1
|
Shen M, Cao S, Long X, Xiao L, Yang L, Zhang P, Li L, Chen F, Lei T, Gao H, Ye F, Bu H. DNAJC12 causes breast cancer chemotherapy resistance by repressing doxorubicin-induced ferroptosis and apoptosis via activation of AKT. Redox Biol 2024; 70:103035. [PMID: 38306757 PMCID: PMC10847378 DOI: 10.1016/j.redox.2024.103035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Chemotherapy is a primary treatment for breast cancer (BC), yet many patients develop resistance over time. This study aims to identify critical factors contributing to chemoresistance and their underlying molecular mechanisms, with a focus on reversing this resistance. METHODS We utilized samples from the Gene Expression Omnibus (GEO) and West China Hospital to identify and validate genes associated with chemoresistance. Functional studies were conducted using MDA-MB-231 and MCF-7 cell lines, involving gain-of-function and loss-of-function approaches. RNA sequencing (RNA-seq) identified potential mechanisms. We examined interactions between DNAJC12, HSP70, and AKT using co-immunoprecipitation (Co-IP) assays and established cell line-derived xenograft (CDX) models for in vivo validations. RESULTS Boruta analysis of four GEO datasets identified DNAJC12 as highly significant. Patients with high DNAJC12 expression showed an 8 % pathological complete response (pCR) rate, compared to 38 % in the low expression group. DNAJC12 inhibited doxorubicin (DOX)-induced cell death through both ferroptosis and apoptosis. Combining apoptosis and ferroptosis inhibitors completely reversed DOX resistance caused by DNAJC12 overexpression. RNA-seq suggested that DNAJC12 overexpression activated the PI3K-AKT pathway. Inhibition of AKT reversed the DOX resistance induced by DNAJC12, including reduced apoptosis and ferroptosis, restoration of cleaved caspase 3, and decreased GPX4 and SLC7A11 levels. Additionally, DNAJC12 was found to increase AKT phosphorylation in an HSP70-dependent manner, and inhibiting HSP70 also reversed the DOX resistance. In vivo studies confirmed that AKT inhibition reversed DNAJC12-induced DOX resistance in the CDX model. CONCLUSION DNAJC12 expression is closely linked to chemoresistance in BC. The DNAJC12-HSP70-AKT signaling axis is crucial in mediating resistance to chemotherapy by suppressing DOX-induced ferroptosis and apoptosis. Our findings suggest that targeting AKT and HSP70 activities may offer new therapeutic strategies to overcome chemoresistance in BC.
Collapse
Affiliation(s)
- Mengjia Shen
- Department of Pathology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, Sichuan, China; Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shiyu Cao
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xinyi Long
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lin Xiao
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Libo Yang
- Department of Pathology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, Sichuan, China; Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Peichuan Zhang
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Fei Chen
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ting Lei
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Hongwei Gao
- Laboratory Medicine Center, Lanzhou University Second Hospital, The Second Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Feng Ye
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Key Lab of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Hong Bu
- Department of Pathology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, Sichuan, China; Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Key Lab of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
pan C, bai X, Li N, Zheng N, Si Y, Zhao Y. PBX3 as a biomarker for the early diagnosis and prediction of prognosis of glioma. PLoS One 2024; 19:e0293647. [PMID: 38324550 PMCID: PMC10849273 DOI: 10.1371/journal.pone.0293647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 10/17/2023] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Increasing evidence have elucidated that PBX3 played a crucial role in cancer initiation and progression. PBX3 was differentially expressed in many cancer types. However, PBX3 potential involvement in gliomas remains to be explored. METHODS The expression level of PBX3 in glioma tissues and glioma cells, and its correlation with clinical features were analyzed by data from TCGA, GEPIA, CGGA and CCLE. Univariable survival and Multivariate Cox analysis was used to compare several clinical characteristics with survival. We also analyzed the correlation between PBX3 expression level and survival outcome and survival time of LGG and GBM patients by using linear regression equation. GSEA was used to generate an ordered list of all genes related to PBX3 expression and screening of genes co-expressed with PBX3 mRNA by "limma" package. RESULTS The results showed that PBX3 was highly expressed in gliomas and its expression increased with the increase of malignancy. Survival analysis found that PBX3 is more valuable in predicting the OS and PFI of LGG patients than that of GBM. For further study, TCGA and CGGA data were downloaded for univariate Cox analysis and multivariate Cox analysis which showed that the expression of PBX3 was independent influencing factors for poor prognosis of LGG patients. Meanwhile, Receiver operating characteristic (ROC) curve showed that PBX3 was a predictor of overall survival rate and progression-free survival rate of LGG. Linear regression model analysis indicated that the higher expression of PBX3 the higher the risk of death of LGG patients, and the higher expression of PBX3 the higher the risk of disease progression of LGG patients. Next, TCGA data were downloaded for GSEA and Co-expression analyses, which was performed to study the function of PBX3. CONCLUSION PBX3 may be involved in the occurrence and development of glioma, and has potential reference value for the early diagnosis and prediction of prognosis of glioma.
