1
|
Li J, Hou Y, Ding H, Wang P, Li B. 1α,25-hydroxyvitamin D/VDR suppresses stem-like properties of ovarian cancer cells by restraining nuclear translocation of β-catenin. Steroids 2024; 211:109488. [PMID: 39151767 DOI: 10.1016/j.steroids.2024.109488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
Several studies have indicated that 1α,25-hydroxyvitamin D [1α,25(OH)2D3] inhibits the proliferation and metastasis of cancer cells through suppressing epithelial-mesenchymal transition. However, its influence on the translocation of β-catenin remains unclear. In the present study, ovarian cancer stem-like cells (CSCs), including side population (SP) and CD44+/CD117+, were isolated from mouse ovarian surface epithelial (MOSE) cells with malignant transformation. The findings revealed that 1α,25(OH)2D3 obviously reduced the sphere-forming ability, as well as Notch1 and Klf levels. Moreover, the limiting dilution assay demonstrated that 1α,25(OH)2D3 effectively hindered the tumorigenesis of ovarian CSCs in vitro. Notably, treatment with 1α,25(OH)2D3 led to a substantial increase in the cell population of CD44+/CD117+ forming one tumor from ≤ 100 to 445 in orthotopic transplanted model, indicating a pronounced suppression of stemness of ovarian CSCs. Additionally, 1α,25(OH)2D3 robustly promoted the translocation of β-catenin from the nuclear to the cytoplasm through directly binding to VDR, which resulted in decreased levels of c-Myc and CyclinD1 within late MOSE cells. Taken together, these results strongly supported the role of 1α,25(OH)2D3 in inhibiting stem-like properties in ovarian cancer cells by restraining nuclear translocation of β-catenin, thereby offering a promising target for cancer therapeutics.
Collapse
Affiliation(s)
- Jie Li
- Deparment of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Yongfeng Hou
- Deparment of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou 215123, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Beijing 100037, China
| | - Hongmei Ding
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou 215123, China.
| | - Ping Wang
- Deparment of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou 215123, China.
| | - Bingyan Li
- Deparment of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou 215123, China.
| |
Collapse
|
2
|
García‐Rocha R, Monroy‐García A, Carrera‐Martínez M, Hernández‐Montes J, Don‐López CA, Weiss‐Steider B, Monroy‐Mora KA, Ponce‐Chavero MDLÁ, Montesinos‐Montesinos JJ, Escobar‐Sánchez ML, Castillo GM, Chacón‐Salinas R, Vallejo‐Castillo L, Pérez‐Tapia SM, Mora‐García MDL. Evidence that cervical cancer cells cultured as tumorspheres maintain high CD73 expression and increase their protumor characteristics through TGF-β production. Cell Biochem Funct 2022; 40:760-772. [PMID: 36070413 PMCID: PMC9825969 DOI: 10.1002/cbf.3742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/02/2022] [Accepted: 08/26/2022] [Indexed: 02/06/2023]
Abstract
Recently, a link between the biological activity of CD73 and tumorigenicity in solid tumors has been proposed. We previously reported that the generation of adenosine (Ado) by the activity of CD73 in cervical cancer (CC) cells induces transforming growth factor-beta 1 (TGF-β1) production to maintain CD73 expression. In the present study, we analyzed the participation of TGF-β1 in CD73 expression and the development of protumoral characteristics in CaSki CC cells cultured as tumorspheres (CaSki-T) and in monolayers (CaSki-M). Compared with those in CaSki-M cells, CD73 expression and Ado generation ability were significantly increased in CaSki-T cells. CaSki-T cells exhibited enrichment in the CSC-like phenotype due to increases in the expression levels of stem cell markers (CD49f, CK17, and P63; OCT4 and SOX2), greater sphere formation efficiency (SFE), and an increase in the percentage of side population (SP) cells. Interestingly, compared with CaSki-M cells, CaSki-T cells produced a greater amount of TGF-β1 and presented a marked protumor phenotype characterized by a significant decrease in the expression of major histocompatibility complex class-I (MHC-I) molecules, an increase in the expression of multidrug resistance protein-I (MRP-I) and vimentin, and an increase in the protein expression levels of Snail-1 and Twist, which was strongly reversed with TGF-β1 inhibition. These results suggest that the presence of TGF-β1-CD73-Ado feedback loop can promote protumoral characteristics in the CC tumor microenvironment.
Collapse
Affiliation(s)
- Rosario García‐Rocha
- Laboratorio de InmunobiologíaUIDCC‐UMIEZ, FES‐Zaragoza, UNAMCiudad de MéxicoMéxico,Programa de Beca Posdoctoral UNAM DGAPA‐PAPIITCiudad de MéxicoMexico
| | - Alberto Monroy‐García
- Laboratorio de InmunobiologíaUIDCC‐UMIEZ, FES‐Zaragoza, UNAMCiudad de MéxicoMéxico,Laboratorio de Inmunología y Cáncer, UIMEO, H Oncología, CMN SXXIInstituto Mexicano del Seguro SocialCiudad de MéxicoMéxico
| | - Monserrat Carrera‐Martínez
- Laboratorio de Inmunología y Cáncer, UIMEO, H Oncología, CMN SXXIInstituto Mexicano del Seguro SocialCiudad de MéxicoMéxico,Programa de Posgrado en Ciencias Biológicas, UNAMCiudad de MéxicoMéxico
| | | | | | - Benny Weiss‐Steider
- Laboratorio de InmunobiologíaUIDCC‐UMIEZ, FES‐Zaragoza, UNAMCiudad de MéxicoMéxico
| | | | - María de los Ángeles Ponce‐Chavero
- Laboratorio de InmunobiologíaUIDCC‐UMIEZ, FES‐Zaragoza, UNAMCiudad de MéxicoMéxico,Programa de Posgrado en Ciencias Biológicas, UNAMCiudad de MéxicoMéxico
| | - Juan José Montesinos‐Montesinos
- Laboratorio de Células Troncales Mesenquimales, Unidad de Investigación Médica en Enfermedades Oncológicas, CMN SXXIInstituto Mexicano del Seguro SocialCiudad de MéxicoMéxico
| | - María Luisa Escobar‐Sánchez
- Laboratorio de Microscopía Electrónica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de MéxicoCiudad UniversitariaCiudad de MéxicoMexico
| | - Gabriela Molina Castillo
- Laboratorio de InmunobiologíaUIDCC‐UMIEZ, FES‐Zaragoza, UNAMCiudad de MéxicoMéxico,Programa de Posgrado en Ciencias Biológicas, UNAMCiudad de MéxicoMéxico
| | - Rommel Chacón‐Salinas
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI)Instituto Politécnico NacionalCiudad de MéxicoMexico,Departamento de Inmunología, Escuela Nacional de Ciencias BiológicasInstituto Politécnico Nacional, ENCB‐IPNCiudad de MéxicoMexico
| | - Luis Vallejo‐Castillo
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI)Instituto Politécnico NacionalCiudad de MéxicoMexico,Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav‐IPN)Ciudad de MéxicoMexico
| | - Sonia Mayra Pérez‐Tapia
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI)Instituto Politécnico NacionalCiudad de MéxicoMexico,Departamento de Inmunología, Escuela Nacional de Ciencias BiológicasInstituto Politécnico Nacional, ENCB‐IPNCiudad de MéxicoMexico,Laboratorio Nacional para Servicios Especializados de Investigacioón, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos (LANSEIDI‐FarBiotec‐CONACyT), Escuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalMexico CityMexico
| | | |
Collapse
|
3
|
Sahabi K, Selvarajah GT, Mokrish A, Rasedee A, Kqueen CY. Development and molecular characterization of doxorubicin-resistant canine mammary gland tumour cells. JOURNAL OF APPLIED ANIMAL RESEARCH 2022. [DOI: 10.1080/09712119.2022.2032719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Kabiru Sahabi
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Gayathri T. Selvarajah
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
- UPM-MAKNA Cancer Research Laboratory (CANRES), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Ajat Mokrish
- Department of Veterinary Preclinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Abdullah Rasedee
- Department of Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Cheah Y. Kqueen
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- UPM-MAKNA Cancer Research Laboratory (CANRES), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
4
|
Wege AK, Rom‐Jurek E, Jank P, Denkert C, Ugocsai P, Solbach C, Blohmer J, Sinn B, Mackelenbergh M, Möbus V, Trumpp A, Marangoni E, Pfarr N, Irlbeck C, Warfsmann J, Polzer B, Weber F, Ortmann O, Loibl S, Vladimirova V, Brockhoff G. mdm2
gene amplification is associated with luminal breast cancer progression in humanized
PDX
mice and a worse outcome of estrogen receptor positive disease. Int J Cancer 2021; 150:1357-1372. [DOI: 10.1002/ijc.33911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/25/2021] [Accepted: 12/07/2021] [Indexed: 01/02/2023]
Affiliation(s)
- Anja Kathrin Wege
- Department of Gynecology and Obstetrics University Medical Center Regensburg Regensburg Germany
| | - Eva‐Maria Rom‐Jurek
- Department of Gynecology and Obstetrics University Medical Center Regensburg Regensburg Germany
| | - Paul Jank
- Institute of Pathology, Philipps‐University Marburg UKGM University Hospital Marburg Marburg Germany
| | - Carsten Denkert
- Institute of Pathology, Philipps‐University Marburg UKGM University Hospital Marburg Marburg Germany
| | - Peter Ugocsai
- Department of Gynecology and Obstetrics University Medical Center Regensburg Regensburg Germany
| | - Christine Solbach
- Department of Gynecology and Obstetrics University Hospital Frankfurt Frankfurt Germany
| | - Jens‐Uwe Blohmer
- Breast Cancer Center Charité Universitätsmedizin Berlin Berlin Germany
| | - Bruno Sinn
- Breast Cancer Center Charité Universitätsmedizin Berlin Berlin Germany
| | - Marion Mackelenbergh
- Department of Gynecology and Obstetrics Schleswig‐Holstein University Hospital Kiel Germany
| | - Volker Möbus
