1
|
Jia H, Moore M, Wadhwa M, Burns C. Human iPSC-Derived Endothelial Cells Exhibit Reduced Immunogenicity in Comparison With Human Primary Endothelial Cells. Stem Cells Int 2024; 2024:6153235. [PMID: 39687754 PMCID: PMC11649354 DOI: 10.1155/sci/6153235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/07/2024] [Indexed: 12/18/2024] Open
Abstract
Human induced pluripotent stem cell (iPSC)-derived endothelial cells (ECs) have emerged as a promising source of autologous cells with great potential to produce novel cell therapy for ischemic vascular diseases. However, their clinical application still faces numerous challenges including safety concerns such as the potential aberrant immunogenicity derived from the reprogramming process. This study investigated immunological phenotypes of iPSC-ECs by a side-by-side comparison with primary human umbilical vein ECs (HUVECs). Three types of human iPSC-ECs, NIBSC8-EC generated in house and two commercial iPSC-ECs, alongside HUVECs, were examined for surface expression of proteins of immune relevance under resting conditions and after cytokine activation. All iPSC-EC populations failed to express major histocompatibility complex (MHC) Class II on their surface following interferon-gamma (IFN-γ) treatment but showed similar basal and IFN-γ-stimulated expression levels of MHC Class I of HUVECs. Multiple iPSC-ECs also retained constitutive and tumor necrosis factor-alpha (TNF-α)-stimulated expression levels of intercellular adhesion molecule-1 (ICAM-1) like HUVECs. However, TNF-α induced a differential expression of E-selectin and vascular cell adhesion molecule-1 (VCAM-1) on iPSC-ECs. Furthermore, real-time monitoring of proliferation of human peripheral blood mononuclear cells (PBMCs) cocultured on an endothelial monolayer over 5 days showed that iPSC-ECs provoked distinct dynamics of PBMC proliferation, which was generally decreased in alloreactivity and IFN-γ-stimulated proliferation of PBMCs compared with HUVECs. Consistently, in the conventional mixed lymphocyte reaction (MLR), the proliferation of total CD3+ and CD4+ T cells after 5-day cocultures with multiple iPSC-EC populations was largely reduced compared to HUVECs. Last, multiple iPSC-EC cocultures secreted lower levels of proinflammatory cytokines than HUVEC cocultures. Collectively, iPSC-ECs manifested many similarities, but also some disparities with a generally weaker inflammatory immune response than primary ECs, indicating that iPSC-ECs may possibly exhibit hypoimmunogenicity corresponding with less risk of immune rejection in a transplant setting, which is important for safe and effective cell therapies.
Collapse
Affiliation(s)
- Haiyan Jia
- Biotherapeutics and Advanced Therapies, Research and Development, Science and Research Group, Medicines and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar EN6 3QG, Hertfordshire, UK
| | - Melanie Moore
- Therapeutic Reference Materials, Standards Lifecycle, Science and Research Group, Medicines and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar EN6 3QG, Hertfordshire, UK
| | - Meenu Wadhwa
- Biotherapeutics and Advanced Therapies, Research and Development, Science and Research Group, Medicines and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar EN6 3QG, Hertfordshire, UK
| | - Chris Burns
- Biotherapeutics and Advanced Therapies, Research and Development, Science and Research Group, Medicines and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar EN6 3QG, Hertfordshire, UK
| |
Collapse
|
2
|
Rehak L, Giurato L, Monami M, Meloni M, Scatena A, Panunzi A, Manti GM, Caravaggi CMF, Uccioli L. The Immune-Centric Revolution Translated into Clinical Application: Peripheral Blood Mononuclear Cell (PBMNC) Therapy in Diabetic Patients with No-Option Critical Limb-Threatening Ischemia (NO-CLTI)-Rationale and Meta-Analysis of Observational Studies. J Clin Med 2024; 13:7230. [PMID: 39685690 DOI: 10.3390/jcm13237230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/04/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Chronic limb-threatening ischemia (CLTI), the most advanced form of peripheral arterial disease (PAD), is the comorbidity primarily responsible for major lower-limb amputations, particularly for diabetic patients. Autologous cell therapy has been the focus of efforts over the past 20 years to create non-interventional therapeutic options for no-option CLTI to improve limb perfusion and wound healing. Among the different available techniques, peripheral blood mononuclear cells (PBMNC) appear to be the most promising autologous cell therapy due to physio-pathological considerations and clinical evidence, which will be discussed in this review. A meta-analysis of six clinical studies, including 256 diabetic patients treated with naive, fresh PBMNC produced via a selective filtration point-of-care device, was conducted. PBMNC was associated with a mean yearly amputation rate of 15.7%, a mean healing rate of 62%, and a time to healing of 208.6 ± 136.5 days. Moreover, an increase in TcPO2 and a reduction in pain were observed. All-cause mortality, with a mean rate of 22.2% and a yearly mortality rate of 18.8%, was reported. No serious adverse events were reported. Finally, some practical and financial considerations are provided, which point to the therapy's recommendation as the first line of treatment for this particular and crucial patient group.
Collapse
Affiliation(s)
- Laura Rehak
- Athena Cell Therapy Technologies, 50126 Florence, Italy
| | - Laura Giurato
- Department of Biomedicine and Prevention, Diabetes-Endocrine Section CTO Hospital, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Matteo Monami
- Department of Diabetology Azienda Ospedaliera Universitaria Careggi, University of Florence, 50134 Florence, Italy
| | - Marco Meloni
- Diabetic Foot Unit, Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Alessia Scatena
- Diabetology Unit, San Donato Hospital Arezzo, Local Health Authorities Southeast Tuscany, 52100 Arezzo, Italy
| | - Andrea Panunzi
- Department of Biomedicine and Prevention, Diabetes-Endocrine Section CTO Hospital, Tor Vergata University of Rome, 00133 Rome, Italy
- PhD School of Applied Medical and Surgical Sciences, University of Rome Tor Vergata Italy, 00133 Rome, Italy
| | | | | | - Luigi Uccioli
- Department of Biomedicine and Prevention, Diabetes-Endocrine Section CTO Hospital, Tor Vergata University of Rome, 00133 Rome, Italy
| |
Collapse
|
3
|
Scatena A, Apicella M, Mantuano M, Ragghianti B, Silverii A, Miranda C, Monge L, Uccioli L, Scevola G, Stabile E, Gargiulo M, Vermigli C. Autologous cell therapy for ischemic diabetic foot: a meta-analysis of randomized controlled trials for the development of the Italian guidelines for the treatment of diabetic foot syndrome. Acta Diabetol 2024:10.1007/s00592-024-02393-z. [PMID: 39545964 DOI: 10.1007/s00592-024-02393-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/13/2024] [Indexed: 11/17/2024]
Abstract
AIM To assess the efficacy and safety of autologous cell therapy (ACT) in patients with ischemic diabetic foot ulcers (DFU). The present meta-analysis was designed to support the development of the Italian Guidelines for the Treatment of Diabetic Foot Syndrome (DFS). METHODS A Medline and Embase search were performed up to Feb 1st, 2024 collecting all RCTs including diabetic patients or reporting subgroup analyses on diabetic patients with ischemic foot ulcers comparing ACT with placebo/no therapy/standard of care (SoC), with a duration of at least 26 weeks. Prespecified endpoints were: major amputation (principal) and minor amputation, ulcer healing, time-to-healing, transcutaneous oxygen pressure (TcPO2), ankle-brachial index (ABI), pain, and all-cause mortality (secondary). Any ACT was allowed, irrespective of cell product type and route of administration (intra-arterial and intramuscular). RESULTS Seven studies fulfilled all inclusion criteria, all using intramuscular transplantation as route of administration, but only 2 had a follow-up greater than 26 weeks. Participants treated with ACT had a significantly lower risk of major amputations in comparison with SoC/placebo (MH-OR 0.47 [0.24, 0.92], p = 0.03). ACT was also associated with a significantly higher rate of ulcer healing (MH-OR: 10.1 [3.5, 29.6], p < 0.001), greater increase of TcPO2 and ABI values (WMD: 17.57 [13.02, 22.12], p < 0.001), and reduction of pain (WMD: -1.83 [-2.32, -1.34], p = 0.003). CONCLUSIONS ACT must be considered as a potential therapy for patients with ischemic diabetic foot ulcers. Further studies are needed to better clarify their role in the treatment and management of DFS.
