1
|
Ge C, Meng D, Peng Y, Huang P, Wang N, Zhou X, Chang D. The activation of the HIF-1α-VEGFA-Notch1 signaling pathway by Hydroxysafflor yellow A promotes angiogenesis and reduces myocardial ischemia-reperfusion injury. Int Immunopharmacol 2024; 142:113097. [PMID: 39260311 DOI: 10.1016/j.intimp.2024.113097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Hydroxyl Safflower Yellow A (HSYA) is the primary bioactive compound derived from Safflower, which has been scientifically proven to possess anti-inflammatory, anti-apoptotic, and ameliorative properties against mitochondrial damage during acute myocardial ischemia-reperfusion injury (MIRI); however, its effects during the recovery stage remain unknown. Angiogenesis plays a crucial role in the rehabilitation process. AIM OF THE STUDY The objective of this study was to investigate the long-term angiogenic effect of HSYA and its contribution to recovery after myocardial ischemia, as well as explore its underlying mechanism using non-targeted metabolomics and network pharmacology. MATERIALS AND METHODS The MIRI model in rat was established by ligating the left anterior descending branch of the coronary artery. The effect of HSYA was assessed based on myocardial infarction volume and histopathology. Immunofluorescence staining was employed to evaluate angiogenesis, while ELISA was used to detect markers of myocardial injury. Additionally, a rat myocardial microvascular endothelial cell (CMECs) injury model was established using oxygen-glucose deprivation/reoxygenation (OGD/R), followed by scratch assays, migration assays, and tube formation experiments to assess angiogenesis. Western blot analysis was conducted to validate the underlying mechanism. RESULTS Our findings provide compelling evidence for the therapeutic efficacy of HSYA in reducing myocardial infarction size, facilitating cardiac functional recovery, and reversing pathological alterations within the heart. Furthermore, we elucidate that HSYA exerts its effects on promoting migration and generation of myocardial microvascular endothelial cells through activation of the HIF-1α-VEGFA-Notch1 signaling pathway. CONCLUSION These results underscore how HSYA enhances cardiac function via angiogenesis promotion and activation of the aforementioned signaling cascade.
Collapse
Affiliation(s)
- Chaowen Ge
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei 230012, China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei 230012, China
| | - Dongdong Meng
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei 230012, China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei 230012, China
| | - Yuqin Peng
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei 230012, China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei 230012, China
| | - Ping Huang
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei 230012, China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei 230012, China.
| | - Ning Wang
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei 230012, China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei 230012, China.
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, Sydney, NSW 2145, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead, Sydney, NSW 2145, Australia
| |
Collapse
|
2
|
Taira H, Ito Y, Yamamoto T, Koyama A, Li L, Sugimoto E, Mizuno Y, Awaji K, Sato S, Shibata S. Elevated serum vasohibin-1 levels in atopic dermatitis: Implications for disease chronicity. J Dermatol 2024; 51:1685-1689. [PMID: 38711287 DOI: 10.1111/1346-8138.17259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024]
Abstract
Atopic dermatitis (AD) is often characterized by chronic skin changes of dermal fibrosis, typically regulated by inflammatory and angiogenic factors. However, the significance of angiogenesis inhibitory factors in the development of AD is poorly understood. The present study investigated the potential role of an angiogenesis inhibitory factor, vasohibin-1 (VASH1), in AD by evaluating serum and skin VASH1 levels and their correlation with clinical features. The results showed that VASH1 expression levels in both the serum and skin of patients with AD were significantly elevated compared to healthy controls. Immunohistochemical staining of AD skin showed increased VASH1 expression in dermal vascular endothelial cells. Notably, there was a significant correlation between serum VASH1 levels and disease duration as well as VASH1 and vascular endothelial growth factor A expression levels in the skin tissue of patients with AD. These results may suggest a pathogenesis of increased angiogenesis and associated elevated inhibitory processes accompanying inflammation in the chronic phase of AD.