- Department of Medicine II, Hematology and Oncology Goethe University of Frankfurt Frankfurt Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ‐ZMBH Alliance Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM gGmbH), German Cancer Consortium (DKTK) Heidelberg Germany
| | - Elisabetta Marangoni
- Department of Translational Research, Institute Curie PSL Research University Paris France
| | - Nicole Pfarr
- Institute of Pathology Technical University Munich Munich Germany
| | - Christoph Irlbeck
- Division of Personalized Tumor Therapy Fraunhofer Institute for Toxicology and Experimental Medicine Regensburg Germany
- Department of Experimental Medicine University of Regensburg Regensburg Germany
| | - Jens Warfsmann
- Division of Personalized Tumor Therapy Fraunhofer Institute for Toxicology and Experimental Medicine Regensburg Germany
- Department of Experimental Medicine University of Regensburg Regensburg Germany
| | - Bernhard Polzer
- Division of Personalized Tumor Therapy Fraunhofer Institute for Toxicology and Experimental Medicine Regensburg Germany
- Department of Experimental Medicine University of Regensburg Regensburg Germany
| | | | - Olaf Ortmann
- Department of Gynecology and Obstetrics University Medical Center Regensburg Regensburg Germany
| | - Sibylle Loibl
- German Breast Group GBG Forschungs GmbH Neu‐Isenburg Germany
| | | | - Gero Brockhoff
- Department of Gynecology and Obstetrics University Medical Center Regensburg Regensburg Germany
| |
Collapse
|
5
|
Human Primary Breast Cancer Stem Cells Are Characterized by Epithelial-Mesenchymal Plasticity. Int J Mol Sci 2021; 22:ijms22041808. [PMID: 33670400 PMCID: PMC7918351 DOI: 10.3390/ijms22041808] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most aggressive subtypes of breast cancer, with only limited treatment options available. Recently, cancer stem cells (CSCs) have emerged as the potential drivers of tumor progression due to their ability to both self-renew and give rise to differentiated progeny. The CSC state has been linked to the process of epithelial-mesenchymal transition (EMT) and to the highly flexible state of epithelial-mesenchymal plasticity (EMP). We aimed to establish primary breast cancer stem cell (BCSC) cultures isolated from TNBC specimens. These cells grow as tumor spheres under anchorage-independent culture conditions in vitro and reliably form tumors in mice when transplanted in limiting dilutions in vivo. The BCSC xenograft tumors phenocopy the original patient tumor in architecture and gene expression. Analysis of an EMT-related marker profile revealed the concomitant expression of epithelial and mesenchymal markers suggesting an EMP state for BCSCs of TNBC. Furthermore, BCSCs were susceptible to stimulation with the EMT inducer TGF-β1, resulting in upregulation of mesenchymal genes and enhanced migratory abilities. Overall, primary BCSC cultures are a promising model close to the patient that can be used both in vitro and in vivo to address questions of BCSC biology and evaluate new treatment options for TNBC.
Collapse
|
6
|
Aramini B, Masciale V, Grisendi G, Banchelli F, D'Amico R, Maiorana A, Morandi U, Dominici M, Haider KH. Cancer stem cells and macrophages: molecular connections and future perspectives against cancer. Oncotarget 2021; 12:230-250. [PMID: 33613850 PMCID: PMC7869576 DOI: 10.18632/oncotarget.27870] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) have been considered the key drivers of cancer initiation and progression due to their unlimited self-renewal capacity and their ability to induce tumor formation. Macrophages, particularly tumor-associated macrophages (TAMs), establish a tumor microenvironment to protect and induce CSCs development and dissemination. Many studies in the past decade have been performed to understand the molecular mediators of CSCs and TAMs, and several studies have elucidated the complex crosstalk that occurs between these two cell types. The aim of this review is to define the complex crosstalk between these two cell types and to highlight potential future anti-cancer strategies.
Collapse
Affiliation(s)
- Beatrice Aramini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Valentina Masciale
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Grisendi
- Division of Oncology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Federico Banchelli
- Center of Statistic, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberto D'Amico
- Center of Statistic, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonino Maiorana
- Institute of Pathology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Uliano Morandi
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Division of Oncology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
7
|
Ruud KF, Hiscox WC, Yu I, Chen RK, Li W. Distinct phenotypes of cancer cells on tissue matrix gel. Breast Cancer Res 2020; 22:82. [PMID: 32736579 PMCID: PMC7395363 DOI: 10.1186/s13058-020-01321-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/23/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Breast cancer cells invading the connective tissues outside the mammary lobule or duct immerse in a reservoir of extracellular matrix (ECM) that is structurally and biochemically distinct from that of their site of origin. The ECM is a spatial network of matrix proteins, which not only provide physical support but also serve as bioactive ligands to the cells. It becomes evident that the dimensional, mechanical, structural, and biochemical properties of ECM are all essential mediators of many cellular functions. To better understand breast cancer development and cancer cell biology in native tissue environment, various tissue-mimicking culture models such as hydrogel have been developed. Collagen I (Col I) and Matrigel are the most common hydrogels used in cancer research and have opened opportunities for addressing biological questions beyond the two-dimensional (2D) cell cultures. Yet, it remains unclear whether these broadly used hydrogels can recapitulate the environmental properties of tissue ECM, and whether breast cancer cells grown on CoI I or Matrigel display similar phenotypes as they would on their native ECM. METHODS We investigated mammary epithelial cell phenotypes and metabolic profiles on animal breast ECM-derived tissue matrix gel (TMG), Col I, and Matrigel. Atomic force microscopy (AFM), fluorescence microscopy, acini formation assay, differentiation experiments, spatial migration/invasion assays, proliferation assay, and nuclear magnetic resonance (NMR) spectroscopy were used to examine biological phenotypes and metabolic changes. Student's t test was applied for statistical analyses. RESULTS Our data showed that under a similar physiological stiffness, the three types of hydrogels exhibited distinct microstructures. Breast cancer cells grown on TMG displayed quite different morphologies, surface receptor expression, differentiation status, migration and invasion, and metabolic profiles compared to those cultured on Col I and Matrigel. Depleting lactate produced by glycolytic metabolism of cancer cells abolished the cell proliferation promoted by the non-tissue-specific hydrogel. CONCLUSION The full ECM protein-based hydrogel system may serve as a biologically relevant model system to study tissue- and disease-specific pathological questions. This work provides insights into tissue matrix regulation of cancer cell biomarker expression and identification of novel therapeutic targets for the treatment of human cancers based on tissue-specific disease modeling.
Collapse
Affiliation(s)
- Kelsey F Ruud
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, 99202, USA
| | - William C Hiscox
- Center for NMR Spectroscopy, Washington State University, Pullman, WA, 99164, USA
| | - Ilhan Yu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Roland K Chen
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Weimin Li
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, 99202, USA.
| |
Collapse
|
8
|
Tumorigenic and Metastatic Role of CD44 -/low/CD24 -/low Cells in Luminal Breast Cancer. Cancers (Basel) 2020; 12:cancers12051239. [PMID: 32423137 PMCID: PMC7281029 DOI: 10.3390/cancers12051239] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/01/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023] Open
Abstract
Cells with high CD44 but low CD24 expression (CD44high/CD24-/low) and high aldehyde dehydrogenase activity (ALDHbr) are widely considered to be drivers of metastasis, therapy resistance and tumor recurrence in breast cancer. However, the role of the CD44high/CD24-/low and ALDHbr phenotypes in identifying tumorigenic cells in breast cancer remains controversial due to the discrepancy in their distribution and tumorigenic potential in intrinsic breast cancer subtypes. In this study, we analyzed the cells expressing these markers in six different breast cancer cell lines representing major breast cancer subtypes (T47D, MCF-7, BT-474, AU-565, Hs578T and MDA-MB-231). CD44high/CD24-/low, ALDHbr and CD44-/low/CD24-/low cell populations were isolated by flow cytometry and analyzed for hallmark stem cell characteristics of differentiation, migration, invasiveness and metastasis using in vitro and in vivo techniques. Our results demonstrate that the CD44-/low/CD24-/low cell population, which is enriched in luminal cell lines (T47D, MCF-7 and BT-474), possesses metastatic and tumorigenic properties. We also show that, contrary to previous claims, the expression of the ALDH1 isoform ALDH1A1 does not affect the tumorigenic potential of cell lines with high ALDH activity (BT-474 and AU-565). Further transcriptomic and clinical studies are needed to determine the potential of these markers as early diagnostic tools and treatment targets.