Collapse
Affiliation(s)
- Alessia Scatena
- Diabetology Unit, Health Authorities South East Tuscany, San Donato Hospital, Via Pietro Nenni 20, 52100, Arezzo, Italy.
| | - Matteo Apicella
- Diabetology Unit, Health Authorities South East Tuscany, San Donato Hospital, Via Pietro Nenni 20, 52100, Arezzo, Italy
| | - Michele Mantuano
- Diabetology Unit, Health Authorities South East Tuscany, San Donato Hospital, Via Pietro Nenni 20, 52100, Arezzo, Italy
| | - Benedetta Ragghianti
- Azienda Ospedaliero Universitaria Careggi and University of Florence, Florence, Italy
| | - Antonio Silverii
- Azienda Ospedaliero Universitaria Careggi and University of Florence, Florence, Italy
| | | | - Luca Monge
- AMD - Italian Association of Clinical Diabetologists, Rome, Italy
| | - Luigi Uccioli
- Diabetes Section CTO Hospital and dept of Biomedicine and prevention Tor Vergata University of Rome, Rome, Italy
| | | | | | - Mauro Gargiulo
- Vascular Surgery, University of Bologna- DIMEC, Bologna, Italy
| | | |
Collapse
|
4
|
Furgiuele S, Cappello E, Ruggeri M, Camilli D, Palasciano G, Guerrieri MW, Michelagnoli S, Dorrucci V, Pompeo F. One-Year Analysis of Autologous Peripheral Blood Mononuclear Cells as Adjuvant Therapy in Treatment of Diabetic Revascularizable Patients Affected by Chronic Limb-Threatening Ischemia: Real-World Data from Italian Registry ROTARI. J Clin Med 2024; 13:5275. [PMID: 39274487 PMCID: PMC11396002 DOI: 10.3390/jcm13175275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
Wounds in diabetic patients with peripheral arterial disease (PAD) may be poorly responsive to revascularization and conventional therapies. Background/Objective: This study's objective is to analyze the results of regenerative cell therapy with peripheral blood mononuclear cells (PBMNCs) as an adjuvant to revascularization. Methods: This study is based on 168 patients treated with endovascular revascularization below the knee plus three PBMNC implants. The follow-up included clinical outcomes at 1-2-3-6 and 12 months based on amputations, wound healing, pain, and TcPO2. Results: The results at 1 year for 122 cases showed a limb rescue rate of 94.26%, a complete wound healing in 65.59% of patients, and an improvement in the wound area, significant pain relief, and increased peripheral oxygenation. In total, 64.51% of patients completely healed at 6 months, compared to the longer wound healing time reported in the literature in the same cohort of patients, suggesting that PBMNCs have an adjuvant effect in wound healing after revascularization. Conclusions: PBMNC regenerative therapy is a safe and promising treatment for diabetic PAD. In line with previous experiences, this registry shows improved healing in diabetic patients with below-the-knee arteriopathy. The findings support the use of this cell therapy and advocate for further research.
Collapse
Affiliation(s)
- Sergio Furgiuele
- Unit of Vascular and Endovascular Surgery, High Specialty Hospital "Mediterranea", 80122 Napoli, Italy
| | - Enrico Cappello
- Second Unit of Vascular and Endovascular Surgery, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Massimo Ruggeri
- Unit of Vascular Surgery, San Camillo de Lellis Hospital, 02100 Rieti, Italy
| | - Daniele Camilli
- Casa di Cura Santa Caterina della Rosa Asl RM 2, 00176 Roma, Italy
| | - Giancarlo Palasciano
- Vascular Surgery Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Massimiliano Walter Guerrieri
- Vascular Surgery Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
- UOC Vascular Surgery, San Donato Hospital, 52100 Arezzo, Italy
| | - Stefano Michelagnoli
- Vascular and Endovascular Surgery Unit, San Giovanni di Dio Hospital, 50143 Florence, Italy
| | - Vittorio Dorrucci
- Department of Vascular Surgery, Umberto I Hospital, 96100 Venice, Italy
| | - Francesco Pompeo
- Second Unit of Vascular and Endovascular Surgery, IRCCS Neuromed, 86077 Pozzilli, Italy
| |
Collapse
|
5
|
Huang Z, Chen Z, Ye T, Luo L, Zhang J, Li Q, Wang Y, Zhao B. Large extracellular vesicles from induced pluripotent stem cell-marrow stem cells enhance limb angiogenesis via ERK/MAPK. Nanomedicine (Lond) 2024; 19:1525-1539. [PMID: 39012207 PMCID: PMC11321421 DOI: 10.1080/17435889.2024.2363743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/31/2024] [Indexed: 07/17/2024] Open
Abstract
Aim: This study aims to investigate the effects of large extracellular vesicles (EVs) induced by pluripotent stem cell-derived mesenchymal stem cells on lower limb ischemic disease and explore its potential mechanisms. Materials & methods: The pathology of muscles was accessed by H&E staining and immunofluorescence staining. In vitro, we conducted wound-healing assay, tube formation assay, RT qPCR, ELISA, RNA sequencing and proteomic analysis. Results: iMSCs-lEVs alleviated the injury of ischemic lower limb and promoted the recovery of lower limb function. In vitro, iMSCs-lEVs promoted the proliferation, migration, and angiogenesis of HMEC-1 cells by regulating the ERK/MAPK signing pathway. Conclusion: This study demonstrated that iMSCs-lEVs promoted endothelial cell angiogenesis via the ERK/MAPK signaling pathway, thereby improving function after lower limb ischemic injury.
