yuan
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Yongsong Cai
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Yirixiati Aihaiti
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Peng Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China.
| |
Collapse
|
5
|
Lu Z, Hou J, Li X, Zhou J, Luo B, Liang S, Lo RK, Wong TM, Kuang GM. Exosome-Derived miRNAs as Potential Biomarkers for Prostate Bone Metastasis. Int J Gen Med 2022; 15:5369-5383. [PMID: 35673634 PMCID: PMC9167626 DOI: 10.2147/ijgm.s361981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/16/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose The purpose of this study was to identify the potential exosome-derived microRNAs (miRNAs) related to prostate cancer (Pca) bone metastasis. Methods Two datasets were collected. One dataset was from the authors’ institute, for which two groups of 10 patients each were designed: in the first one, the patients had early-stage localised Pca without bone metastasis, and in the other, the patients presented with Pca with bone metastasis. Then, the miRNA expression profiles of the blood exosomes were obtained and analysed. The other dataset was a public dataset of the miRNA expression transcriptome (GSE26964), which was downloaded from Gene Expression Omnibus (GEO). The results of both datasets were jointly analysed and the most bone-metastatic-related differentially expressed miRNAs (diff-miRNAs) were identified and further validated. Finally, a series of bioinformatics analyses were performed and the relationship between target genes of the diff-miRNAs and the pathogenesis and progression of bone metastasis of Pca were studied. Results From the authors’ dataset, in all, 313 diff-miRNAs were identified, of which 205 were up-regulated while 108 were down-regulated. From the GSE26964 dataset, 107 diff-miRNAs were found, of which 44 were up-regulated and 63 were down-regulated. Taking the intersection of the results of both datasets, four diff-miRNAs were identified: hsa-miR-125a-3p, hsa-miR-330-3p, hsa-miR-339-5p and hsa-miR-613. In all, 94 target genes of the four diff-miRNAs were predicted. After considering the intersection of the results from the GSE32269 dataset, we obtained 25 target genes. Although either positive or negative correlations were found among the diff-miRNAs with some of the target genes, there is a lack of evidence on how such correlations regulate the development and promotion of Pca bone metastasis. Conclusion Hsa-miR-125a-3p, hsa-miR-330-3p, hsa-miR-339-5p and hsa-miR-613 are potential biomarkers for Pca bone metastasis.
Collapse
Affiliation(s)
- Zhenquan Lu
- Department of Urology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, People’s Republic of China
| | - Jian Hou
- Department of Urology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, People’s Republic of China
| | - Xiao Li
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, People’s Republic of China
| | - Jun Zhou
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, People’s Republic of China
| | - Bingfeng Luo
- Department of Urology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, People’s Republic of China
| | - Songwu Liang
- Department of Urology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, People’s Republic of China
| | - Richard K Lo
- Department of Urology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, People’s Republic of China
| | - Tak Man Wong
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, People’s Republic of China
| | - Guan-Ming Kuang
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, People’s Republic of China
- Correspondence: Guan-Ming Kuang, Email
| |
Collapse
|
6
|
Tan S, Wang P, Hu J, Wang X, Li H. NEDD9 Mediates the FAK/Src Signaling Pathway to Promote the Adhesion of Human Trabecular Meshwork Cells after Dexamethasone Treatment. Curr Eye Res 2022; 47:1156-1164. [PMID: 35577404 DOI: 10.1080/02713683.2022.2071945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE The differential gene expression of neural precursor cell expressed developmentally downregulated 9 (NEDD9) in human trabecular meshwork (HTM) cells after dexamethasone (Dex) treatment was confirmed through gene expression profiling. However, the regulatory mechanism of NEDD9 expression in HTM cells remains unknown. In this study, we investigated NEDD9 expression in HTM cells and gained a better understanding of glucocorticoid-induced glaucoma (GIG) pathophysiology. METHODS The Gene Expression Omnibus database and GEO2R tool were used to identify differentially expressed genes in the GSE37474 and GSE124114 datasets, and NEDD9 gene expression was found to be upregulated. Human corneoscleral segments and HTM cells were treated with 100 nM Dex or an equal volume of ethanol (0.01%) for 7 days. NEDD9 expression in TM tissues was evaluated by immunohistochemistry, and NEED9 expression in HTM cells was confirmed by RT-qPCR and western blotting. HTM cell adhesive behaviors were assessed with a cell adhesion detection kit. NEDD9 expression was knocked down with short hairpin RNA in HTM cells, and FAK/Src signaling pathway activation was found to be regulated by NEDD9. RESULTS After 7 days of HTM cell Dex treatment, NEDD9 expression was upregulated to be approximately twice that of control. FAK, Src, phospho-FAK, and phospho-Src expression in Dex-treated HTM cells was markedly increased. Downregulation of NEDD9 expression reduced HTM cell adhesion to the surface of culture wells and simultaneously led to a reduction in FAK, Src, phospho-FAK and phospho-Src expression. CONCLUSIONS NEDD9 expression is upregulated in HTM cells after Dex treatment and promotes HTM cell adhesion. These findings underscore the contribution of NEDD9 overexpression to altered HTM cell adhesion during glucocorticoid therapy and may play a key role in GIG pathological progression. Considering the similarity between GIG and primary open-angle glaucoma (POAG), our findings suggest that targeting NEDD9 may be a new therapeutic strategy for POAG patients.