Collapse
Affiliation(s)
- Cuicui pan
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xueli bai
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Na Li
- Department of Dermatology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ni Zheng
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuanquan Si
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yueran Zhao
- Central Laboratory, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| |
Collapse
|
3
|
Xu H, Shen P, Fang J, Jiang J, Shi Y, Xu P, Jiang R, Wang Z. LINC00624 affects hepatocellular carcinoma proliferation and apoptosis through the miR-342-3p/DNAJC5 axis. J Biochem Mol Toxicol 2024; 38:e23650. [PMID: 38348704 DOI: 10.1002/jbt.23650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 12/15/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024]
Abstract
LINC00624 is a long noncoding RNA (lncRNA) which was seldom investigated before. The goal of our study is to clarify the expression and underlying network of LINC00624 in hepatocellular carcinoma (HCC). Here, both HCC and normal living cell lines were employed. Real-time quantitative PCR and western blot were used to determine the pattern of genes and proteins. Colony formation, flow cytometry and western blot tests were used to determine cell proliferation and apoptosis, respectively. Dual luciferase was used to verify molecule-molecule interactions. LINC00624 expression was increased in HCC cell lines and miR-342-3p was decreased. Elimination of LINC00624 increased proliferation while decreasing cell apoptosis. LINC00624 acted as a molecular sponge for miR-342-3p, hence facilitating DNAJC5 expression. Functional tests demonstrated that miR-342-3p suppression could reverse the effect of LINC00624 silence and overexpression of DNAJC5 significantly mitigated the biological consequences of miR-342-3p. These finding demonstrated that LINC00624 aggravated HCC progression by modulating proliferation and apoptosis via targeting miR-342-3p/DNAJC5 axis. These data support that inhibition of LINC00624 may a potential treatment strategies of HCC.
Collapse
Affiliation(s)
- Huawei Xu
- Department of Hepatobiliary Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Peng Shen
- Department of Hepatobiliary Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Jian Fang
- Department of Hepatobiliary Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Jihua Jiang
- Department of Hepatobiliary Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Yinsheng Shi
- Department of Hepatobiliary Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Pengcheng Xu
- Department of Hepatobiliary Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Renya Jiang
- Department of Hepatobiliary Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Zhengfei Wang
- Department of Hepatobiliary Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| |
Collapse
|
4
|
Ren X, Huang M, Weng W, Xie Y, Wu Y, Zhu S, Zhang Y, Li D, Lai J, Shen S, Lin J, Kuang M, Li X, Yu J, Xu L. Personalized drug screening in patient-derived organoids of biliary tract cancer and its clinical application. Cell Rep Med 2023; 4:101277. [PMID: 37944531 PMCID: PMC10694672 DOI: 10.1016/j.xcrm.2023.101277] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/15/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
Patients with biliary tract cancer (BTC) show different responses to chemotherapy, and there is no effective way to predict chemotherapeutic response. We have generated 61 BTC patient-derived organoids (PDOs) from 82 tumors (74.4%) that show similar histological and genetic characteristics to the corresponding primary BTC tissues. BTC tumor tissues with enhanced stemness- and proliferation-related gene expression by RNA sequencing can more easily form organoids. As expected, BTC PDOs show different responses to the chemotherapies of gemcitabine, cisplatin, 5-fluoruracil, oxaliplatin, etc. The drug screening results in PDOs are further validated in PDO-based xenografts and confirmed in 92.3% (12/13) of BTC patients with actual clinical response. Moreover, we have identified gene expression signatures of BTC PDOs with different drug responses and established gene expression panels to predict chemotherapy response in BTC patients. In conclusion, BTC PDO is a promising precision medicine tool for anti-cancer therapy in BTC patients.