Collapse
Affiliation(s)
- Ziyu Huang
- Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600# Yishan Road, Shanghai200233, China
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600# Yishan Road, Shanghai200233, China
| | - Zhengsheng Chen
- Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600# Yishan Road, Shanghai200233, China
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600# Yishan Road, Shanghai200233, China
| | - Teng Ye
- Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600# Yishan Road, Shanghai200233, China
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600# Yishan Road, Shanghai200233, China
| | - Lei Luo
- Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600# Yishan Road, Shanghai200233, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai200030, China
| | - Juntao Zhang
- Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600# Yishan Road, Shanghai200233, China
| | - Qing Li
- Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600# Yishan Road, Shanghai200233, China
| | - Yang Wang
- Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600# Yishan Road, Shanghai200233, China
| | - Bizeng Zhao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600# Yishan Road, Shanghai200233, China
| |
Collapse
|
6
|
Setia O, Lee SR, Dardik A. Modalities to Deliver Cell Therapy for Treatment of Chronic Limb Threatening Ischemia. Adv Wound Care (New Rochelle) 2024; 13:253-279. [PMID: 37002893 PMCID: PMC11305013 DOI: 10.1089/wound.2022.0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 03/29/2023] [Indexed: 04/04/2023] Open
Abstract
Significance: Chronic limb threatening ischemia (CLTI) is a severe form of peripheral arterial disease (PAD) that is associated with high rates of morbidity and mortality, and especially limb loss. In patients with no options for revascularization, stem cell therapy is a promising treatment option. Recent Advances: Cell therapy directly delivered to the affected ischemic limb has been shown to be a safe, effective, and feasible therapeutic alternative for patients with severe PAD. Multiple methods for cell delivery, including local, regional, and combination approaches, have been examined in both pre-clinical studies and clinical trials. This review focuses on delivery modalities used in clinical trials that deliver cell therapy to patients with severe PAD. Critical Issues: Patients with CLTI are at high risk for complications of the disease, such as amputations, leading to a poor quality of life. Many of these patients do not have viable options for revascularization using traditional interventional or surgical methods. Clinical trials have shown therapeutic benefit for cell therapy in these patients, but methods of cell treatment are not standardized, including the method of cell delivery to the ischemic limb. Future Directions: The ideal delivery approach for stem cell therapy in PAD patients remains unclear. Further studies are needed to determine the best modality of cell delivery to maximize clinical benefits.
Collapse
Affiliation(s)
- Ocean Setia
- Vascular Biology and Therapeutics Program, Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Shin-Rong Lee
- Vascular Biology and Therapeutics Program, Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Alan Dardik
- Vascular Biology and Therapeutics Program, Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Zhong T, Gao N, Guan Y, Liu Z, Guan J. Co-Delivery of Bioengineered Exosomes and Oxygen for Treating Critical Limb Ischemia in Diabetic Mice. ACS NANO 2023; 17:25157-25174. [PMID: 38063490 PMCID: PMC10790628 DOI: 10.1021/acsnano.3c08088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Diabetic patients with critical limb ischemia face a high rate of limb amputation. Regeneration of the vasculature and skeletal muscles can salvage diseased limbs. Therapy using stem cell-derived exosomes that contain multiple proangiogenic and promyogenic factors represents a promising strategy. Yet the therapeutic efficacy is not optimal because exosomes alone cannot efficiently rescue and recruit endothelial and skeletal muscle cells and restore their functions under hyperglycemic and ischemic conditions. To address these limitations, we fabricated ischemic-limb-targeting stem cell-derived exosomes and oxygen-releasing nanoparticles and codelivered them in order to recruit endothelial and skeletal muscle cells, improve cell survival under ischemia before vasculature is established, and restore cell morphogenic function under high glucose and ischemic conditions. The exosomes and oxygen-releasing nanoparticles, delivered by intravenous injection, specifically accumulated in the ischemic limbs. Following 4 weeks of delivery, the exosomes and released oxygen synergistically stimulated angiogenesis and muscle regeneration without inducing substantial inflammation and reactive oxygen species overproduction. Our work demonstrates that codelivery of exosomes and oxygen is a promising treatment solution for saving diabetic ischemic limbs.
Collapse
Affiliation(s)
- Ting Zhong
- Department of Mechanical Engineering & Materials Science, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Ning Gao
- Institute of Materials Science and Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Ya Guan
- Institute of Materials Science and Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Zhongting Liu
- Institute of Materials Science and Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Jianjun Guan
- Department of Mechanical Engineering & Materials Science, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Institute of Materials Science and Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
8
|
Dubský M, Husáková J, Sojáková D, Fejfarová V, Jude EB. Cell Therapy of Severe Ischemia in People with Diabetic Foot Ulcers-Do We Have Enough Evidence? Mol Diagn Ther 2023; 27:673-683. [PMID: 37740111 PMCID: PMC10590286 DOI: 10.1007/s40291-023-00667-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2023] [Indexed: 09/24/2023]
Abstract
This current opinion article critically evaluates the efficacy of autologous cell therapy (ACT) for chronic limb-threatening ischemia (CLTI), especially in people with diabetes who are not candidates for standard revascularization. This treatment approach has been used in 'no-option' CLTI in the last two decades and more than 1700 patients have received ACT worldwide. Here we analyze the level of published evidence of ACT as well as our experience with this treatment method. Many studies have shown that ACT is safe and an effective method for patients with the most severe lower limb ischemia. However, some trials did not show any benefit of ACT, and there is some heterogeneity in the types of injected cells, route of administration and assessed endpoints. Nevertheless, we believe that ACT plays an important role in a comprehensive treatment of patients with diabetic foot and severe ischemia.
Collapse
Affiliation(s)
- Michal Dubský
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
- First Faculty of Medicine, Charles Universtiy, Prague, Czech Republic.
| | - Jitka Husáková
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- First Faculty of Medicine, Charles Universtiy, Prague, Czech Republic
| | - Dominika Sojáková
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- First Faculty of Medicine, Charles Universtiy, Prague, Czech Republic
| | | | - Edward B Jude
- Diabetes Center, Tameside and Glossop Integrated Care NHS Foundation Trust, Ashton Under Lyne, UK.
- University of Manchester, Lancashire, UK.
| |
Collapse
|
9
|
Peeters JAHM, Peters HAB, Videler AJ, Hamming JF, Schepers A, Quax PHA. Exploring the Effects of Human Bone Marrow-Derived Mononuclear Cells on Angiogenesis In Vitro. Int J Mol Sci 2023; 24:13822. [PMID: 37762125 PMCID: PMC10531254 DOI: 10.3390/ijms241813822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Cell therapies involving the administration of bone marrow-derived mononuclear cells (BM-MNCs) for patients with chronic limb-threatening ischemia (CLTI) have shown promise; however, their overall effectiveness lacks evidence, and the exact mechanism of action remains unclear. In this study, we examined the angiogenic effects of well-controlled human bone marrow cell isolates on endothelial cells. The responses of endothelial cell proliferation, migration, tube formation, and aortic ring sprouting were analyzed in vitro, considering both the direct and paracrine effects of BM cell isolates. Furthermore, we conducted these investigations under both normoxic and hypoxic conditions to simulate the ischemic environment. Interestingly, no significant effect on the angiogenic response of human umbilical vein endothelial cells (HUVECs) following treatment with BM-MNCs was observed. This study fails to provide significant evidence for angiogenic effects from human bone marrow cell isolates on human endothelial cells. These in vitro experiments suggest that the potential benefits of BM-MNC therapy for CLTI patients may not involve endothelial cell angiogenesis.