Collapse
Affiliation(s)
- Haruka Taira
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukiko Ito
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toyoki Yamamoto
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Asumi Koyama
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Lixin Li
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eiki Sugimoto
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuka Mizuno
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kentaro Awaji
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sayaka Shibata
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Jiang H, Lai F, Wang X, Meng F, Zhu W, Huang S. Overexpression of zinc-finger protein 418 inhibits pathological cardiac remodelling after acute myocardial infarction. ESC Heart Fail 2024; 11:2869-2880. [PMID: 38714309 PMCID: PMC11424367 DOI: 10.1002/ehf2.14823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/07/2024] [Accepted: 04/10/2024] [Indexed: 05/09/2024] Open
Abstract
AIMS Zinc-finger protein 418 (ZNF418) has been confirmed to be expressed in myocardial tissue. However, the role and mechanism of ZNF418 in pathological myocardial remodelling after myocardial infarction (MI) have not been reported. This study was to elucidate the effect and mechanism of ZNF418 on ventricular remodelling after MI in mice. METHODS AND RESULTS MI mice and H9c2 cardiomyocytes were used to conduct in vivo and in vitro experiments, respectively. ZNF418 expression was regulated by adeno-associated virus 9 and adenovirus vectors. Pathological analysis, echocardiography, and molecular analysis were performed. ZNF418 was down-regulated in the left ventricular tissues of post-MI mice. In contrast, ZNF418 overexpression decreased mortality and improved cardiac function in MI mice. The MI mice exhibited a significantly increased cross-sectional area of myocardial cells and elevated protein expression levels of myocardial hypertrophy markers ANP, BNP, and β-MHC (all P < 0.05). Moreover, a significantly increased area of myocardial fibrosis and protein expression levels of myocardial fibrosis markers collagen I, collagen III, and CTGF were observed in MI mice (all P < 0.05) in MI mice. All of the above negative effects in MI mice were ameliorated in ZNF418 overexpressed mice (all P < 0.05). Mechanistically, ZNF418 overexpression inhibited the activation of the MAPK signalling pathway, as evidenced by the in vivo and in vitro experiments. CONCLUSIONS Overexpression of ZNF418 could improve cardiac function and inhibit pathological cardiac remodelling by inhibiting the MAPK signalling pathway in post-MI mice.
Collapse
Affiliation(s)
- Hongfei Jiang
- Department of CardiologyXiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Fei Lai
- Department of TransfusionThe Second Affiliated Hospital of Xiamen Medical CollegeXiamenChina
| | - Xixing Wang
- Department of CardiologyXiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Fanqi Meng
- Department of CardiologyXiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Weiliang Zhu
- Department of CardiologyXiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Shan Huang
- Department of CardiologyXiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| |
Collapse
|
4
|
Yazdani A, Tiwari S, Heydarpour M. WITHDRAWN: The effect of ischemia on expression quantitative trait loci (eQTL) in human myocardium and insights into myocardial injury etiology. RESEARCH SQUARE 2024:rs.3.rs-3967889. [PMID: 38464039 PMCID: PMC10925459 DOI: 10.21203/rs.3.rs-3967889/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
26 February, 2024. Research Square has withdrawn this preprint as it was submitted and made public without the full consent of all the authors and without the full consent of the principle investigator of the registered clinical trial. Therefore, this work should not be cited as a reference.
Collapse
|
5
|
Wang H, Dou L. Single-cell RNA sequencing reveals hub genes of myocardial infarction-associated endothelial cells. BMC Cardiovasc Disord 2024; 24:70. [PMID: 38267885 PMCID: PMC10809747 DOI: 10.1186/s12872-024-03727-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Myocardial infarction (MI) is a cardiovascular disease that seriously threatens human health. Dysangiogenesis of endothelial cells (ECs) primarily inhibits recovery from MI, but the specific mechanism remains to be further elucidated. METHODS In this study, the single-cell RNA-sequencing data from both MI and Sham mice were analyzed by the Seurat Package (3.2.2). The number of ECs in MI and Sham groups were compared by PCA and tSNE algorithm. FindMarkers function of Seurat was used to analyze the DEGs between the MI and Sham groups. Then, the ECs was further clustered into 8 sub-clusters for trajectory analysis. The BEAM was used to analyze the branch point 3 and cluster the results. In addition, the DEGs in the microarray data set of MI and Sham mice were cross-linked, and the cross-linked genes were used to construct PPI networks. The key genes with the highest degree were identified and analyzed for functional enrichment. Finally, this study cultured human umbilical vein endothelial cells (HUVECs), established hypoxia models, and interfered with hub gene expression in cells. The impact of hub genes on the migration and tube formation of hypoxic-induced HUVECs were verified by Wound healing assays and tubule formation experiments. RESULTS The number and proportion of ECs in the MI group were significantly lower than those in the Sham group. Meantime, 225 DEGs were found in ECs between the MI and Sham groups. Through trajectory analysis, EC4 was found to play an important role in MI. Then, by using BEAM to analyze the branch point 3, and clustering the results, a total of 495 genes were found to be highly expressed in cell Fate2 (mainly EC4). In addition, a total of 194 DEGs were identified in Micro array dataset containing both MI and Sham mice. The hub genes (Timp1 and Fn1) with the highest degree were identified. Inhibiting Timp1 and Fn1 expression promoted the migration and tube formation of HUVECs. CONCLUSIONS Our data highlighted the non-linear dynamics of ECs in MI, and provided a foothold for analyzing cardiac homeostasis and pro-angiogenesis in MI.
