1
|
Fischer J, Fedotova A, Bühler C, Darriba L, Schreiner S, Ruzsics Z. Expanding the Scope of Adenoviral Vectors by Utilizing Novel Tools for Recombination and Vector Rescue. Viruses 2024; 16:658. [PMID: 38793540 PMCID: PMC11125593 DOI: 10.3390/v16050658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
Recombinant adenoviruses are widely used in clinical and laboratory applications. Despite the wide variety of available sero- and genotypes, only a fraction is utilized in vivo. As adenoviruses are a large group of viruses, displaying many different tropisms, immune epitopes, and replication characteristics, the merits of translating these natural benefits into vector applications are apparent. This translation, however, proves difficult, since while research has investigated the application of these viruses, there are no universally applicable rules in vector design for non-classical adenovirus types. In this paper, we describe a generalized workflow that allows vectorization, rescue, and cloning of all adenoviral species to enable the rapid development of new vector variants. We show this using human and simian adenoviruses, further modifying a selection of them to investigate their gene transfer potential and build potential vector candidates for future applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Zsolt Ruzsics
- Institute of Virology, University Medical Center Freiburg, Medical Faculty, University of Freiburg, 79104 Freiburg, Germany; (J.F.); (A.F.); (S.S.)
| |
Collapse
|
2
|
Current landscape and perspective of oncolytic viruses and their combination therapies. Transl Oncol 2022; 25:101530. [PMID: 36095879 PMCID: PMC9472052 DOI: 10.1016/j.tranon.2022.101530] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/24/2022] Open
Abstract
Oncolytic virotherapy has become an important branch of cancer immunotherapy in clinical practice. Multiple viruses can be engineered to be OVs and armed with anticancer genes to enhance their efficacy. OVs can reshape TME and produce synergistic anticancer efficacy when combined with other therapies. Safety and effectiveness are the main direction of future research and development of OVs.
Oncolytic virotherapy has become an important strategy in cancer immunotherapy. Oncolytic virus (OV) can reshape the tumor microenvironment (TME) through its replication-mediated oncolysis and transgene-produced anticancer effect, inducing an antitumor immune response and creating favorable conditions for the combination of other therapeutic measures. Extensive preclinical and clinical data have suggested that OV-based combination therapy has definite efficacy and promising prospects. Recently, several clinical trials of oncolytic virotherapy combined with immunotherapy have made breakthroughs. This review comprehensively elaborates the OV types and their targeting mechanisms, the selection of anticancer genes armed in OVs, and the therapeutic modes of action and strategies of OVs to provide a theoretical basis for the better design and construction of OVs and the optimization of OV-based therapeutic strategies.
Collapse
|
3
|
Zhu Z, McGray AJR, Jiang W, Lu B, Kalinski P, Guo ZS. Improving cancer immunotherapy by rationally combining oncolytic virus with modulators targeting key signaling pathways. Mol Cancer 2022; 21:196. [PMID: 36221123 PMCID: PMC9554963 DOI: 10.1186/s12943-022-01664-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
Oncolytic viruses (OVs) represent a new class of multi-modal immunotherapies for cancer, with OV-elicited antitumor immunity being key to their overall therapeutic efficacy. Currently, the clinical effectiveness of OV as monotherapy remains limited, and thus investigators have been exploring various combinations with other anti-cancer agents and demonstrated improved therapeutic efficacy. As cancer cells have evolved to alter key signaling pathways for enhanced cell proliferation, cancer progression and metastasis, these cellular and molecular changes offer promising targets for rational cancer therapy design. In this regard, key molecules in relevant signaling pathways for cancer cells or/and immune cells, such as EGFR-KRAS (e.g., KRASG12C), PI3K-AKT-mTOR, ERK-MEK, JAK-STAT, p53, PD-1-PD-L1, and epigenetic, or immune pathways (e.g., histone deacetylases, cGAS-STING) are currently under investigation and have the potential to synergize with OV to modulate the immune milieu of the tumor microenvironment (TME), thereby improving and sustaining antitumor immunity. As many small molecule modulators of these signaling pathways have been developed and have shown strong therapeutic potential, here we review key findings related to both OV-mediated immunotherapy and the utility of small molecule modulators of signaling pathways in immuno-oncology. Then, we focus on discussion of the rationales and potential strategies for combining OV with selected modulators targeting key cellular signaling pathways in cancer or/and immune cells to modulate the TME and enhance antitumor immunity and therapeutic efficacy. Finally, we provide perspectives and viewpoints on the application of novel experimental systems and technologies that can propel this exciting branch of medicine into a bright future.