Collapse
Affiliation(s)
- Judith A. H. M. Peeters
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (J.A.H.M.P.); (H.A.B.P.); (A.J.V.); (J.F.H.); (A.S.)
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Hendrika A. B. Peters
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (J.A.H.M.P.); (H.A.B.P.); (A.J.V.); (J.F.H.); (A.S.)
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Anique J. Videler
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (J.A.H.M.P.); (H.A.B.P.); (A.J.V.); (J.F.H.); (A.S.)
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Jaap F. Hamming
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (J.A.H.M.P.); (H.A.B.P.); (A.J.V.); (J.F.H.); (A.S.)
| | - Abbey Schepers
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (J.A.H.M.P.); (H.A.B.P.); (A.J.V.); (J.F.H.); (A.S.)
| | - Paul H. A. Quax
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (J.A.H.M.P.); (H.A.B.P.); (A.J.V.); (J.F.H.); (A.S.)
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|
10
|
Arango-Rodríguez ML, Mateus LC, Sossa CL, Becerra-Bayona SM, Solarte-David VA, Ochoa Vera ME, Viviescas LTG, Berrio AMV, Serrano SE, Vargas O, Isla AC, Benitez A, Rangel G. A novel therapeutic management for diabetes patients with chronic limb-threatening ischemia: comparison of autologous bone marrow mononuclear cells versus allogenic Wharton jelly-derived mesenchymal stem cells. Stem Cell Res Ther 2023; 14:221. [PMID: 37626416 PMCID: PMC10464344 DOI: 10.1186/s13287-023-03427-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Chronic limb-threatening ischemia (CLTI) represents the final stage of peripheral arterial disease. Approximately one-third of patients with CLTI are not eligible for conventional surgical treatments. Furthermore, patients with advanced stage of CLTI are prone to amputation and death. Thus, an effective therapeutic strategy is urgently needed. In this context, autologous bone marrow mononuclear cell (auto-BM-MNC) and allogeneic mesenchymal stem cells represent a promising therapeutic approach for treating CLTI. In this study, we compared the safety and beneficial therapeutic effect of auto-BM-MNC versus allogeneic Wharton jelly-derived mesenchymal stem cells (allo-WJ-MSCs) in diabetic patients with CLTI. METHODS We performed a randomized, prospective, double-blind and controlled pilot study. Twenty-four diabetic patients in the advanced stage of CLTI (4 or 5 in Rutherford's classification) and a transcutaneous oxygen pressure (TcPO2) below 30 mmHg were randomized to receive 15 injections of (i) auto-BM-MNC (7.197 × 106 ± 2.984 × 106 cells/mL) (n = 7), (ii) allo-WJ-MSCs (1.333 × 106 cells/mL) (n = 7) or (iii) placebo solution (1 mL) (n = 10), which were administered into the periadventitial layer of the arterial walls under eco-Doppler guidance. The follow-up visits were at months 1, 3, 6, and 12 to evaluate the following parameters: (i) Rutherford's classification, (ii) TcPO2, (iii) percentage of wound closure, (iv) pain, (v) pain-free walking distance, (vi) revascularization and limb-survival proportion, and (vii) life quality (EQ-5D questionnaire). RESULTS No adverse events were reported. Patients with CLTI who received auto-BM-MNC and allo-WJ-MSCs presented an improvement in Rutherford's classification, a significant increase in TcPO2 values, a reduction in the lesion size in a shorter time, a decrease in the pain score and an increase in the pain-free walking distance, in comparison with the placebo group. In addition, the participants treated with auto-BM-MNC and allo-WJ-MSCs kept their limbs during the follow-up period, unlike the placebo group, which had a marked increase in amputation. CONCLUSIONS Our results showed that patients with CLTI treated with auto-BM-MNC and allo-WJ-MSCs conserved 100% of their limb during 12 months of the follow-up compared to the placebo group, where 60% of participants underwent limb amputation in different times. Furthermore, we observed a faster improvement in the allo-WJ-MSC group, unlike the auto-BM-MNC group. Trial registration This study was retrospectively registered at ClinicalTrials.gov (NCT05631444).
Collapse
Affiliation(s)
- Martha L Arango-Rodríguez
- Banco Multitejidos y Centro de Terapias Avanzadas, Clínica FOSCAL Internacional, 681004, Floridablanca, Colombia.
| | - Ligia C Mateus
- Fundación Oftalmológica de Santander Carlos Ardila Lulle, 681004, Floridablanca, Colombia
| | - Claudia L Sossa
- Fundación Oftalmológica de Santander Carlos Ardila Lulle, 681004, Floridablanca, Colombia
- Programa para el Tratamiento y Estudio de Enfermedades Hematológicas y Oncológicas de Santander (PROTEHOS), 681004153, Floridablanca, Colombia
- Facultad de Ciencias de la Salud, Universidad Autónoma de Bucaramanga - UNAB, 681003, Bucaramanga, Colombia
| | - Silvia M Becerra-Bayona
- Facultad de Ciencias de la Salud, Universidad Autónoma de Bucaramanga - UNAB, 681003, Bucaramanga, Colombia
| | - Víctor Alfonso Solarte-David
- Facultad de Ciencias de la Salud, Universidad Autónoma de Bucaramanga - UNAB, 681003, Bucaramanga, Colombia
- Facultad de Ingeniería, Universidad Autónoma de Bucaramanga - UNAB, 680003, Bucaramanga, Colombia
| | - Miguel Enrique Ochoa Vera
- Facultad de Ciencias de la Salud, Universidad Autónoma de Bucaramanga - UNAB, 681003, Bucaramanga, Colombia
| | - Lady T Giratá Viviescas
- Banco Multitejidos y Centro de Terapias Avanzadas, Clínica FOSCAL Internacional, 681004, Floridablanca, Colombia
| | - Ana M Vera Berrio
- Banco Multitejidos y Centro de Terapias Avanzadas, Clínica FOSCAL Internacional, 681004, Floridablanca, Colombia
| | - Sergio Eduardo Serrano
- Facultad de Ciencias de la Salud, Universidad Autónoma de Bucaramanga - UNAB, 681003, Bucaramanga, Colombia
| | - Oliverio Vargas
- Fundación Oftalmológica de Santander Carlos Ardila Lulle, 681004, Floridablanca, Colombia
| | - Andrés Catalá Isla
- Fundación Oftalmológica de Santander Carlos Ardila Lulle, 681004, Floridablanca, Colombia
| | - Alape Benitez
- Fundación Oftalmológica de Santander Carlos Ardila Lulle, 681004, Floridablanca, Colombia
| | - Germán Rangel
- Fundación Oftalmológica de Santander Carlos Ardila Lulle, 681004, Floridablanca, Colombia
| |
Collapse
|
11
|
Husakova J, Echalar B, Kossl J, Palacka K, Fejfarova V, Dubsky M. The Effects of Immunosuppressive Drugs on the Characteristics and Functional Properties of Bone Marrow-Derived Stem Cells Isolated from Patients with Diabetes Mellitus and Peripheral Arterial Disease. Biomedicines 2023; 11:1872. [PMID: 37509511 PMCID: PMC10377428 DOI: 10.3390/biomedicines11071872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Diabetic patients (DPs) with foot ulcers can receive autologous cell therapy (ACT) as a last therapeutic option. Even DPs who have undergone organ transplantation and are using immunosuppressive (IS) drugs can be treated by ACT. The aim of our study was to analyze the effects of IS drugs on the characteristics of bone marrow-derived stem cells (BM-MSCs). METHODS The cells were isolated from the bone marrow of DPs, cultivated for 14-18 days, and phenotypically characterized using flow cytometry. These precursor cells were cultured in the presence of various IS drugs. The impact of IS drugs on metabolic activity was measured using a WST-1 assay, and the expression of genes for immunoregulatory molecules was detected through RT-PCR. Cell death was analyzed through the use of flow cytometry, and the production of cytokines was determined by ELISA. RESULTS The mononuclear fraction of cultured cells contained mesenchymal stem cells (CD45-CD73+CD90+CD105+), myeloid angiogenic cells (CD45+CD146-), and endothelial colony-forming cells (CD45-CD146+). IS drugs inhibited metabolic activity, the expression of genes for immunoregulatory molecules, the production of cytokines, and the viability of the cells. CONCLUSIONS The results indicate that IS drugs in a dose-dependent manner had a negative impact on the properties of BM-MSCs used to treat ischemic diabetic foot ulcers, and that these drugs could affect the therapeutic potential of BM-MSCs.