Collapse
Affiliation(s)
- Sisi Tan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, P. R. China
| | - Peng Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, P. R. China
| | - Jianping Hu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, P. R. China
| | - Xiaochen Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, P. R. China
| | - Hong Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, P. R. China
| |
Collapse
|
7
|
Zhang H, Jin M, Ye M, Bei Y, Yang S, Liu K. The prognostic effect of PNN in digestive tract cancers and its correlation with the tumor immune landscape in colon adenocarcinoma. J Clin Lab Anal 2022; 36:e24327. [PMID: 35257416 PMCID: PMC8993647 DOI: 10.1002/jcla.24327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 01/21/2023] Open
Abstract
Background The present study investigated the expression, mutation, and methylation profile of PNN and its prognostic value in digestive tract cancers. The disparities in signaling pathways and the immune landscape in colon adenocarcinoma (COAD) based on PNN expression were specifically explored. Methods The expression, mutation, methylation levels of PNN, and survival data in esophageal cancer, gastric adenocarcinoma, COAD, and rectal adenocarcinoma were evaluated using several bioinformatic databases. Gene Ontology (GO) enrichment analysis and gene set enrichment analysis (GSEA) were performed to investigate the enriched biological functions and pathways in COAD. Several acknowledged bioinformatic algorithms were employed to assess the correlation between PNN expression and the tumor immune landscape in COAD. Results PNN was upregulated and remarkably related to tumor stage in digestive tract cancers. High expression of PNN was positively associated with poor progression‐free survival and overall survival time, specifically in COAD. PNN expression was identified as an independent prognostic factor in COAD. GO and GSEA analyses revealed that PNN participates in multiple biological processes underlying carcinogenicity in COAD. Further investigation showed that PNN expression was significantly associated with tumor‐infiltrating immune cells, immune cell functions, and several immune checkpoints in COAD. The PNN low expression group had a lower tumor immune dysfunction and exclusion (TIDE) score and a higher immunophenoscore (IPS), indicating a better response to immunotherapy. Conclusion PNN was highly expressed in digestive tract cancers and could act as an independent prognostic factor and a response predictor for immunotherapy in COAD.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Radiation Oncology, The Lihuili Hospital, Ningbo Medical Center, Ningbo, China
| | - Ming Jin
- Department of Radiation Oncology, The Lihuili Hospital, Ningbo Medical Center, Ningbo, China
| | - Meng Ye
- Department of Oncology and Hematology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Yanping Bei
- Department of Radiation Oncology, The Lihuili Hospital, Ningbo Medical Center, Ningbo, China
| | - Shaohui Yang
- Department of General Surgery, The Lihuili Hospital, Ningbo Medical Center, Ningbo, China
| | - Kaitai Liu
- Department of Radiation Oncology, The Lihuili Hospital, Ningbo Medical Center, Ningbo, China
| |
Collapse
|
8
|
Lakiotaki E, Kanakoglou DS, Pampalou A, Karatrasoglou EA, Piperi C, Korkolopoulou P. Dissecting the Role of Circular RNAs in Sarcomas with Emphasis on Osteosarcomas. Biomedicines 2021; 9:1642. [PMID: 34829872 PMCID: PMC8615931 DOI: 10.3390/biomedicines9111642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/20/2022] Open
Abstract
Circular RNAs (circRNAs) are single-stranded RNAs generated from exons back-splicing from a single pre-mRNA, forming covalently closed loop structures which lack 5'-3'-polarity or polyadenylated tail. Ongoing research depicts that circRNAs play a pivotal role in tumorigenesis, tumor progression, metastatic potential and chemoresistance by regulating transcription, microRNA (miRNA) sponging, RNA-binding protein interactions, alternative splicing and to a lesser degree, protein coding. Sarcomas are rare malignant tumors stemming from mesenchymal cells. Due to their clinically insidious onset, they often present at advanced stage and their treatment may require aggressive chemotherapeutic or surgical options. This review is mainly focused on the regulatory functions of circRNAs on osteosarcoma progression and their potential role as biomarkers, an area which has prompted lately extensive research. The attributed oncogenic role of circRNAs on other mesenchymal tumors such as Kaposi Sarcoma (KS), Rhabdomyosarcoma (RMS) or Gastrointestinal Stromal Tumors (GISTs) is also described. The involvement of circRNAs on sarcoma oncogenesis and relevant emerging diagnostic, prognostic and therapeutic applications are expected to gain more research interest in the future.