Collapse
|
9
|
Mammary Stem Cells in Domestic Animals: The Role of ROS. Antioxidants (Basel) 2018; 8:antiox8010006. [PMID: 30587765 PMCID: PMC6356801 DOI: 10.3390/antiox8010006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/12/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) are produced as a natural byproduct of the normal metabolism of oxygen and play significant roles in cell signaling and homeostasis. Although ROS have been involved in pathological processes as diverse as cancer, cardiovascular disease, and aging, they may to exert an effect even in a physiological context. In the central nervous system, stem cells and hematopoietic stem cells are early progenitors that contain lower levels of ROS than their more mature progeny. These different concentrations have been reported to be crucial for maintaining stem cell function. Mammary gland remodeling has been proposed to be organized through the activation and regulation of cells with stemness, either considered real stem cells or primitive precursors. Given the state of oxidative stress in the mammary gland tissue induced by high milk production, in particular in highly productive dairy cows; several studies have focused on the relationship between adult mammary stem cells and the oxidative state of the gland. The oxidative state of the mammary gland appears to be involved in the initial development and metastasis of breast cancer through interference with mammary cancerous stem cells. This review summarizes some links between the mammary stem and oxidative state of the gland.
Collapse
|
10
|
Lnc RNA H19 is associated with poor prognosis in breast cancer patients and promotes cancer stemness. Breast Cancer Res Treat 2018; 170:507-516. [DOI: 10.1007/s10549-018-4793-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/13/2018] [Indexed: 12/13/2022]
|
11
|
Laranjo M, Carvalho MJ, Costa T, Alves A, Oliveira RC, Casalta-Lopes J, Cordeiro P, Botas F, Abrantes AM, Paiva A, Oliveira C, Botelho MF. Mammospheres of hormonal receptor positive breast cancer diverge to triple-negative phenotype. Breast 2018; 38:22-29. [DOI: 10.1016/j.breast.2017.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/03/2017] [Accepted: 11/09/2017] [Indexed: 12/22/2022] Open
|
12
|
Pizon M, Schott D, Pachmann U, Pachmann K. The number of tumorspheres cultured from peripheral blood is a predictor for presence of metastasis in patients with breast cancer. Oncotarget 2018; 7:48143-48154. [PMID: 27340862 PMCID: PMC5217007 DOI: 10.18632/oncotarget.10174] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/02/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Tumor metastases are the major cause of cancer morbidity and mortality. A subpopulation of tumor cells with stem-like properties is assumed to be responsible for tumor invasion, metastasis, heterogeneity and therapeutic resistance. This population is termed cancer stem cells (CSCs). We have developed a simple method for identification and characterization of circulating cancer stem cells among circulating epithelial tumor cells (CETCs). METHODS CETCs were cultured under conditions favoring growth of tumorspheres from 72 patients with breast cancer, including a subpopulation of 23 patients with metastatic disease. CETCs were determined using the maintrac® method. Gene expression profiles of single CETCs and tumorspheres of the same patients were analyzed using qRT-PCR. RESULTS Sphere formation was observed in 79 % of patients. We found that the number of tumorspheres depended on stage of disease. Furthermore, the most important factor for growing of tumorspheres is obtaining chemotherapy. Patients with chemotherapy treatment had lower numbers of tumorspheres compared to patients without chemotherapy. Patients with HER2 positive primary tumor had higher number of tumorspheres. Analysis of surface marker expression profile of tumorspheres showed that cells in the spheres had typical phenotype of cancer stem cells. There was no sphere formation in a control group with 50 healthy donors. CONCLUSIONS This study demonstrates that a small fraction of CETCs has proliferative activity. Identifying the CETC subset with cancer stem cell properties may provide more clinically useful prognostic information. Chemotherapy is the most important component in cancer therapy because it frequently reduces the number of tumorspheres.
Collapse
Affiliation(s)
- Monika Pizon
- Transfusion Center Bayreuth, 95448, Bayreuth, Germany
| | | | | | | |
Collapse
|
13
|
Gutiérrez Diez PJ, Su Y, Russo J. Immunocytochemical stem cell markers can predict clinical stage of breast cancer. Oncol Rep 2017; 38:1507-1516. [PMID: 28714035 DOI: 10.3892/or.2017.5820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 04/03/2017] [Indexed: 11/06/2022] Open
Abstract
We present a computational-statistical algorithm that, from data on the staining degree of immunocytochemical markers: i) evaluates the ability of the considered immuno-panel in predicting the breast cancer stage; ii) makes the accurate identification of breast cancer stage possible; iii) provides the best stage prognosis compatible with the considered sample; and iv) does so through the use of the minimum number of markers minimizing time and resource costs. After running the algorithm on two data sets [triple-negative breast cancer, (TNBC), and estrogen receptor-negative breast cancer, (ERNBC)], we conclude that EpCAM and β1 integrin are enough to accurately predict TNBC stage, being ALDH1, CD24, CD61, and CK5 the necessary markers to exactly predict ERNBC stage.
Collapse
Affiliation(s)
- Pedro J Gutiérrez Diez
- Department of Economic Theory, University of Valladolid, School of Economics, Valladolid, Spain
| | - Yanrong Su
- The Irma H. Russo, MD - Breast Cancer Research Laboratory, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, USA
| | - Jose Russo
- The Irma H. Russo, MD - Breast Cancer Research Laboratory, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, USA
| |
Collapse
|
14
|
Borovski T, Vellinga TT, Laoukili J, Santo EE, Fatrai S, van Schelven S, Verheem A, Marvin DL, Ubink I, Borel Rinkes IHM, Kranenburg O. Inhibition of RAF1 kinase activity restores apicobasal polarity and impairs tumour growth in human colorectal cancer. Gut 2017; 66:1106-1115. [PMID: 27670374 DOI: 10.1136/gutjnl-2016-311547] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 08/30/2016] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIM Colorectal cancer (CRC) remains one of the leading causes of cancer-related death. Novel therapeutics are urgently needed, especially for tumours with activating mutations in KRAS (∼40%). Here we investigated the role of RAF1 in CRC, as a potential, novel target. METHODS Colonosphere cultures were established from human tumour specimens obtained from patients who underwent colon or liver resection for primary or metastatic adenocarcinoma. The role of RAF1 was tested by generating knockdowns (KDs) using three independent shRNA constructs or by using RAF1-kinase inhibitor GW5074. Clone-initiating and tumour-initiating capacities were assessed by single-cell cloning and injecting CRC cells into immune-deficient mice. Expression of tight junction (TJ) proteins, localisation of polarity proteins and activation of MEK-ERK pathway was analysed by western blot, immunohistochemistry and immunofluorescence. RESULTS KD or pharmacological inhibition of RAF1 significantly decreased clone-forming and tumour-forming capacity of all CRC cultures tested, including KRAS-mutants. This was not due to cytotoxicity but, at least in part, to differentiation of tumour cells into goblet-like cells. Inhibition of RAF1-kinase activity restored apicobasal polarity and the formation of TJs in vitro and in vivo, without reducing MEK-ERK phosphorylation. MEK-inhibition failed to restore polarity and TJs. Moreover, RAF1-impaired tumours were characterised by normalised tissue architecture. CONCLUSIONS RAF1 plays a critical role in maintaining the transformed phenotype of CRC cells, including those with mutated KRAS. The effects of RAF1 are kinase-dependent, but MEK-independent. Despite the lack of activating mutations in RAF1, its kinase domain is an attractive therapeutic target for CRC.
Collapse
Affiliation(s)
- Tijana Borovski
- Cancer Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Thomas T Vellinga
- Cancer Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jamila Laoukili
- Cancer Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Evan E Santo
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York City, New York, USA
| | - Szabolcs Fatrai
- Department of Hematology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Andre Verheem
- Cancer Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dieuwke L Marvin
- Cancer Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Inge Ubink
- Cancer Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Onno Kranenburg
- Cancer Center, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
15
|
Shima H, Yamada A, Ishikawa T, Endo I. Are breast cancer stem cells the key to resolving clinical issues in breast cancer therapy? Gland Surg 2017; 6:82-88. [PMID: 28210556 DOI: 10.21037/gs.2016.08.03] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Despite the dramatic advances in breast cancer treatment over the past two decades, it is still the most common malignancies in women. One of the reasons patients succumb to breast cancer is treatment resistance leading to metastasis and recurrence. Recently, cancer stem cells (CSCs) have been suggested as a cause of metastasis and recurrence in several cancers because of their unique characteristics, including self-renewal, pluripotency, and high proliferative ability. Increasing evidence has implicated breast cancer stem cells (BCSCs) as essential for tumor development, progression, recurrence, and treatment resistance. BCSCs exhibit resistance to treatment owing to several inter-related factors, including overexpression of ATP-binding cassette (ABC) transporters and increased aldehyde dehydrogenase (ALDH) activity, DNA repair, and reactive oxygen species (ROS) scavenging. In addition, the Notch, Hedgehog, and Wnt signaling pathways have been suggested as the major pathways involved in the self-renewal and differentiation of BCSCs. Despite growing evidence suggesting the importance of BCSCs in progression and metastasis, clear criteria for the identification of BCSCs in clinical practice have yet to be established. Several potential markers have been suggested, including CD44+/CD24-/low, ALDH1, EpCAM/ESA, and nestin; however, there is no standard method to detect BCSCs. Triple-negative breast cancer, which shows initial chemosensitivity, demonstrates worsened prognosis due to therapy resistance, which might be related to the presence of BCSCs. Several clinical trials aimed at the identification of BCSCs or the development of BCSC-targeted therapy are in progress. Determining the clinical relevance of BCSCs may provide clues for overcoming therapy resistance in breast cancer.