Collapse
Affiliation(s)
- Jitka Husakova
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic
- First Faculty of Medicine, Charles University, 14021 Prague, Czech Republic
| | - Barbora Echalar
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, 14021 Prague, Czech Republic
| | - Jan Kossl
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, 14021 Prague, Czech Republic
| | - Katerina Palacka
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, 14021 Prague, Czech Republic
| | - Vladimira Fejfarova
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic
| | - Michal Dubsky
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic
- First Faculty of Medicine, Charles University, 14021 Prague, Czech Republic
| |
Collapse
|
12
|
Baouche M, Ochota M, Locatelli Y, Mermillod P, Niżański W. Mesenchymal Stem Cells: Generalities and Clinical Significance in Feline and Canine Medicine. Animals (Basel) 2023; 13:1903. [PMID: 37370414 DOI: 10.3390/ani13121903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells: they can proliferate like undifferentiated cells and have the ability to differentiate into different types of cells. A considerable amount of research focuses on the potential therapeutic benefits of MSCs, such as cell therapy or tissue regeneration, and MSCs are considered powerful tools in veterinary regenerative medicine. They are the leading type of adult stem cells in clinical trials owing to their immunosuppressive, immunomodulatory, and anti-inflammatory properties, as well as their low teratogenic risk compared with pluripotent stem cells. The present review details the current understanding of the fundamental biology of MSCs. We focus on MSCs' properties and their characteristics with the goal of providing an overview of therapeutic innovations based on MSCs in canines and felines.
Collapse
Affiliation(s)
- Meriem Baouche
- Department of Reproduction and Clinic of Farm Animals, Wrocław University of Environmental and Life Sciences, 50-366 Wrocław, Poland
| | - Małgorzata Ochota
- Department of Reproduction and Clinic of Farm Animals, Wrocław University of Environmental and Life Sciences, 50-366 Wrocław, Poland
| | - Yann Locatelli
- Physiology of Reproduction and Behaviors (PRC), UMR085, INRAE, CNRS, University of Tours, 37380 Nouzilly, France
- Museum National d'Histoire Naturelle, Réserve Zoologique de la Haute Touche, 36290 Obterre, France
| | - Pascal Mermillod
- Physiology of Reproduction and Behaviors (PRC), UMR085, INRAE, CNRS, University of Tours, 37380 Nouzilly, France
| | - Wojciech Niżański
- Department of Reproduction and Clinic of Farm Animals, Wrocław University of Environmental and Life Sciences, 50-366 Wrocław, Poland
| |
Collapse
|
13
|
Huerta CT, Voza FA, Ortiz YY, Liu ZJ, Velazquez OC. Mesenchymal stem cell-based therapy for non-healing wounds due to chronic limb-threatening ischemia: A review of preclinical and clinical studies. Front Cardiovasc Med 2023; 10:1113982. [PMID: 36818343 PMCID: PMC9930203 DOI: 10.3389/fcvm.2023.1113982] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
Progressive peripheral arterial disease (PAD) can result in chronic limb-threatening ischemia (CLTI) characterized by clinical complications including rest pain, gangrene and tissue loss. These complications can propagate even more precipitously in the setting of common concomitant diseases in patients with CLTI such as diabetes mellitus (DM). CLTI ulcers are cutaneous, non-healing wounds that persist due to the reduced perfusion and dysfunctional neovascularization associated with severe PAD. Existing therapies for CLTI are primarily limited to anatomic revascularization and medical management of contributing factors such as atherosclerosis and glycemic control. However, many patients fail these treatment strategies and are considered "no-option," thereby requiring extremity amputation, particularly if non-healing wounds become infected or fulminant gangrene develops. Given the high economic burden imposed on patients, decreased quality of life, and poor survival of no-option CLTI patients, regenerative therapies aimed at neovascularization to improve wound healing and limb salvage hold significant promise. Cell-based therapy, specifically utilizing mesenchymal stem/stromal cells (MSCs), is one such regenerative strategy to stimulate therapeutic angiogenesis and tissue regeneration. Although previous reviews have focused primarily on revascularization outcomes after MSC treatments of CLTI with less attention given to their effects on wound healing, here we review advances in pre-clinical and clinical studies related to specific effects of MSC-based therapeutics upon ischemic non-healing wounds associated with CLTI.
Collapse
Affiliation(s)
- Carlos Theodore Huerta
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Francesca A. Voza
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Yulexi Y. Ortiz
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Zhao-Jun Liu
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States,Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL, United States,*Correspondence: Omaida C. Velazquez, ; Zhao-Jun Liu,
| | - Omaida C. Velazquez
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States,Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL, United States,*Correspondence: Omaida C. Velazquez, ; Zhao-Jun Liu,
| |
Collapse
|
14
|
Kyryk V, Tsupykov O, Ustymenko A, Smozhanik E, Govbakh I, Butenko G, Skibo G. Age-related ultrastructural changes in spheroids of the adipose-derived multipotent mesenchymal stromal cells from ovariectomized mice. Front Cell Neurosci 2023; 17:1072750. [PMID: 36874212 PMCID: PMC9982046 DOI: 10.3389/fncel.2023.1072750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/30/2023] [Indexed: 02/19/2023] Open
Abstract
Introduction: Adipose-derived multipotent mesenchymal stromal cells (ADSCs) are widely used for cell therapy, in particular for the treatment of diseases of the nervous system. An important issue is to predict the effectiveness and safety of such cell transplants, considering disorders of adipose tissue under age-related dysfunction of sex hormones production. The study aimed to investigate the ultrastructural characteristics of 3D spheroids formed by ADSCs of ovariectomized mice of different ages compared to age-matched controls. Methods: ADSCs were obtained from female CBA/Ca mice randomly divided into four groups: CtrlY-control young (2 months) mice, CtrlO-control old (14 months) mice, OVxY-ovariectomized young mice, and OVxO-ovariectomized old mice of the same age. 3D spheroids were formed by micromass technique for 12-14 days and their ultrastructural characteristics were estimated by transmission electron microscopy. Results and Discussion: The electron microscopy analysis of spheroids from CtrlY animals revealed that ADSCs formed a culture of more or less homogeneous in size multicellular structures. The cytoplasm of these ADSCs had a granular appearance due to being rich in free ribosomes and polysomes, indicating active protein synthesis. Extended electron-dense mitochondria with a regular cristae structure and a predominant condensed matrix were observed in ADSCs from CtrlY group, which could indicate high respiratory activity. At the same time, ADSCs from CtrlO group formed a culture of heterogeneous in size spheroids. In ADSCs from CtrlO group, the mitochondrial population was heterogeneous, a significant part was represented by more round structures. This may indicate an increase in mitochondrial fission and/or an impairment of the fusion. Significantly fewer polysomes were observed in the cytoplasm of ADSCs from CtrlO group, indicating low protein synthetic activity. The cytoplasm of ADSCs in spheroids from old mice had significantly increased amounts of lipid droplets compared to cells obtained from young animals. Also, an increase in the number of lipid droplets in the cytoplasm of ADSCs was observed in both the group of young and old ovariectomized mice compared with control animals of the same age. Together, our data indicate the negative impact of aging on the ultrastructural characteristics of 3D spheroids formed by ADSCs. Our findings are particularly promising in the context of potential therapeutic applications of ADSCs for the treatment of diseases of the nervous system.