Collapse
Affiliation(s)
- Hao Wang
- Department of Cardiovascular Medicine, Zhejiang Greentown Cardiovascular Hospital, No.409 Gudun Road, Hangzhou, 310000, Zhejiang, China
| | - Liping Dou
- Department of Geriatrics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, No. 318 Chaowang Road, Hangzhou, 310005, Zhejiang, China.
| |
Collapse
|
6
|
Song Q, Ma H, Zhu L, Qi Z, Lan Z, Liu K, Zhang H, Wang K, Wang N. Upregulation of PTPN1 aggravates endotoxemia-induced cardiac dysfunction through inhibiting mitophagy. Int Immunopharmacol 2024; 126:111315. [PMID: 38043267 DOI: 10.1016/j.intimp.2023.111315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
OBJECTIVES To investigate the role of protein tyrosine phosphatase non-receptor type 1 (PTPN1) in mitophagy during sepsis and its underlying mechanisms and determine the therapeutic potential of PTPN1 inhibitors in endotoxemia-induced cardiac dysfunction. METHODS A mouse model of endotoxemia was established by administering an intraperitoneal injection of lipopolysaccharide (LPS). The therapeutic effect of targeting PTPN1 was evaluated using its inhibitor Claramine (CLA). Mitochondrial structure and function as well as the expression of mitophagy-related proteins were evaluated. Rat H9c2 cardiomyocytes were exposed to mouse RAW264.7 macrophage-derived conditioned medium. Cryptotanshinone, a specific p-STAT3 (Y705) inhibitor, was used to confirm the role of STAT3 in PTPN1-mediated mitophagy following LPS exposure. Electrophoretic mobility shift and dual luciferase reporter assays were performed to discern the mechanisms by which STAT3 regulated the expression of PINK1 and PRKN. RESULTS CLA alleviated LPS-induced myocardial damage, cardiac dysfunction, and mitochondrial injury and dysfunction in the mouse heart. PTPN1 upregulation exacerbated LPS-induced mitochondrial injury and dysfunction in H9c2 cardiomyocytes, but inhibited LPS-induced mitophagy. LPS promoted the interaction between PTPN1 and STAT3 and reduced STAT3 phosphorylation at Tyr705 (Y705), which was required to inhibit mitophagy by PTPN1. Upon LPS stimulation, PTPN1 negatively regulated the transcription of PINK1 and PRKN through dephosphorylation of STAT3 at Y705. STAT3 regulated the transcription of PINK1 and PRKN by binding to STAT3-responsive elements in their promoters. CONCLUSION PTPN1 upregulation aggravates endotoxemia-induced cardiac dysfunction by impeding mitophagy through dephosphorylation of STAT3 at Y705 and negative regulation of PINK1 and PRKN transcription.