Collapse
Affiliation(s)
- Eleftheria Lakiotaki
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (D.S.K.); (A.P.); (E.A.K.); (P.K.)
| | - Dimitrios S. Kanakoglou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (D.S.K.); (A.P.); (E.A.K.); (P.K.)
| | - Andromachi Pampalou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (D.S.K.); (A.P.); (E.A.K.); (P.K.)
| | - Eleni A. Karatrasoglou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (D.S.K.); (A.P.); (E.A.K.); (P.K.)
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece;
| | - Penelope Korkolopoulou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (D.S.K.); (A.P.); (E.A.K.); (P.K.)
| |
Collapse
|
9
|
Nasiri-Aghdam M, Garcia-Garduño TC, Jave-Suárez LF. CELF Family Proteins in Cancer: Highlights on the RNA-Binding Protein/Noncoding RNA Regulatory Axis. Int J Mol Sci 2021; 22:11056. [PMID: 34681716 PMCID: PMC8537729 DOI: 10.3390/ijms222011056] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 12/17/2022] Open
Abstract
Post-transcriptional modifications to coding and non-coding RNAs are unquestionably a pivotal way in which human mRNA and protein diversity can influence the different phases of a transcript's life cycle. CELF (CUGBP Elav-like family) proteins are RBPs (RNA-binding proteins) with pleiotropic capabilities in RNA processing. Their responsibilities extend from alternative splicing and transcript editing in the nucleus to mRNA stability, and translation into the cytoplasm. In this way, CELF family members have been connected to global alterations in cancer proliferation and invasion, leading to their identification as potential tumor suppressors or even oncogenes. Notably, genetic variants, alternative splicing, phosphorylation, acetylation, subcellular distribution, competition with other RBPs, and ultimately lncRNAs, miRNAs, and circRNAs all impact CELF regulation. Discoveries have emerged about the control of CELF functions, particularly via noncoding RNAs, and CELF proteins have been identified as competing, antagonizing, and regulating agents of noncoding RNA biogenesis. On the other hand, CELFs are an intriguing example through which to broaden our understanding of the RBP/noncoding RNA regulatory axis. Balancing these complex pathways in cancer is undeniably pivotal and deserves further research. This review outlines some mechanisms of CELF protein regulation and their functional consequences in cancer physiology.
Collapse
Affiliation(s)
- Maryam Nasiri-Aghdam
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico;
- Doctorado en Genética Humana, Departamento de Biología Molecular y Genómica, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Texali C. Garcia-Garduño
- Doctorado en Genética Humana, Departamento de Biología Molecular y Genómica, Universidad de Guadalajara, Guadalajara 44340, Mexico;
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Luis Felipe Jave-Suárez
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico;
| |
Collapse
|
10
|
The role and regulation of Pnn in proliferative and non-dividing cells: Form embryogenesis to pathogenesis. Biochem Pharmacol 2021; 192:114672. [PMID: 34237338 DOI: 10.1016/j.bcp.2021.114672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 11/20/2022]
Abstract
Pnn, a multiple functional protein, plays roles in embryonic development, cellular differentiation, tumorigenesis, and metastasis. In the past two decades, the functions of Pnn in regulating RNA alternative splicing, gene regulation, and cell-cell connection have been revealed. Although Pnn is originally identified as a desmosome-associated protein for linking desmosome and intermediated filament, emerging evidence implies that Pnn not only is a desmosome protein but also plays critical roles in the nucleus. To date, through cell biology investigation and the generation of animal models with genetic manipulation, the physiological role of Pnn has been characterized in the research fields of developmental biology, tumor biology, and neuroscience. Through proteomic and molecular biology studies, transcription regulators, splicing regulators, and cytoskeletal proteins were found to interact with Pnn. In addition, histopathological and biochemical evidence has pointed to an association of Pnn expression level with tumorigenesis and metastasis. A previous clinical study also demonstrated a correlation between a reduced expression of Pnn and human dementia. Besides, experimental studies showed a protective role of Pnn against ischemic stress in astrocytes. All indicated a variety of roles of Pnn in different cell types. In this review article, we introduced the role of Pnn in embryogenesis and pathogenesis as well as discussed its potential clinical application.
Collapse
|