Collapse
Affiliation(s)
- Vitalii Kyryk
- Cell and Tissue Technologies Department, Institute of Regenerative Medicine, National Scientific Center M.D. Strazhesko Institute of Cardiology, Clinical and Regenerative Medicine of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine.,Laboratory of Pathophysiology and Immunology, D. F. Chebotarev State Institute of Gerontology of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Oleg Tsupykov
- Cell and Tissue Technologies Department, Institute of Regenerative Medicine, National Scientific Center M.D. Strazhesko Institute of Cardiology, Clinical and Regenerative Medicine of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine.,Department of Cytology, Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Alina Ustymenko
- Cell and Tissue Technologies Department, Institute of Regenerative Medicine, National Scientific Center M.D. Strazhesko Institute of Cardiology, Clinical and Regenerative Medicine of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine.,Laboratory of Pathophysiology and Immunology, D. F. Chebotarev State Institute of Gerontology of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Ekaterina Smozhanik
- Department of Cytology, Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Iryna Govbakh
- Department of General Practice-Family Medicine, Kharkiv Medical Academy of Postgraduate Education, Kharkiv, Ukraine
| | - Gennadii Butenko
- Cell and Tissue Technologies Department, Institute of Regenerative Medicine, National Scientific Center M.D. Strazhesko Institute of Cardiology, Clinical and Regenerative Medicine of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine.,Laboratory of Pathophysiology and Immunology, D. F. Chebotarev State Institute of Gerontology of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Galyna Skibo
- Cell and Tissue Technologies Department, Institute of Regenerative Medicine, National Scientific Center M.D. Strazhesko Institute of Cardiology, Clinical and Regenerative Medicine of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine.,Department of Cytology, Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
15
|
Mohamed SA, Duffy A, McInerney V, Krawczyk J, Hayat A, Naughton S, Finnerty A, Holohan M, Liew A, Tubassam M, Walsh SR, O'Brien T, Howard L. Marrow changes and reduced proliferative capacity of mesenchymal stromal cells from patients with "no-option" critical limb ischemia; observations on feasibility of the autologous approach from a clinical trial. Cytotherapy 2022; 24:1259-1267. [PMID: 35999133 DOI: 10.1016/j.jcyt.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/23/2022] [Accepted: 07/07/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND AIMS Approximately 1 in 3 patients with critical limb ischemia (CLI) are not suitable for surgical or endovascular revascularization. Those "no-option" patients are at high risk of amputation and death. Autologous bone marrow mesenchymal stromal cells (MSCs) may provide a limb salvage option. In this study, bone marrow characteristics and expansion potentials of CLI-derived MSCs produced during a phase 1b clinical trial were compared with young healthy donor MSCs to determine the feasibility of an autologous approach. Cells were produced under Good Manufacturing Practice conditions and underwent appropriate release testing. METHODS Five bone marrow aspirates derived from patients with CLI were compared with six young healthy donor marrows in terms of number of colony-forming units-fibroblast (CFUF) and mononuclear cells. The mean population doubling times and final cell yields were used to evaluate expansion potential. The effect of increasing the volume of marrow on the CFUF count and final cell yield was evaluated by comparing 5 CLI-derived MSCs batches produced from a targeted 30 mL of marrow aspirate to five batches produced from a targeted 100 mL of marrow. RESULTS CLI-derived marrow aspirate showed significantly lower numbers of mononuclear cells with no difference in the number of CFUFs when compared with healthy donors' marrow aspirate. CLI-derived MSCs showed a significantly longer population doubling time and reduced final cell yield compared with young healthy donors' MSCs. The poor growth kinetics of CLI MSCs were not mitigated by increasing the bone marrow aspirate from 30 to 100 mL. CONCLUSIONS In addition to the previously reported karyotype abnormalities in MSCs isolated from patients with CLI, but not in cells from healthy donors, the feasibility of autologous transplantation of bone marrow MSCs for patients with no-option CLI is further limited by the increased expansion time and the reduced cell yield.