Collapse
Affiliation(s)
- Qixiang Song
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China
| | - Heng Ma
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China
| | - Lili Zhu
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China
| | - Zehong Qi
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China
| | - Zijun Lan
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China
| | - Ke Liu
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China
| | - Huali Zhang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China
| | - KangKai Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China.
| | - Nian Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China.
| |
Collapse
|
7
|
Wang X, Yao L, Li Z, Zhang J, Ruan M, Mulati Y, Gan Y, Zhang Q. ZNF471 Interacts with BANP to Reduce Tumour Malignancy by Inactivating PI3K/AKT/mTOR Signalling but is Frequently Silenced by Aberrant Promoter Methylation in Renal Cell Carcinoma. Int J Biol Sci 2024; 20:643-663. [PMID: 38169650 PMCID: PMC10758100 DOI: 10.7150/ijbs.89785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024] Open
Abstract
Background: Renal cell carcinoma (RCC) is one of the most common malignant tumours of the urinary system. However, the aetiology and pathogenesis of RCC remain unclear. The C2H2 zinc finger protein (ZNF) family is the largest transcriptional regulatory factor family found in mammals, and Krüppel-associated box domain-containing zinc finger proteins (KRAB-ZFPs) constitute the largest subfamily of the C2H2 zinc finger protein family and play an important role in the occurrence and development of tumours. The aim of this study was to explore the role of abnormal methylation of ZNF471 in the development of renal carcinoma. Methods: In this study, we first used the TCGA and EWAS Data Hub databases to analyse the expression and methylation levels of ZNF471 in renal carcinoma tissues and adjacent normal tissues. Second, we collected samples of renal cancer and adjacent normal tissues at Peking University First Hospital to investigate the expression and methylation level of ZNF471 in renal cancer tissues and the relationships between these levels and the clinicopathological features and prognosis of patients with renal cancer. Next, we investigated the effects of ZNF471 on the proliferation, metastasis, cell cycle progression, and apoptosis of renal cell carcinoma cells by cell biology experiments. Finally, we elucidated the underlying molecular mechanisms of ZNF471 in renal cell carcinoma by transcriptome sequencing, bioinformatics analysis and molecular biology experiments. Results: The expression of ZNF471 in renal carcinoma tissues and cell lines was significantly lower than that in adjacent normal tissues and cell lines due to abnormal promoter CpG methylation. Furthermore, the expression of ZNF471 in renal carcinoma tissues was negatively correlated with tumour stage and grade in patients with renal carcinoma. The results of the cell biology experiments showed that ZNF471 could significantly inhibit the proliferation, migration and cell cycle progression of renal cell carcinoma cells and promote apoptosis in these cells. In addition, ZNF471 could interact with BANP and suppress the malignant phenotype of RCC by inactivating the PI3K/AKT/mTOR signalling pathway. Conclusions: As an important tumour suppressor, ZNF471 can interact with BANP in renal cancer cells and inhibit the activation of the PI3K/AKT/mTOR signalling pathway, thereby inhibiting the occurrence and development of renal cancer.
Collapse
Affiliation(s)
- Xiaofei Wang
- Department of Urology, Peking University First Hospital; Institute of Urology, Peking University; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, National Urological Cancer Center, Beijing 100034, China
| | - Lin Yao
- Department of Urology, Peking University First Hospital; Institute of Urology, Peking University; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, National Urological Cancer Center, Beijing 100034, China
| | - Zheng Li
- Department of Urology, Peking University First Hospital; Institute of Urology, Peking University; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, National Urological Cancer Center, Beijing 100034, China
| | - Jiaen Zhang
- Department of Urology, Peking University First Hospital; Institute of Urology, Peking University; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, National Urological Cancer Center, Beijing 100034, China
| | - Mingjian Ruan
- Department of Urology, Peking University First Hospital; Institute of Urology, Peking University; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, National Urological Cancer Center, Beijing 100034, China
| | - Yelin Mulati
- Department of Urology, Peking University First Hospital; Institute of Urology, Peking University; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, National Urological Cancer Center, Beijing 100034, China
| | - Ying Gan
- Department of Urology, Peking University First Hospital; Institute of Urology, Peking University; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, National Urological Cancer Center, Beijing 100034, China
| | - Qian Zhang
- Department of Urology, Peking University First Hospital; Institute of Urology, Peking University; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, National Urological Cancer Center, Beijing 100034, China
- Peking University Binhai Hospital, Tianjin 300450, China
| |
Collapse
|
8
|
de Tribolet-Hardy J, Thorball CW, Forey R, Planet E, Duc J, Coudray A, Khubieh B, Offner S, Pulver C, Fellay J, Imbeault M, Turelli P, Trono D. Genetic features and genomic targets of human KRAB-zinc finger proteins. Genome Res 2023; 33:1409-1423. [PMID: 37730438 PMCID: PMC10547255 DOI: 10.1101/gr.277722.123] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/18/2023] [Indexed: 09/22/2023]
Abstract
Krüppel-associated box (KRAB) domain-containing zinc finger proteins (KZFPs) are one of the largest groups of transcription factors encoded by tetrapods, with 378 members in human alone. KZFP genes are often grouped in clusters reflecting amplification by gene and segment duplication since the gene family first emerged more than 400 million years ago. Previous work has revealed that many KZFPs recognize transposable element (TE)-embedded sequences as genomic targets, and that KZFPs facilitate the co-option of the regulatory potential of TEs for the benefit of the host. Here, we present a comprehensive survey of the genetic features and genomic targets of human KZFPs, notably completing past analyses by adding data on close to a hundred family members. General principles emerge from our study of the TE-KZFP regulatory system, which point to multipronged evolutionary mechanisms underlaid by highly complex and combinatorial modes of action with strong influences on human speciation.