Collapse
Affiliation(s)
- Hidetaka Shima
- Department of Gastroenterological Surgery, Yokohama City University, Yokohama, Kanagawa 236-0004, Japan
| | - Akimitsu Yamada
- Department of Gastroenterological Surgery, Yokohama City University, Yokohama, Kanagawa 236-0004, Japan
| | - Takashi Ishikawa
- Department of Breast disease, Tokyo Medical University Hospital, Tokyo 160-0023, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University, Yokohama, Kanagawa 236-0004, Japan
| |
Collapse
|
16
|
van Niekerk G, Davids LM, Hattingh SM, Engelbrecht AM. Cancer stem cells: A product of clonal evolution? Int J Cancer 2016; 140:993-999. [PMID: 27676693 DOI: 10.1002/ijc.30448] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/19/2016] [Indexed: 12/30/2022]
Abstract
The cancer stem cell (CSC) model has emerged as a prominent paradigm for explaining tumour heterogeneity. CSCs in tumour recurrence and drug resistance have also been implicated in a number of studies. In fact, CSCs are often identified by their expression of drug-efflux proteins which are also highly expressed in normal stem cells. Similarly, pro-survival or proliferation signalling often exhibited by stem cells is regularly reported as being upregulated by CSC. Here we review evidence suggesting that many aspects of CSCs are more readily described by clonal evolution. As an example, cancer cells often exhibit copy number gains of genes involved in drug-efflux proteins and pro-survival signalling. Consequently, clonal selection for stem cell traits may result in cancer cells developing "stemness" traits which impart a fitness advantage, without strictly following a CSC model. Finally, since symmetric cell division would give rise to more cells than asymmetric division, it is expected that more advanced tumours would depart from a CSC. Collectively, these observations suggest clonal evolution may explain many aspects of the CSC.
Collapse
Affiliation(s)
- Gustav van Niekerk
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Lester M Davids
- Department of Human Biology, Division of Cell Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Suzèl M Hattingh
- Department of Biomedical Sciences, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
17
|
Bleau AM, Zandueta C, Redrado M, Martínez-Canarias S, Larzábal L, Montuenga LM, Calvo A, Lecanda F. Sphere-derived tumor cells exhibit impaired metastasis by a host-mediated quiescent phenotype. Oncotarget 2016; 6:27288-303. [PMID: 26318423 PMCID: PMC4694990 DOI: 10.18632/oncotarget.4803] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 07/27/2015] [Indexed: 12/18/2022] Open
Abstract
The spread of lung cancer cells to distant sites represents a common event associated with poor prognosis. A fraction of tumor cells named cancer stem cells (CSCs) have the ability to overcome therapeutic stress and remain quiescent. However, whether these CSCs have also the capacity to initiate and sustain metastasis remains unclear. Here, we used tumor sphere cultures (TSC) isolated from mouse and human lung cancer models to enrich for CSCs, and assessed their metastatic potential as compared to non-CSCs. As expected, TSC overexpressed a variety of stem cell markers and displayed chemoresistance. The CSC phenotype of TSC was confirmed by their higher growth ability in soft agar and tumorigenic potential in vivo, despite their reduced in vitro cell growth kinetics. Surprisingly, the appearance of spontaneous lung metastases was strongly delayed in mice injected with TSC as compared to non-TSC cells. Similarly, this finding was confirmed in several other models of metastasis, an effect associated with a retarded colonization activity. Interestingly, such delay correlated with a quiescent phenotype whose underlined mechanisms included an increase in p27 protein and lower phospho-ERK1/2 levels. Thus, these data suggest that cells enriched for CSC properties display an impaired metastatic activity, a finding with potential clinical implications.
Collapse
Affiliation(s)
- Anne-Marie Bleau
- Program in Solid Tumors and Biomarkers, Division of Oncology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Carolina Zandueta
- Program in Solid Tumors and Biomarkers, Division of Oncology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Miriam Redrado
- Program in Solid Tumors and Biomarkers, Division of Oncology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Susana Martínez-Canarias
- Program in Solid Tumors and Biomarkers, Division of Oncology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Leyre Larzábal
- Program in Solid Tumors and Biomarkers, Division of Oncology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Luis M Montuenga
- Program in Solid Tumors and Biomarkers, Division of Oncology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Alfonso Calvo
- Program in Solid Tumors and Biomarkers, Division of Oncology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Fernando Lecanda
- Program in Solid Tumors and Biomarkers, Division of Oncology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| |
Collapse
|
18
|
Lee WJ, Kim SC, Yoon JH, Yoon SJ, Lim J, Kim YS, Kwon SW, Park JH. Meta-Analysis of Tumor Stem-Like Breast Cancer Cells Using Gene Set and Network Analysis. PLoS One 2016; 11:e0148818. [PMID: 26870956 PMCID: PMC4752453 DOI: 10.1371/journal.pone.0148818] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 01/22/2016] [Indexed: 12/24/2022] Open
Abstract
Generally, cancer stem cells have epithelial-to-mesenchymal-transition characteristics and other aggressive properties that cause metastasis. However, there have been no confident markers for the identification of cancer stem cells and comparative methods examining adherent and sphere cells are widely used to investigate mechanism underlying cancer stem cells, because sphere cells have been known to maintain cancer stem cell characteristics. In this study, we conducted a meta-analysis that combined gene expression profiles from several studies that utilized tumorsphere technology to investigate tumor stem-like breast cancer cells. We used our own gene expression profiles along with the three different gene expression profiles from the Gene Expression Omnibus, which we combined using the ComBat method, and obtained significant gene sets using the gene set analysis of our datasets and the combined dataset. This experiment focused on four gene sets such as cytokine-cytokine receptor interaction that demonstrated significance in both datasets. Our observations demonstrated that among the genes of four significant gene sets, six genes were consistently up-regulated and satisfied the p-value of < 0.05, and our network analysis showed high connectivity in five genes. From these results, we established CXCR4, CXCL1 and HMGCS1, the intersecting genes of the datasets with high connectivity and p-value of < 0.05, as significant genes in the identification of cancer stem cells. Additional experiment using quantitative reverse transcription-polymerase chain reaction showed significant up-regulation in MCF-7 derived sphere cells and confirmed the importance of these three genes. Taken together, using meta-analysis that combines gene set and network analysis, we suggested CXCR4, CXCL1 and HMGCS1 as candidates involved in tumor stem-like breast cancer cells. Distinct from other meta-analysis, by using gene set analysis, we selected possible markers which can explain the biological mechanisms and suggested network analysis as an additional criterion for selecting candidates.
Collapse
Affiliation(s)
- Won Jun Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang Cheol Kim
- Department of Biomedical Informatics, Center for Genome Science, National Institute of Health, KCDC, Choongchung-Buk-do, 28159, Republic of Korea
| | - Jung-Ho Yoon
- Department of Biochemistry and Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Sang Jun Yoon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Johan Lim
- Department of Statistics, Seoul National University, Seoul, 08826, Republic of Korea
| | - You-Sun Kim
- Department of Biochemistry and Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Sung Won Kwon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong Hill Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- * E-mail:
| |
Collapse
|
19
|
Takebe N, Miele L, Harris PJ, Jeong W, Bando H, Kahn M, Yang SX, Ivy SP. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat Rev Clin Oncol 2015; 12:445-64. [PMID: 25850553 PMCID: PMC4520755 DOI: 10.1038/nrclinonc.2015.61] [Citation(s) in RCA: 951] [Impact Index Per Article: 95.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During the past decade, cancer stem cells (CSCs) have been increasingly identified in many malignancies. Although the origin and plasticity of these cells remain controversial, tumour heterogeneity and the presence of small populations of cells with stem-like characteristics is established in most malignancies. CSCs display many features of embryonic or tissue stem cells, and typically demonstrate persistent activation of one or more highly conserved signal transduction pathways involved in development and tissue homeostasis, including the Notch, Hedgehog (HH), and Wnt pathways. CSCs generally have slow growth rates and are resistant to chemotherapy and/or radiotherapy. Thus, new treatment strategies targeting these pathways to control stem-cell replication, survival and differentiation are under development. Herein, we provide an update on the latest advances in the clinical development of such approaches, and discuss strategies for overcoming CSC-associated primary or acquired resistance to cancer treatment. Given the crosstalk between the different embryonic developmental signalling pathways, as well as other pathways, designing clinical trials that target CSCs with rational combinations of agents to inhibit possible compensatory escape mechanisms could be of particular importance. We also share our views on the future directions for targeting CSCs to advance the clinical development of these classes of agents.
Collapse
Affiliation(s)
- Naoko Takebe
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institute of Health, 9609 Medical Center Drive MSC9739, Bethesda, MD 20852, USA (N.T., P.J.H., S.P.I.). Stanley Scott Cancer Center, Louisiana State University Health Sciences Center and Louisiana Cancer Research Consortium, USA (L.M.). Cancer Therapy and Research Center, University of Texas, USA (W.J.). Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Japan (H.B.). Norris Comprehensive Cancer Research Center, University of Southern California, USA (M.K.). National Clinical Target Validation Laboratory, Division of Cancer Treatment and Diagnosis, National Cancer Institute, USA (S.X.Y.)
| | - Lucio Miele
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institute of Health, 9609 Medical Center Drive MSC9739, Bethesda, MD 20852, USA (N.T., P.J.H., S.P.I.). Stanley Scott Cancer Center, Louisiana State University Health Sciences Center and Louisiana Cancer Research Consortium, USA (L.M.). Cancer Therapy and Research Center, University of Texas, USA (W.J.). Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Japan (H.B.). Norris Comprehensive Cancer Research Center, University of Southern California, USA (M.K.). National Clinical Target Validation Laboratory, Division of Cancer Treatment and Diagnosis, National Cancer Institute, USA (S.X.Y.)