Collapse
Affiliation(s)
- Sara Azhari Mohamed
- Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| | - Aoife Duffy
- Centre for Cell Manufacturing Ireland, National University of Ireland Galway, Galway, Ireland
| | - Veronica McInerney
- HRB Clinical Research Facility, National University of Ireland Galway, Galway, Ireland
| | - Janusz Krawczyk
- Galway Blood and Tissue Establishment, National University of Ireland Galway, Galway, Ireland
| | - Amjad Hayat
- Galway Blood and Tissue Establishment, National University of Ireland Galway, Galway, Ireland
| | - Sean Naughton
- Galway Blood and Tissue Establishment, National University of Ireland Galway, Galway, Ireland
| | - Andrew Finnerty
- Centre for Cell Manufacturing Ireland, National University of Ireland Galway, Galway, Ireland
| | - Miriam Holohan
- Centre for Cell Manufacturing Ireland, National University of Ireland Galway, Galway, Ireland
| | - Aaron Liew
- School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Muhammad Tubassam
- Department of Vascular Surgery, University Hospital Galway, Galway, Ireland
| | - Stewart Redmond Walsh
- School of Medicine, National University of Ireland Galway, Galway, Ireland; Department of Vascular Surgery, University Hospital Galway, Galway, Ireland
| | - Timothy O'Brien
- Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland; Centre for Cell Manufacturing Ireland, National University of Ireland Galway, Galway, Ireland; School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Linda Howard
- Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
16
|
Panunzi A, Madotto F, Sangalli E, Riccio F, Sganzaroli AB, Galenda P, Bertulessi A, Barmina MF, Ludovico O, Fortunato O, Setacci F, Airoldi F, Tavano D, Giurato L, Meloni M, Uccioli L, Bruno A, Spinetti G, Caravaggi CMF. Results of a prospective observational study of autologous peripheral blood mononuclear cell therapy for no-option critical limb-threatening ischemia and severe diabetic foot ulcers. Cardiovasc Diabetol 2022; 21:196. [PMID: 36171587 PMCID: PMC9516816 DOI: 10.1186/s12933-022-01629-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Background Cell therapy with autologous peripheral blood mononuclear cells (PB-MNCs) may help restore limb perfusion in patients with diabetes mellitus and critical limb-threatening ischemia (CLTI) deemed not eligible for revascularization procedures and consequently at risk for major amputation (no-option). Fundamental is to establish its clinical value and to identify candidates with a greater benefit over time. Assessing the frequency of PB circulating angiogenic cells and extracellular vesicles (EVs) may help in guiding candidate selection. Methods We conducted a prospective, non-controlled, observational study on no-option CLTI diabetic patients that underwent intramuscular PB-MNCs therapy, which consisted of more cell treatments repeated a maximum of three times. The primary endpoint was amputation rate at 1 year following the first treatment with PB-MNCs. We evaluated ulcer healing, walking capability, and mortality during the follow-up period. We assessed angiogenic cells and EVs at baseline and after each cell treatment, according to primary outcome and tissue perfusion at the last treatment [measured as transcutaneous oxygen pressure (TcPO2)]. Results 50 patients were consecutively enrolled and the primary endpoint was 16%. TcPO2 increased after PB-MNCs therapy (17.2 ± 11.6 vs 39.1 ± 21.8 mmHg, p < .0001), and ulcers healed with back-to-walk were observed in 60% of the study population (88% of survivors) during follow-up (median 1.5 years). Patients with a high level of TcPO2 (≥ 40 mmHg) after the last treatment showed a high frequency of small EVs at enrollment. Conclusions In no-option CLTI diabetic patients, PB-MNCs therapy led to an improvement in tissue perfusion, a high rate of healing, and back-to-walk. Coupling circulating cellular markers of angiogenesis could help in the identification of patients with a better clinical benefit over time. Supplementary Information The online version contains supplementary material available at 10.1186/s12933-022-01629-y.
Collapse
Affiliation(s)
| | - Fabiana Madotto
- Value-based Healthcare Unit, IRCCS MultiMedica, Milan, Italy
| | - Elena Sangalli
- Laboratory of Cardiovascular Pathophysiology-Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Federica Riccio
- Laboratory of Cardiovascular Pathophysiology-Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | | | | | | | | | - Ornella Ludovico
- Diabetic Foot Dpt, IRCCS MultiMedica, Milan, Italy.,Unit of Endocrinology, IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | | | | | - Flavio Airoldi
- Interventional Cardiology Unit, IRCCS MultiMedica, Milan, Italy
| | - Davide Tavano
- Interventional Cardiology Unit, IRCCS MultiMedica, Milan, Italy
| | - Laura Giurato
- Diabetic Foot Unit, University of Rome Tor Vergata, Rome, Italy
| | - Marco Meloni
- Diabetic Foot Unit, University of Rome Tor Vergata, Rome, Italy
| | - Luigi Uccioli
- CTO Andrea Alesini Hospital, Division of Endocrinology and Diabetes, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Antonino Bruno
- Laboratory of Immunology and General Pathology, Department of Biotechnologies and Life Sciences, University of Insubria, Varese, Italy.,Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, IRCCS MultiMedica, Milan, Italy
| | - Gaia Spinetti
- Laboratory of Cardiovascular Pathophysiology-Regenerative Medicine, IRCCS MultiMedica, Milan, Italy.
| | | |
Collapse
|
17
|
Sopariwala DH, Rios AS, Park MK, Song MS, Kumar A, Narkar VA. Estrogen-related receptor alpha is an AMPK-regulated factor that promotes ischemic muscle revascularization and recovery in diet-induced obese mice. FASEB Bioadv 2022; 4:602-618. [PMID: 36089981 PMCID: PMC9447423 DOI: 10.1096/fba.2022-00015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 01/27/2023] Open
Abstract
Obesity and type II diabetes are leading causes of peripheral arterial disease (PAD), which is characterized by vascular insufficiency and ischemic damage in the limb skeletal muscle. Glycemic control is not sufficient to prevent progression of PAD, and molecular targets that can promote muscle neo-angiogenesis in obesity and diabetes remain poorly defined. Here, we have investigated whether nuclear receptor estrogen-related receptor alpha (ERRα) can promote ischemic revascularization in the skeletal muscles of diet-induced obese (DIO) mice. Using muscle-specific ERRα transgenic mice, we found that ERRα overexpression promotes revascularization, marked by increased capillary staining and muscle perfusion in DIO mice after hindlimb ischemic injury. Furthermore, ERRα facilitates repair and restoration of skeletal muscle myofiber size after limb ischemia in DIO mice. The ameliorative effects of ERRα overexpression did not involve the prevention of weight gain, hyperglycemia or glucose/insulin intolerance, suggesting a direct role for ERRα in promoting angiogenesis. Interestingly, levels of endogenous ERRα protein are suppressed in the skeletal muscles of DIO mice compared to lean controls, coinciding with the suppression of angiogenic gene expression, and reduced AMPK signaling in the DIO skeletal muscles. Upon further investigating the link between AMPK and ERRα, we found that AMPK activation increases the expression and recruitment of ERRα protein to specific angiogenic gene promoters in muscle cells. Further, the induction of angiogenic factors by AMPK activators in muscle cells is blocked by repressing ERRα. In summary, our results identify an AMPK/ERRα-dependent angiogenic gene program in the skeletal muscle, which is repressed by DIO, and demonstrate that forced ERRα activation can promote ischemic revascularization and muscle recovery in obesity.
Collapse
Affiliation(s)
- Danesh H. Sopariwala
- Center for Metabolic & Degenerative DiseasesInstitute of Molecular Medicine, UTHealth McGovern Medical SchoolHoustonTexasUSA
| | - Andrea S. Rios
- Center for Metabolic & Degenerative DiseasesInstitute of Molecular Medicine, UTHealth McGovern Medical SchoolHoustonTexasUSA
| | - Mi Kyung Park
- Department of Molecular and Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Min Sup Song
- Department of Molecular and Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Ashok Kumar
- Department of Pharmacological and Pharmaceutical SciencesCollege of Pharmacy, University of HoustonHoustonTexasUSA
| | - Vihang A. Narkar
- Center for Metabolic & Degenerative DiseasesInstitute of Molecular Medicine, UTHealth McGovern Medical SchoolHoustonTexasUSA
| |
Collapse
|
18
|
Bonanni M, Rehak L, Massaro G, Benedetto D, Matteucci A, Russo G, Esperto F, Federici M, Mauriello A, Sangiorgi GM. Autologous Immune Cell-Based Regenerative Therapies to Treat Vasculogenic Erectile Dysfunction: Is the Immuno-Centric Revolution Ready for the Prime Time? Biomedicines 2022; 10:biomedicines10051091. [PMID: 35625828 PMCID: PMC9138496 DOI: 10.3390/biomedicines10051091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 02/04/2023] Open
Abstract
About 35% of patients affected by erectile dysfunction (ED) do not respond to oral phosphodiesterase-5 inhibitors (PDE5i) and more severe vasculogenic refractory ED affects diabetic patients. Innovative approaches, such as regenerative therapies, including stem cell therapy (SCT) and platelet-rich plasma (PRP), are currently under investigation. Recent data point out that the regenerative capacity of stem cells is strongly influenced by local immune responses, with macrophages playing a pivotal role in the injury response and as a coordinator of tissue regeneration, suggesting that control of the immune response could be an appealing approach in regenerative medicine. A new generation of autologous cell therapy based on immune cells instead of stem cells, which could change regenerative medicine for good, is discussed. Increasing safety and efficacy data are coming from clinical trials using peripheral blood mononuclear cells to treat no-option critical limb ischemia and diabetic foot. In this review, ongoing phase 1/phase 2 stem cell clinical trials are discussed. In addition, we examine the mechanism of action and rationale, as well as propose a new generation of regenerative therapies, evolving from typical stem cell or growth factor to immune cell-based medicine, based on autologous peripheral blood mononuclear cells (PBMNC) concentrates for the treatment of ED.