Collapse
Affiliation(s)
- Jonas de Tribolet-Hardy
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Christian W Thorball
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Romain Forey
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Evarist Planet
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Julien Duc
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Alexandre Coudray
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Bara Khubieh
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Sandra Offner
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Cyril Pulver
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jacques Fellay
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Precision Medicine Unit, Lausanne University Hospital (CHUV) and University of Lausanne, 1010 Lausanne, Switzerland
| | - Michael Imbeault
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Priscilla Turelli
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Didier Trono
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| |
Collapse
|
9
|
Liu C, Zeng J, Wu J, Wang J, Wang X, Yao M, Zhang M, Fan J. Identification and validation of key genes associated with atrial fibrillation in the elderly. Front Cardiovasc Med 2023; 10:1118686. [PMID: 37063972 PMCID: PMC10090400 DOI: 10.3389/fcvm.2023.1118686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/02/2023] [Indexed: 03/31/2023] Open
Abstract
BackgroundAtrial fibrillation (AF) is the most common cardiac arrhythmia and significantly increases the risk of stroke and heart failure (HF), contributing to a higher mortality rate. Increasing age is a major risk factor for AF; however, the mechanisms of how aging contributes to the occurrence and progression of AF remain unclear. This study conducted weighted gene co-expression network analysis (WGCNA) to identify key modules and hub genes and determine their potential associations with aging-related AF.Materials and methodsWGCNA was performed using the AF dataset GSE2240 obtained from the Gene Expression Omnibus, which contained data from atrial myocardium in cardiac patients with permanent AF or sinus rhythm (SR). Hub genes were identified in clinical samples. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were also performed.ResultsGreen and pink were the most critical modules associated with AF, from which nine hub genes, PTGDS, COLQ, ASTN2, VASH1, RCAN1, AMIGO2, RBP1, MFAP4, and ALDH1A1, were hypothesized to play key roles in the AF pathophysiology in elderly and seven of them have high diagnostic value. Functional enrichment analysis demonstrated that the green module was associated with the calcium, cyclic adenosine monophosphate (cAMP), and peroxisome proliferator-activated receptors (PPAR) signaling pathways, and the pink module may be associated with the transforming growth factor beta (TGF-β) signaling pathway in myocardial fibrosis.ConclusionWe identified nine genes that may play crucial roles in the pathophysiological mechanism of aging-related AF, among which six genes were associated with AF for the first time. This study provided novel insights into the impact of aging on the occurrence and progression of AF, and identified biomarkers and potential therapeutic targets for AF.
Collapse
Affiliation(s)
- Chuanbin Liu
- Western Medical Branch of PLA General Hospital, Beijing, China
| | - Jing Zeng
- Department of Endocrinology, The Second Medical Centre & National Clinical Research Centre for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Jin Wu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin, China
| | - Jing Wang
- Department of General Medicine, The First Medical Center of PLA General Hospital, Beijing, China
| | - Xin Wang
- Department of Ophthalmology, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Minghui Yao
- Department of Cardiovascular Surgery, the First Medical Center of PLA General Hospital, Beijing, China
| | - Minghua Zhang
- Clinical Pharmacy Laboratory, Chinese PLA General Hospital, Beijing, China
- Correspondence: Minghua Zhang Jiao Fan
| | - Jiao Fan
- Institute of Geriatrics, The Second Medical Centre & National Clinical Research Centre for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
- Correspondence: Minghua Zhang Jiao Fan
| |
Collapse
|