| | - Pamela Jo Harris
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institute of Health, 9609 Medical Center Drive MSC9739, Bethesda, MD 20852, USA (N.T., P.J.H., S.P.I.). Stanley Scott Cancer Center, Louisiana State University Health Sciences Center and Louisiana Cancer Research Consortium, USA (L.M.). Cancer Therapy and Research Center, University of Texas, USA (W.J.). Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Japan (H.B.). Norris Comprehensive Cancer Research Center, University of Southern California, USA (M.K.). National Clinical Target Validation Laboratory, Division of Cancer Treatment and Diagnosis, National Cancer Institute, USA (S.X.Y.)
| | - Woondong Jeong
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institute of Health, 9609 Medical Center Drive MSC9739, Bethesda, MD 20852, USA (N.T., P.J.H., S.P.I.). Stanley Scott Cancer Center, Louisiana State University Health Sciences Center and Louisiana Cancer Research Consortium, USA (L.M.). Cancer Therapy and Research Center, University of Texas, USA (W.J.). Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Japan (H.B.). Norris Comprehensive Cancer Research Center, University of Southern California, USA (M.K.). National Clinical Target Validation Laboratory, Division of Cancer Treatment and Diagnosis, National Cancer Institute, USA (S.X.Y.)
| | - Hideaki Bando
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institute of Health, 9609 Medical Center Drive MSC9739, Bethesda, MD 20852, USA (N.T., P.J.H., S.P.I.). Stanley Scott Cancer Center, Louisiana State University Health Sciences Center and Louisiana Cancer Research Consortium, USA (L.M.). Cancer Therapy and Research Center, University of Texas, USA (W.J.). Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Japan (H.B.). Norris Comprehensive Cancer Research Center, University of Southern California, USA (M.K.). National Clinical Target Validation Laboratory, Division of Cancer Treatment and Diagnosis, National Cancer Institute, USA (S.X.Y.)
| | - Michael Kahn
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institute of Health, 9609 Medical Center Drive MSC9739, Bethesda, MD 20852, USA (N.T., P.J.H., S.P.I.). Stanley Scott Cancer Center, Louisiana State University Health Sciences Center and Louisiana Cancer Research Consortium, USA (L.M.). Cancer Therapy and Research Center, University of Texas, USA (W.J.). Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Japan (H.B.). Norris Comprehensive Cancer Research Center, University of Southern California, USA (M.K.). National Clinical Target Validation Laboratory, Division of Cancer Treatment and Diagnosis, National Cancer Institute, USA (S.X.Y.)
| | - Sherry X. Yang
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institute of Health, 9609 Medical Center Drive MSC9739, Bethesda, MD 20852, USA (N.T., P.J.H., S.P.I.). Stanley Scott Cancer Center, Louisiana State University Health Sciences Center and Louisiana Cancer Research Consortium, USA (L.M.). Cancer Therapy and Research Center, University of Texas, USA (W.J.). Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Japan (H.B.). Norris Comprehensive Cancer Research Center, University of Southern California, USA (M.K.). National Clinical Target Validation Laboratory, Division of Cancer Treatment and Diagnosis, National Cancer Institute, USA (S.X.Y.)
| | - S. Percy Ivy
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institute of Health, 9609 Medical Center Drive MSC9739, Bethesda, MD 20852, USA (N.T., P.J.H., S.P.I.). Stanley Scott Cancer Center, Louisiana State University Health Sciences Center and Louisiana Cancer Research Consortium, USA (L.M.). Cancer Therapy and Research Center, University of Texas, USA (W.J.). Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Japan (H.B.). Norris Comprehensive Cancer Research Center, University of Southern California, USA (M.K.). National Clinical Target Validation Laboratory, Division of Cancer Treatment and Diagnosis, National Cancer Institute, USA (S.X.Y.)
| |
Collapse
|
20
|
Sjöström M, Hartman L, Honeth G, Grabau D, Malmström P, Hegardt C, Fernö M, Niméus E. Stem cell biomarker ALDH1A1 in breast cancer shows an association with prognosis and clinicopathological variables that is highly cut-off dependent. J Clin Pathol 2015; 68:1012-9. [PMID: 26175266 DOI: 10.1136/jclinpath-2015-203092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/22/2015] [Indexed: 01/01/2023]
Abstract
AIMS Aldehyde dehydrogenase family 1 member A1 (ALDH1A1) is a putative marker of breast cancer stem cells (CSCs) with prognostic implications when expressed in cancer or stroma. However, previous results are contradictory and we therefore aimed to further evaluate the impact of ALDH1A1 on distant disease-free survival (DDFS) and correlation with clinicopathological variables in breast cancer, specifically by evaluating different cut-offs. METHODS Two breast cancer cohorts (N=216 and N=210) were evaluated with immunohistochemistry for ALDH1A1 on tissue microarrays with three different cut-offs in cancer cells and in stromal cells. The association of ALDH1A1 with DDFS and other clinicopathological variables was assessed. As further validation, gene expression levels of ALDH1A1 and association with survival were analysed in one of the cohorts and a separate cohort. RESULTS ALDH1A1 expression in cancer cells was associated with either a better or a worse prognosis, depending on cut-off. Considering weakly stained cancer cells as positive, ALDH1A1+ was associated with a better prognosis in both cohorts. Considering only strongly stained cells as positive, ALDH1A1+ was associated with oestrogen receptor and progesterone receptor negativity in both cohorts and worse prognosis in one of the cohorts. Stromal ALDH1A1 staining was associated with improved DDFS in one cohort. Gene expression analysis showed that a high ALDH1A1 expression was associated with a better prognosis. CONCLUSIONS ALDH1A1 is associated with DDFS and clinicopathological variables, both in cancer cells and stroma, but is highly cut-off dependent. Only the strongly ALDH1A1-stained cells show a more aggressive phenotype typical for CSCs.
Collapse
Affiliation(s)
- Martin Sjöström
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, Lund, Sweden
| | - Linda Hartman
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, Lund, Sweden
| | - Gabriella Honeth
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, Lund, Sweden
| | - Dorthe Grabau
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, Lund, Sweden Division of Pathology, Skåne University Hospital, Lund, Sweden
| | - Per Malmström
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, Lund, Sweden Division of Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Cecilia Hegardt
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, Lund, Sweden
| | - Mårten Fernö
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, Lund, Sweden
| | - Emma Niméus
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, Lund, Sweden Division of Surgery, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
21
|
Huber S, Wege AK, Bernhardt G, Buschauer A, Brockhoff G. Topotecan-induced ABCG2 expression in MCF-7 cells is associated with decreased CD24 and EpCAM expression and a loss of tumorigenicity. Cytometry A 2015; 87:707-16. [DOI: 10.1002/cyto.a.22675] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/11/2015] [Accepted: 03/31/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Stefan Huber
- Department of Pharmaceutical and Medicinal Chemistry II; University of Regensburg; Regensburg Germany
| | - Anja K. Wege
- Department of Gynecology and Obstetrics; University of Regensburg; Regensburg Germany
| | - Günther Bernhardt
- Department of Pharmaceutical and Medicinal Chemistry II; University of Regensburg; Regensburg Germany
| | - Armin Buschauer
- Department of Pharmaceutical and Medicinal Chemistry II; University of Regensburg; Regensburg Germany
| | - Gero Brockhoff
- Department of Gynecology and Obstetrics; University of Regensburg; Regensburg Germany
| |
Collapse
|
22
|
Barbieri F, Thellung S, Ratto A, Carra E, Marini V, Fucile C, Bajetto A, Pattarozzi A, Würth R, Gatti M, Campanella C, Vito G, Mattioli F, Pagano A, Daga A, Ferrari A, Florio T. In vitro and in vivo antiproliferative activity of metformin on stem-like cells isolated from spontaneous canine mammary carcinomas: translational implications for human tumors. BMC Cancer 2015; 15:228. [PMID: 25884842 PMCID: PMC4397725 DOI: 10.1186/s12885-015-1235-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 03/20/2015] [Indexed: 12/21/2022] Open
Abstract
Background Cancer stem cells (CSCs) are considered the cell subpopulation responsible for breast cancer (BC) initiation, growth, and relapse. CSCs are identified as self-renewing and tumor-initiating cells, conferring resistance to chemo- and radio-therapy to several neoplasias. Nowadays, th (about 10mM)e pharmacological targeting of CSCs is considered an ineludible therapeutic goal. The antidiabetic drug metformin was reported to suppress in vitro and in vivo CSC survival in different tumors and, in particular, in BC preclinical models. However, few studies are available on primary CSC cultures derived from human postsurgical BC samples, likely because of the limited amount of tissue available after surgery. In this context, comparative oncology is acquiring a relevant role in cancer research, allowing the analysis of larger samples from spontaneous pet tumors that represent optimal models for human cancer. Methods Isolation of primary canine mammary carcinoma (CMC) cells and enrichment in stem-like cell was carried out from fresh tumor specimens by culturing cells in stem-permissive conditions. Phenotypic and functional characterization of CMC-derived stem cells was performed in vitro, by assessment of self-renewal, long-lasting proliferation, marker expression, and drug sensitivity, and in vivo, by tumorigenicity experiments. Corresponding cultures of differentiated CMC cells were used as internal reference. Metformin efficacy on CMC stem cell viability was analyzed both in vitro and in vivo. Results We identified a subpopulation of CMC cells showing human breast CSC features, including expression of specific markers (i.e. CD44, CXCR4), growth as mammospheres, and tumor-initiation in mice. These cells show resistance to doxorubicin but were highly sensitive to metformin in vitro. Finally, in vivo metformin administration significantly impaired CMC growth in NOD-SCID mice, associated with a significant depletion of CSCs. Conclusions Similarly to the human counterpart, CMCs contain stem-like subpopulations representing, in a comparative oncology context, a valuable translational model for human BC, and, in particular, to predict the efficacy of antitumor drugs. Moreover, metformin represents a potential CSC-selective drug for BC, as effective (neo-)adjuvant therapy to eradicate CSC in mammary carcinomas of humans and animals. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1235-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Federica Barbieri
- Dipartimento di Medicina Interna, Sezione di Farmacologia, University of Genova, Genoa, Italy. .,Centro di Eccellenza per la Ricerca Biomedica (CEBR), University of Genova, Genoa, Italy.