Collapse
Affiliation(s)
- Xiaoxue Ren
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China; Department of Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China
| | - Mingle Huang
- Department of Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China
| | - Weixiang Weng
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China
| | - Yubin Xie
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China
| | - Yifan Wu
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China; Department of Gastroenterology and Hepatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China
| | - Shenghua Zhu
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China
| | - Ying Zhang
- Department of Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China
| | - Dongming Li
- Center of Hepato-Pancreato-Biliary Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China
| | - Jiaming Lai
- Center of Hepato-Pancreato-Biliary Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China
| | - Shunli Shen
- Center of Hepato-Pancreato-Biliary Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China
| | - Jie Lin
- Second Department of General Surgery, Shunde Hospital, Southern Medical University, Foshan, Guangdong Province 528300, China
| | - Ming Kuang
- Center of Hepato-Pancreato-Biliary Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China
| | - Xiaoxing Li
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China.
| | - Jun Yu
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China; Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Lixia Xu
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China; Department of Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China.
| |
Collapse
|
5
|
Sun Q, Lv Y, Sun W. Inhibition of DNAJC12 Inhibited Tumorigenesis of Rectal Cancer via Downregulating HSPA4 Expression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:1027895. [PMID: 36185081 PMCID: PMC9519347 DOI: 10.1155/2022/1027895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/08/2022] [Accepted: 08/20/2022] [Indexed: 11/18/2022]
Abstract
Background Dysregulation of DnaJ heat shock protein family (HSP40) member C12 (DNAJC12) is implicated in the malignancy progression of multiple cancers. The current study aimed to determine the biology function and mechanism of DNAJC12 in rectal cancer (RC). Methods RC tissues, adjacent tissues, RC cell lines, and normal colorectal epithelial cell lines were collected to analyze DNAJC12 expression. The abilities of DNAJC12 on proliferation, migration, and apoptosis of RC cells were detected by CCK-8, wound healing, and flow cytometry assays. Co-IP assays were carried out to confirm the association between DNAJC12 and HSPA4. The effect of DNAJC12 on tumor growth was detected by using the xenograft model of nude mice. Results Elevation of DNAJC12 was uncovered in RC tissues and cell lines. DNAJC12 upregulation facilitated RC cell proliferation and migration and induced apoptosis, while DNAJC12 interference showed the opposite results. Besides, HSAP4 served as a potential binding protein for DNAJC12. Rescue experiments revealed that elevated of HSAP4 restored the impact of DNAJC12 silencing on the cell functions. Finally, DNAJC12 silencing hampered tumor growth of RC in vivo. Conclusion In summary, this study highlighted a key player of DNAJC12 in modulating the malignant biological progression of RC via DNAJC12/HSPA4 axis, displaying a potential therapeutic target for RC.
Collapse
Affiliation(s)
- Qi Sun
- Third Ward of Cancer Center, The PLA Navy Anqing Hospital, Anqing 246003, Anhui, China
| | - Yan Lv
- Department of Oncology, Qingdao Municipal Hospital, Qingdao 266071, Shandong, China
| | - Weihua Sun
- Department of Oncology, Qingdao Municipal Hospital, Qingdao 266071, Shandong, China
| |
Collapse
|
6
|
Kaida A, Iwakuma T. Regulation of p53 and Cancer Signaling by Heat Shock Protein 40/J-Domain Protein Family Members. Int J Mol Sci 2021; 22:13527. [PMID: 34948322 PMCID: PMC8706882 DOI: 10.3390/ijms222413527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/27/2022] Open
Abstract
Heat shock proteins (HSPs) are molecular chaperones that assist diverse cellular activities including protein folding, intracellular transportation, assembly or disassembly of protein complexes, and stabilization or degradation of misfolded or aggregated proteins. HSP40, also known as J-domain proteins (JDPs), is the largest family with over fifty members and contains highly conserved J domains responsible for binding to HSP70 and stimulation of the ATPase activity as a co-chaperone. Tumor suppressor p53 (p53), the most frequently mutated gene in human cancers, is one of the proteins that functionally interact with HSP40/JDPs. The majority of p53 mutations are missense mutations, resulting in acquirement of unexpected oncogenic activities, referred to as gain of function (GOF), in addition to loss of the tumor suppressive function. Moreover, stability and levels of wild-type p53 (wtp53) and mutant p53 (mutp53) are crucial for their tumor suppressive and oncogenic activities, respectively. However, the regulatory mechanisms of wtp53 and mutp53 are not fully understood. Accumulating reports demonstrate regulation of wtp53 and mutp53 levels and/or activities by HSP40/JDPs. Here, we summarize updated knowledge related to the link of HSP40/JDPs with p53 and cancer signaling to improve our understanding of the regulation of tumor suppressive wtp53 and oncogenic mutp53 GOF activities.
Collapse
Affiliation(s)
- Atsushi Kaida
- Department of Oral Radiation Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan;
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Tomoo Iwakuma
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Pediatrics, Children’s Mercy Research Institute, Kansas City, MO 64108, USA
| |
Collapse
|