Collapse
Affiliation(s)
- Michela Bonanni
- Department of Biomedicine and Prevention, Institute of Cardiology, University of Rome Tor Vergata, 00133 Rome, Italy; (M.B.); (G.M.); (D.B.); (A.M.); (G.R.)
| | - Laura Rehak
- Athena Biomedical Innovations, 50126 Florence, Italy;
| | - Gianluca Massaro
- Department of Biomedicine and Prevention, Institute of Cardiology, University of Rome Tor Vergata, 00133 Rome, Italy; (M.B.); (G.M.); (D.B.); (A.M.); (G.R.)
| | - Daniela Benedetto
- Department of Biomedicine and Prevention, Institute of Cardiology, University of Rome Tor Vergata, 00133 Rome, Italy; (M.B.); (G.M.); (D.B.); (A.M.); (G.R.)
| | - Andrea Matteucci
- Department of Biomedicine and Prevention, Institute of Cardiology, University of Rome Tor Vergata, 00133 Rome, Italy; (M.B.); (G.M.); (D.B.); (A.M.); (G.R.)
- Division of Cardiology San Filippo Neri Hospital, 00135 Rome, Italy
| | - Giulio Russo
- Department of Biomedicine and Prevention, Institute of Cardiology, University of Rome Tor Vergata, 00133 Rome, Italy; (M.B.); (G.M.); (D.B.); (A.M.); (G.R.)
| | | | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Alessandro Mauriello
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Giuseppe Massimo Sangiorgi
- Department of Biomedicine and Prevention, Institute of Cardiology, University of Rome Tor Vergata, 00133 Rome, Italy; (M.B.); (G.M.); (D.B.); (A.M.); (G.R.)
- Correspondence:
| |
Collapse
|
19
|
The Immune-Centric Revolution in the Diabetic Foot: Monocytes and Lymphocytes Role in Wound Healing and Tissue Regeneration-A Narrative Review. J Clin Med 2022; 11:jcm11030889. [PMID: 35160339 PMCID: PMC8836882 DOI: 10.3390/jcm11030889] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Monocytes and lymphocytes play a key role in physiologic wound healing and might be involved in the impaired mechanisms observed in diabetes. Skin wound macrophages are represented by tissue resident macrophages and infiltrating peripheral blood recruited monocytes which play a leading role during the inflammatory phase of wound repair. The impaired transition of diabetic wound macrophages from pro-inflammatory M1 phenotypes to anti-inflammatory pro-regenerative M2 phenotypes might represent a key issue for impaired diabetic wound healing. This review will focus on the role of immune system cells in normal skin and diabetic wound repair. Furthermore, it will give an insight into therapy able to immuno-modulate wound healing processes toward to a regenerative anti-inflammatory fashion. Different approaches, such as cell therapy, exosome, and dermal substitute able to promote the M1 to M2 switch and able to positively influence healing processes in chronic wounds will be discussed.
Collapse
|
20
|
Golledge J, Thanigaimani S. Novel therapeutic targets for diabetes-related wounds or ulcers: an update on preclinical and clinical research. Expert Opin Ther Targets 2021; 25:1061-1075. [PMID: 34873970 DOI: 10.1080/14728222.2021.2014816] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Diabetes-related wounds, particularly diabetes-related foot ulcers, are mainly caused by lack of foot sensation and high plantar tissue stress secondary to peripheral neuropathy, ischemia secondary to peripheral artery disease, and dysfunctional wound healing. Current management of diabetes-related wounds involves the offloading of high foot pressures and the treatment of ischemia through revascularization. Despite these treatments, the global burden of diabetes-related wounds is growing, and thus, novel therapies are needed. The normal wound healing process is a coordinated remodeling process orchestrated by fibroblasts, endothelial cells, phagocytes, and platelets, controlled by an array of growth factors. In diabetes-related wounds, these coordinated processes are dysfunctional. The past animal model and human research suggest that prolonged wound inflammation, failure to adequately correct ischemia, and impaired wound maturation are key therapeutic targets to improve diabetes-related wound healing. AREAS COVERED This review summarizes recent preclinical and clinical research on novel diabetes-related wound treatments. Animal models of diabetes-related wounds and recent studies testing novel therapeutic agents in these models are described. Findings from clinical trials are also discussed. Finally, challenges to identifying and implementing novel therapies are described. EXPERT OPINION Given the growing volume of promising drug therapies currently under investigation, it is expected within the next decade, that diabetes-related wound treatment will be transformed.
Collapse
Affiliation(s)
- Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia.,The Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Queensland, Australia.,The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| | - Shivshankar Thanigaimani
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia.,The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
21
|
Papadopoulos KI, Paisan M, Sutheesophon W, Turajane T. Novel Use of Intraarticular Granulocyte Colony Stimulating Factor (hG-CSF) Combined with Activated Autologous Peripheral Blood Stem Cells Mobilized with Systemic hG-CSF: Safe and Efficient in Early Osteoarthritis. Cartilage 2021; 13:1671S-1674S. [PMID: 34636658 PMCID: PMC8808774 DOI: 10.1177/19476035211049562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Osteoarthritis (OA) tends to occur in older individuals frequently burdened with comorbidities and diverse pharmacological interactions. As articular cartilage has low regenerative power, potent local tissue engineering approaches are needed to support chondrogenic differentiation. Acellular preparation methods as well as approaches to coax endogenous reparative cells into the joint space appear to have limited success. Supported by our in-vitro and clinical studies, we propose that our novel intra-articular administration of human granulocyte colony stimulating factor (IA-hG-CSF) combined with autologous activated peripheral blood stem cells (AAPBSC) is safe and offers treatment advantages not seen with other cellular interventions in early osteoarthritis.
Collapse
Affiliation(s)
- Konstantinos I. Papadopoulos
- THAI StemLife, Bangkok, Thailand
- Konstantinos I. Papadopoulos, THAI StemLife, 566/3
Soi Ramkhamhaeng 39 (Thepleela 1), Prachaouthit Rd., Wangthonglang, Bangkok 10310,
Thailand.
| | | | | | - Thana Turajane
- Department of Orthopedic Surgery, Police
General Hospital, Bangkok, Thailand
| |
Collapse
|