| | - Stefano Thellung
- Dipartimento di Medicina Interna, Sezione di Farmacologia, University of Genova, Genoa, Italy. .,Centro di Eccellenza per la Ricerca Biomedica (CEBR), University of Genova, Genoa, Italy.
| | - Alessandra Ratto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, and National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Genoa, Italy.
| | - Elisa Carra
- Dipartimento di Medicina Sperimentale, University of Genova, Genoa, Italy.
| | - Valeria Marini
- Dipartimento di Medicina Interna, Sezione di Farmacologia, University of Genova, Genoa, Italy.
| | - Carmen Fucile
- Dipartimento di Medicina Interna, Sezione di Farmacologia, University of Genova, Genoa, Italy.
| | - Adriana Bajetto
- Dipartimento di Medicina Interna, Sezione di Farmacologia, University of Genova, Genoa, Italy.
| | - Alessandra Pattarozzi
- Dipartimento di Medicina Interna, Sezione di Farmacologia, University of Genova, Genoa, Italy.
| | - Roberto Würth
- Dipartimento di Medicina Interna, Sezione di Farmacologia, University of Genova, Genoa, Italy.
| | - Monica Gatti
- Dipartimento di Medicina Interna, Sezione di Farmacologia, University of Genova, Genoa, Italy.
| | - Chiara Campanella
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, and National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Genoa, Italy.
| | - Guendalina Vito
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, and National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Genoa, Italy.
| | - Francesca Mattioli
- Dipartimento di Medicina Interna, Sezione di Farmacologia, University of Genova, Genoa, Italy.
| | - Aldo Pagano
- Dipartimento di Medicina Sperimentale, University of Genova, Genoa, Italy. .,IRCCS AOU San Martino - IST, Genoa, Italy.
| | | | - Angelo Ferrari
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, and National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Genoa, Italy.
| | - Tullio Florio
- Dipartimento di Medicina Interna, Sezione di Farmacologia, University of Genova, Genoa, Italy. .,Centro di Eccellenza per la Ricerca Biomedica (CEBR), University of Genova, Genoa, Italy.
| |
Collapse
|
23
|
Day RS. What Tumor Dynamics Modeling Can Teach us About Exploiting the Stem-Cell View for Better Cancer Treatment. Cancer Inform 2015; 14:25-36. [PMID: 25780337 PMCID: PMC4345852 DOI: 10.4137/cin.s17294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/19/2015] [Accepted: 01/22/2015] [Indexed: 12/26/2022] Open
Abstract
The cancer stem cell hypothesis is that in human solid cancers, only a small proportion of the cells, the cancer stem cells (CSCs), are self-renewing; the vast majority of the cancer cells are unable to sustain tumor growth indefinitely on their own. In recent years, discoveries have led to the concentration, if not isolation, of putative CSCs. The evidence has mounted that CSCs do exist and are important. This knowledge may promote better understanding of treatment resistance, create opportunities to test agents against CSCs, and open up promise for a fresh approach to cancer treatment. The first clinical trials of new anti-CSC agents are completed, and many others follow. Excitement is mounting that this knowledge will lead to major improvements, even breakthroughs, in treating cancer. However, exploitation of this phenomenon may be more successful if informed by insights into the population dynamics of tumor development. We revive some ideas in tumor dynamics modeling to extract some guidance in designing anti-CSC treatment regimens and the clinical trials that test them.
Collapse
Affiliation(s)
- Roger S Day
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
24
|
Fan F, Bellister S, Lu J, Ye X, Boulbes DR, Tozzi F, Sceusi E, Kopetz S, Tian F, Xia L, Zhou Y, Bhattacharya R, Ellis LM. The requirement for freshly isolated human colorectal cancer (CRC) cells in isolating CRC stem cells. Br J Cancer 2014; 112:539-46. [PMID: 25535733 PMCID: PMC4453647 DOI: 10.1038/bjc.2014.620] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 11/19/2014] [Accepted: 11/26/2014] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Isolation of colorectal cancer (CRC) cell populations enriched for cancer stem cells (CSCs) may facilitate target identification. There is no consensus regarding the best methods for isolating CRC stem cells (CRC-SCs). We determined the suitability of various cellular models and various stem cell markers for the isolation of CRC-SCs. METHODS Established human CRC cell lines, established CRC cell lines passaged through mice, patient-derived xenograft (PDX)-derived cells, early passage/newly established cell lines, and cells directly from clinical specimens were studied. Cells were FAC-sorted for the CRC-SC markers CD44, CD133, and aldehyde dehydrogenase (ALDH). Sphere formation and in vivo tumorigenicity studies were used to validate CRC-SC enrichment. RESULTS None of the markers studied in established cell lines, grown either in vitro or in vivo, consistently enriched for CRC-SCs. In the three other cellular models, CD44 and CD133 did not reliably enrich for stemness. In contrast, freshly isolated PDX-derived cells or early passage/newly established CRC cell lines with high ALDH activity formed spheres in vitro and enhanced tumorigenicity in vivo, whereas cells with low ALDH activity did not. CONCLUSIONS PDX-derived cells, early passages/newly established CRC cell lines and cells from clinical specimen with high ALDH activity can be used to identify CRC-SC-enriched populations. Established CRC cell lines should not be used to isolate CSCs.
Collapse
Affiliation(s)
- F Fan
- Department of Surgical Oncology, Unit 1484, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77230-1402, USA
| | - S Bellister
- Department of Surgical Oncology, Unit 1484, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77230-1402, USA
| | - J Lu
- Department of Surgical Oncology, Unit 1484, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77230-1402, USA
| | - X Ye
- Department of Surgical Oncology, Unit 1484, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77230-1402, USA
| | - D R Boulbes
- Department of Surgical Oncology, Unit 1484, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77230-1402, USA
| | - F Tozzi
- Department of Surgical Oncology, Unit 1484, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77230-1402, USA
| | - E Sceusi
- Department of Surgical Oncology, Unit 1484, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77230-1402, USA
| | - S Kopetz
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - F Tian
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - L Xia
- Department of Surgical Oncology, Unit 1484, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77230-1402, USA
| | - Y Zhou
- Department of Surgical Oncology, Unit 1484, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77230-1402, USA
| | - R Bhattacharya
- Department of Surgical Oncology, Unit 1484, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77230-1402, USA
| | - L M Ellis
- 1] Department of Surgical Oncology, Unit 1484, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77230-1402, USA [2] Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
25
|
Ivers LP, Cummings B, Owolabi F, Welzel K, Klinger R, Saitoh S, O'Connor D, Fujita Y, Scholz D, Itasaki N. Dynamic and influential interaction of cancer cells with normal epithelial cells in 3D culture. Cancer Cell Int 2014; 14:108. [PMID: 25379014 PMCID: PMC4221723 DOI: 10.1186/s12935-014-0108-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/15/2014] [Indexed: 02/04/2023] Open
Abstract
Background The cancer microenvironment has a strong impact on the growth and dynamics of cancer cells. Conventional 2D culture systems, however, do not reflect in vivo conditions, impeding detailed studies of cancer cell dynamics. This work aims to establish a method to reveal the interaction of cancer and normal epithelial cells using 3D time-lapse. Methods GFP-labelled breast cancer cells, MDA-MB-231, were co-cultured with mCherry-labelled non-cancerous epithelial cells, MDCK, in a gel matrix. In the 3D culture, the epithelial cells establish a spherical morphology (epithelial sphere) thus providing cancer cells with accessibility to the basal surface of epithelia, similar to the in vivo condition. Cell movement was monitored using time-lapse analyses. Ultrastructural, immunocytochemical and protein expression analyses were also performed following the time-lapse study. Results In contrast to the 2D culture system, whereby most MDA-MB-231 cells exhibit spindle-shaped morphology as single cells, in the 3D culture the MDA-MB-231 cells were found to be single cells or else formed aggregates, both of which were motile. The single MDA-MB-231 cells exhibited both round and spindle shapes, with dynamic changes from one shape to the other, visible within a matter of hours. When co-cultured with epithelial cells, the MDA-MB-231 cells displayed a strong attraction to the epithelial spheres, and proceeded to surround and engulf the epithelial cell mass. The surrounded epithelial cells were eventually destroyed, becoming debris, and were taken into the MDA-MB-231 cells. However, when there was a relatively large population of normal epithelial cells, the MDA-MB-231 cells did not engulf the epithelial spheres effectively, despite repeated contacts. MDA-MB-231 cells co-cultured with a large number of normal epithelial cells showed reduced expression of monocarboxylate transporter-1, suggesting a change in the cell metabolism. A decreased level of gelatin-digesting ability as well as reduced production of matrix metaroproteinase-2 was also observed. Conclusions This culture method is a powerful technique to investigate cancer cell dynamics and cellular changes in response to the microenvironment. The method can be useful for various aspects such as; different combinations of cancer and non-cancer cell types, addressing the organ-specific affinity of cancer cells to host cells, and monitoring the cellular response to anti-cancer drugs. Electronic supplementary material The online version of this article (doi:10.1186/s12935-014-0108-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laura P Ivers
- School of Medicine and Medical Science, University College Dublin, Dublin, 4 Ireland
| | - Brendan Cummings
- School of Medicine and Medical Science, University College Dublin, Dublin, 4 Ireland
| | - Funke Owolabi
- School of Medicine and Medical Science, University College Dublin, Dublin, 4 Ireland
| | | | - Rut Klinger
- Conway Institute, University College Dublin, Dublin, 4 Ireland ; School of Biomolecular and Biomedical Science, University College Dublin, Dublin, 4 Ireland
| | - Sayaka Saitoh
- Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815 Japan
| | - Darran O'Connor
- Conway Institute, University College Dublin, Dublin, 4 Ireland ; School of Biomolecular and Biomedical Science, University College Dublin, Dublin, 4 Ireland
| | - Yasuyuki Fujita
- Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815 Japan
| | - Dimitri Scholz
- Conway Institute, University College Dublin, Dublin, 4 Ireland
| | - Nobue Itasaki
- School of Medicine and Medical Science, University College Dublin, Dublin, 4 Ireland
| |
Collapse
|
26
|
Klevebring D, Rosin G, Ma R, Lindberg J, Czene K, Kere J, Fredriksson I, Bergh J, Hartman J. Sequencing of breast cancer stem cell populations indicates a dynamic conversion between differentiation states in vivo. Breast Cancer Res 2014; 16:R72. [PMID: 24998755 PMCID: PMC4227057 DOI: 10.1186/bcr3687] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/25/2014] [Indexed: 12/18/2022] Open
Abstract
Introduction The cancer stem cell model implies a hierarchical organization within breast tumors maintained by cancer stem-like cells (CSCs). Accordingly, CSCs are a subpopulation of cancer cells with capacity for self-renewal, differentiation and tumor initiation. These cells can be isolated through the phenotypic markers CD44+/CD24-, expression of ALDH1 and an ability to form nonadherent, multicellular spheres in vitro. However, controversies to describe the stem cell model exist; it is unclear whether the tumorigenicity of CSCs in vivo is solely a proxy for a certain genotype. Moreover, in vivo evidence is lacking to fully define the reversibility of CSC differentiation. Methods In order to answer these questions, we undertook exome sequencing of CSCs from 12 breast cancer patients, along with paired primary tumor samples. As suggested by stem classical cell biology, we assumed that the number of mutations in the CSC subpopulation should be lower and distinct compared to the differentiated tumor cells with higher proliferation. Results Our analysis revealed that the majority of somatic mutations are shared between CSCs and bulk primary tumor, with similar frequencies in the two. Conclusions The data presented here exclude the possibility that CSCs are only a phenotypic consequence of certain somatic mutations, that is a distinct and non-reversible population of cells. In addition, our results imply that CSCs must be a population of cells that can dynamically switch from differentiated tumor cells, and vice versa. This finding increases our understanding of CSC function in tumor heterogeneity and the importance of identifying drugs to counter de-differentiation rather than targeting CSCs.
Collapse
|
27
|
Yamamichi F, Shigemura K, Behnsawy HM, Meligy FY, Huang WC, Li X, Yamanaka K, Hanioka K, Miyake H, Tanaka K, Kawabata M, Shirakawa T, Fujisawa M. Sonic hedgehog and androgen signaling in tumor and stromal compartments drives epithelial-mesenchymal transition in prostate cancer. Scand J Urol 2014; 48:523-32. [PMID: 25356787 DOI: 10.3109/21681805.2014.898336] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Sonic hedgehog (Shh) signaling, androgens and epithelial-mesenchymal transition (EMT) are related to prostate cancer (PCa) progression. The aim of this study was to investigate how Shh and androgen [dihydrotestosterone (DHT)] signaling act in prostate epithelial and stromal compartments and whether this signaling pathway drives EMT and promotes PCa progression. MATERIAL AND METHODS LNCaP, normal prostate fibroblast (NPF) and cancer-associated prostate fibroblast (CPF) cells were studied with DHT and/or the Shh signaling inhibitor cyclopamine. Real-time reverse transcription-polymerase chain reaction (RT-PCR) was performed to evaluate the expressions of a potential Shh target gene, osteonectin (ON) and EMT-associated markers (E-cadherin, N-cadherin and vimentin). Immunohistochemical studies using PCa prostatectomy samples were performed to assess the expression levels of ON, Gli-1, androgen receptor, Shh, E-cadherin, N-cadherin and vimentin. RESULTS While DHT enhanced cell proliferation in CPF more than LNCaP or NPF, cyclopamine inhibited cell proliferation enhanced by DHT in CPF. Real-time RT-PCR showed whereas both Shh and DHT induced N-cadherin and vimentin, DHT also induced the expression of osteonectin in LNCaP and cyclopamine blocked these expressions in osteonectin, N-cadherin and vimentin (p = 0.0084, 0.0002 and 0.0373, respectively). Immunohistochemistry showed that high expression of stromal, but, not epithelial, ON was significantly correlated with serum prostate-specific antigen (PSA) (p = 0.031), and high expression of Gli-1 and low expression of stromal ON with PSA recurrence (p = 0.0114 and p = 0.0005, respectively). CONCLUSIONS Shh and androgen signaling in prostate tumor and stromal compartments drives EMT, and thus may play some role in PCa progression. Cyclopamine may be one therapeutic strategy for PCa.
Collapse
Affiliation(s)
- Fukashi Yamamichi
- Department of Urology, Kobe University Graduate School of Medicine , Kobe , Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Camerlingo R, Ferraro GA, De Francesco F, Romano M, Nicoletti G, Di Bonito M, Rinaldo M, D'Andrea F, Pirozzi G. The role of CD44+/CD24-/low biomarker for screening, diagnosis and monitoring of breast cancer. Oncol Rep 2013; 31:1127-32. [PMID: 24366074 DOI: 10.3892/or.2013.2943] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 09/30/2013] [Indexed: 11/05/2022] Open
Abstract
Cancer stem cells (CSCs) have been defined as 'a cell within a tumor that possesses the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor'. The CSC hypothesis postulates that a small subpopulation of cancer cells drives tumor initiation, growth and metastasis. CSCs have been isolated from breast cancer using CD44+/CD24-/low phenotype. The purpose of the present study was to evaluate the expression of CD44+/CD24-/low in two diverse breast carcinomas (ductal and lobular), and to determine the correlation between expression of CD44+/CD24-/low, and clinicopathological characteristics starting from human fresh breast cancer specimens. We analyzed specimens from 57 patients using CD44 and CD24 markers by flow cytometry and immunohistochemistry and correlated the CD44+/CD24-/low phenotype with clinicopathological characteristics. Moreover, mammosphere formation was tested. In all specimens tested, CD44+/CD24-/low phenotype was detectable with mean percentage of 4.73% as confirmed also by immunohistochemical analyses. A significant statistical association was found among these phenotypic groups and age, grade G3, estrogen and progesterone receptor, Ki-67 as well as lymph node metastasis. No correlation was found for histological type. In conclusion, our data showed that CD44+/CD24-/low phenotype was found at a high frequency in tumors pT2, G3, pN3, positive for Ki-67, and negative for estrogen and progesterone receptors highlighting the hypothesis that CD44+/CD24-/low profile correlates with the more aggressive clinical-pathological features of the disease.
Collapse
Affiliation(s)
- Rosa Camerlingo
- Department of Experimental Oncology, National Cancer Institute, G. Pascale, Naples, Italy
| | - Giuseppe Andrea Ferraro
- Department of Orthopedic, Traumatologic, Rehabilitative and Plastic-Reconstructive Sciences, Second University of Naples, Naples, Italy
| | - Francesco De Francesco
- Department of Orthopedic, Traumatologic, Rehabilitative and Plastic-Reconstructive Sciences, Second University of Naples, Naples, Italy
| | - Maurizio Romano
- Department of Surgery, Oncology and Gastroenterology, Hepatobiliary Surgery and Liver Transplantation, Padua University Hospital, Padua, Italy
| | - Gianfranco Nicoletti
- Department of Orthopedic, Traumatologic, Rehabilitative and Plastic-Reconstructive Sciences, Second University of Naples, Naples, Italy
| | - Maurizio Di Bonito
- Department of Pathology, National Cancer Institute, G. Pascale, Naples, Italy
| | - Massimo Rinaldo
- Department of Senology, National Cancer Institute, G. Pascale, Naples, Italy
| | - Francesco D'Andrea
- Department of Orthopedic, Traumatologic, Rehabilitative and Plastic-Reconstructive Sciences, Second University of Naples, Naples, Italy
| | - Giuseppe Pirozzi
- Department of Experimental Oncology, National Cancer Institute, G. Pascale, Naples, Italy
| |
Collapse
|
29
|
Silencing NOTCH signaling causes growth arrest in both breast cancer stem cells and breast cancer cells. Br J Cancer 2013; 109:2587-96. [PMID: 24129237 PMCID: PMC3833225 DOI: 10.1038/bjc.2013.642] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/19/2013] [Accepted: 09/24/2013] [Indexed: 12/18/2022] Open
Abstract
Background: Breast cancer stem cells (BCSCs) are characterized by high aldehyde dehydrogenase (ALDH) enzyme activity and are refractory to current treatment modalities, show a higher risk for metastasis, and influence the epithelial to mesenchymal transition (EMT), leading to a shorter time to recurrence and death. In this study, we focused on examination of the mechanism of action of a small herbal molecule, psoralidin (Pso) that has been shown to effectively suppress the growth of BSCSs and breast cancer cells (BCCs), in breast cancer (BC) models. Methods: ALDH− and ALDH+ BCCs were isolated from MDA-MB-231 cells, and the anticancer effects of Pso were measured using cell viability, apoptosis, colony formation, invasion, migration, mammosphere formation, immunofluorescence, and western blot analysis. Results: Psoralidin significantly downregulated NOTCH1 signaling, and this downregulation resulted in growth inhibition and induction of apoptosis in both ALDH− and ALDH+ cells. Molecularly, Pso inhibited NOTCH1 signaling, which facilitated inhibition of EMT markers (β-catenin and vimentin) and upregulated E-cadherin expression, resulting in reduced migration and invasion of both ALDH− and ALDH+ cells. Conclusion: Together, our results suggest that inhibition of NOTCH1 by Pso resulted in growth arrest and inhibition of EMT in BCSCs and BCCs. Psoralidin appears to be a novel agent that targets both BCSCs and BCCs.
Collapse
|
30
|
Manuel Iglesias J, Beloqui I, Garcia-Garcia F, Leis O, Vazquez-Martin A, Eguiara A, Cufi S, Pavon A, Menendez JA, Dopazo J, Martin AG. Mammosphere formation in breast carcinoma cell lines depends upon expression of E-cadherin. PLoS One 2013; 8:e77281. [PMID: 24124614 PMCID: PMC3790762 DOI: 10.1371/journal.pone.0077281] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/30/2013] [Indexed: 01/06/2023] Open
Abstract
Tumors are heterogeneous at the cellular level where the ability to maintain tumor growth resides in discrete cell populations. Floating sphere-forming assays are broadly used to test stem cell activity in tissues, tumors and cell lines. Spheroids are originated from a small population of cells with stem cell features able to grow in suspension culture and behaving as tumorigenic in mice. We tested the ability of eleven common breast cancer cell lines representing the major breast cancer subtypes to grow as mammospheres, measuring the ability to maintain cell viability upon serial non-adherent passage. Only MCF7, T47D, BT474, MDA-MB-436 and JIMT1 were successfully propagated as long-term mammosphere cultures, measured as the increase in the number of viable cells upon serial non-adherent passages. Other cell lines tested (SKBR3, MDA-MB-231, MDA-MB-468 and MDA-MB-435) formed cell clumps that can be disaggregated mechanically, but cell viability drops dramatically on their second passage. HCC1937 and HCC1569 cells formed typical mammospheres, although they could not be propagated as long-term mammosphere cultures. All the sphere forming lines but MDA-MB-436 express E-cadherin on their surface. Knock down of E-cadherin expression in MCF-7 cells abrogated its ability to grow as mammospheres, while re-expression of E-cadherin in SKBR3 cells allow them to form mammospheres. Therefore, the mammosphere assay is suitable to reveal stem like features in breast cancer cell lines that express E-cadherin.
Collapse
Affiliation(s)
- Juan Manuel Iglesias
- Regulation of Cell Growth Laboratory, Fundacion Inbiomed, San Sebastián, Gipuzkoa, Spain
| | - Izaskun Beloqui
- Regulation of Cell Growth Laboratory, Fundacion Inbiomed, San Sebastián, Gipuzkoa, Spain
| | - Francisco Garcia-Garcia
- Computational Genomics Institute, Centro de Investigación Principe Felipe (CIPF), Valencia, Spain
- Functional Genomics Node, INB, CIPF, Valencia, Spain
| | - Olatz Leis
- Regulation of Cell Growth Laboratory, Fundacion Inbiomed, San Sebastián, Gipuzkoa, Spain
| | - Alejandro Vazquez-Martin
- Translational Research Laboratory, Catalan Institute of Oncology (ICO), Girona, Spain
- Girona Biomedical Research Institute (IDIBGi), Girona, Spain
| | - Arrate Eguiara
- Regulation of Cell Growth Laboratory, Fundacion Inbiomed, San Sebastián, Gipuzkoa, Spain
| | - Silvia Cufi
- Translational Research Laboratory, Catalan Institute of Oncology (ICO), Girona, Spain
- Girona Biomedical Research Institute (IDIBGi), Girona, Spain
| | - Andres Pavon
- Regulation of Cell Growth Laboratory, Fundacion Inbiomed, San Sebastián, Gipuzkoa, Spain
| | - Javier A. Menendez
- Translational Research Laboratory, Catalan Institute of Oncology (ICO), Girona, Spain
- Girona Biomedical Research Institute (IDIBGi), Girona, Spain
| | - Joaquin Dopazo
- Computational Genomics Institute, Centro de Investigación Principe Felipe (CIPF), Valencia, Spain
- Functional Genomics Node, INB, CIPF, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Angel G. Martin
- Regulation of Cell Growth Laboratory, Fundacion Inbiomed, San Sebastián, Gipuzkoa, Spain
- * E-mail:
| |
Collapse
|
31
|
Yasuda K, Torigoe T, Morita R, Kuroda T, Takahashi A, Matsuzaki J, Kochin V, Asanuma H, Hasegawa T, Saito T, Hirohashi Y, Sato N. Ovarian cancer stem cells are enriched in side population and aldehyde dehydrogenase bright overlapping population. PLoS One 2013; 8:e68187. [PMID: 23967051 PMCID: PMC3742724 DOI: 10.1371/journal.pone.0068187] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 05/28/2013] [Indexed: 12/18/2022] Open
Abstract
Cancer stem-like cells (CSCs)/cancer-initiaiting cells (CICs) are defined as a small population of cancer cells that have self-renewal capacity, differentiation potential and high tumor-initiating ability. CSCs/CICs of ovarian cancer have been isolated by side population (SP) analysis, ALDEFLUOR assay and using cell surface markers. However, these approaches are not definitive markers for CSCs/CICs, and it is necessary to refine recent methods for identifying more highly purified CSCs/CICs. In this study, we analyzed SP cells and aldehyde dehydrogenese bright (ALDHBr) cells from ovarian cancer cells. Both SP cells and ALDHBr cells exhibited higher tumor-initiating ability and higher expression level of a stem cell marker, sex determining region Y-box 2 (SOX2), than those of main population (MP) cells and ALDHLow cells, respectively. We analyzed an SP and ALDHBr overlapping population (SP/ALDHBr), and the SP/ALDHBr population exhibited higher tumor-initiating ability than that of SP cells or ALDHBr cells, enabling initiation of tumor with as few as 102 cells. Furthermore, SP/ADLHBr population showed higher sphere-forming ability, cisplatin resistance, adipocyte differentiation ability and expression of SOX2 than those of SP/ALDHLow, MP/ALDHBr and MP/ALDHLow cells. Gene knockdown of SOX2 suppressed the tumor-initiation of ovarian cancer cells. An SP/ALDHBr population was detected in several gynecological cancer cells with ratios of 0.1% for HEC—1 endometrioid adenocarcinoma cells to 1% for MCAS ovary mucinous adenocarcinoma cells. Taken together, use of the SP and ALDHBr overlapping population is a promising approach to isolate highly purified CSCs/CICs and SOX2 might be a novel functional marker for ovarian CSCs/CICs.
Collapse
Affiliation(s)
- Kazuyo Yasuda
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
- * E-mail: (TT); (YH)
| | - Rena Morita
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Takahumi Kuroda
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Akari Takahashi
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Junichi Matsuzaki
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Vitaly Kochin
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Hiroko Asanuma
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Tadashi Hasegawa
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Tsuyoshi Saito
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
- * E-mail: (TT); (YH)
| | - Noriyuki Sato
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| |
Collapse
|
32
|
The role of microRNAs in breast cancer stem cells. Int J Mol Sci 2013; 14:14712-23. [PMID: 23860207 PMCID: PMC3742269 DOI: 10.3390/ijms140714712] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 06/25/2013] [Accepted: 07/02/2013] [Indexed: 12/16/2022] Open
Abstract
The concept of the existence of a subset of cancer cells with stem cell-like properties, which are thought to play a significant role in tumor formation, metastasis, resistance to anticancer therapies and cancer recurrence, has gained tremendous attraction within the last decade. These cancer stem cells (CSCs) are relatively rare and have been described by different molecular markers and cellular features in different types of cancers. Ten years ago, a novel class of molecules, small non-protein-coding RNAs, was found to be involved in carcinogenesis. These small RNAs, which are called microRNAs (miRNAs), act as endogenous suppressors of gene expression that exert their effect by binding to the 3′-untranslated region (UTR) of large target messenger RNAs (mRNAs). MicroRNAs trigger either translational repression or mRNA cleavage of target mRNAs. Some studies have shown that putative breast cancer stem cells (BCSCs) exhibit a distinct miRNA expression profile compared to non-tumorigenic breast cancer cells. The deregulated miRNAs may contribute to carcinogenesis and self-renewal of BCSCs via several different pathways and can act either as oncomirs or as tumor suppressive miRNAs. It has also been demonstrated that certain miRNAs play an essential role in regulating the stem cell-like phenotype of BCSCs. Some miRNAs control clonal expansion or maintain the self-renewal and anti-apoptotic features of BCSCs. Others are targeting the specific mRNA of their target genes and thereby contribute to the formation and self-renewal process of BCSCs. Several miRNAs are involved in epithelial to mesenchymal transition, which is often implicated in the process of formation of CSCs. Other miRNAs were shown to be involved in the increased chemotherapeutic resistance of BCSCs. This review highlights the recent findings and crucial role of miRNAs in the maintenance, growth and behavior of BCSCs, thus indicating the potential for novel diagnostic, prognostic and therapeutic miRNA-based strategies.
Collapse
|