Collapse
Affiliation(s)
- Zhi Zhu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - A J Robert McGray
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Weijian Jiang
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Binfeng Lu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Pawel Kalinski
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| | - Zong Sheng Guo
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA. .,Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
4
|
Su Y, Li J, Ji W, Wang G, Fang L, Zhang Q, Ang L, Zhao M, Sen Y, Chen L, Zheng J, Su C, Qin L. Triple-serotype chimeric oncolytic adenovirus exerts multiple synergistic mechanisms against solid tumors. J Immunother Cancer 2022; 10:jitc-2022-004691. [PMID: 35609942 PMCID: PMC9131115 DOI: 10.1136/jitc-2022-004691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2022] [Indexed: 12/23/2022] Open
Abstract
Background Oncolytic virotherapy has become an important branch of cancer immunotherapy. This study investigated the efficacy of an oncolytic adenovirus (OAV), OncoViron, with synergistic mechanisms in the treatment of multiple solid tumors. Methods An OAV, OncoViron, was constructed and investigated by cytological experiments and implanted tumor models of multiple solid tumor cell lines to certify its anticancer efficacy, the synergistic effects of viral oncolysis and transgene anticancer activity of OncoViron, as well as oncolytic virotherapy combined with immunotherapy, were also verified. Results The selective replication of OncoViron mediated high expression of anticancer factors, specifically targeted a variety of solid tumors and significantly inhibited cancer cell proliferation. On a variety of implanted solid tumor models in immunodeficient mice, immunocompetent mice, and humanized mice, OncoViron showed great anticancer effects on its own and in combination with programmed death 1 (PD-1) antibody and chimeric antigen receptor (CAR) T cells. Pathological examination, single-cell sequencing, and spatial transcriptome analysis of animal implanted tumor specimens confirmed that OncoViron significantly altered the gene expression profile of infected cancer cells, not only recruiting a large number of lymphocytes, natural killer cells, and mononuclear macrophages into tumor microenvironment (TME) and activated immune cells, especially T cells but also inducing M1 polarization of macrophages and promoting the release of more immune cytokines, thereby remodeling the TME for coordinating PD-1 antibody or CAR T therapy. Conclusions The chimeric OncoViron is a novel broad-spectrum anticancer product with multiple mechanisms of synergistic and potentiated immunotherapy, creating a good opportunity for combined immunotherapy against solid tumors.
Collapse
Affiliation(s)
- Yinghan Su
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200040, China.,National Center for Liver Cancer (NCLC), Navy Military Medical University, Shanghai 201805, China
| | - Jiang Li
- National Center for Liver Cancer (NCLC), Navy Military Medical University, Shanghai 201805, China.,Department of Molecular Oncology, Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai 200438, China
| | - Weidan Ji
- National Center for Liver Cancer (NCLC), Navy Military Medical University, Shanghai 201805, China.,Department of Molecular Oncology, Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai 200438, China
| | - Gang Wang
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy & Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Lin Fang
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy & Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Qin Zhang
- Department of Molecular Oncology, Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai 200438, China
| | - Lin Ang
- Department of Pathology, Second People's Hospital of Hefei, Hefei 230011, Anhui, China
| | - Min Zhao
- Department of Pathology, Second People's Hospital of Hefei, Hefei 230011, Anhui, China
| | - Yuan Sen
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy & Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Lei Chen
- National Center for Liver Cancer (NCLC), Navy Military Medical University, Shanghai 201805, China.,Department of Molecular Oncology, Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai 200438, China
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy & Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Changqing Su
- National Center for Liver Cancer (NCLC), Navy Military Medical University, Shanghai 201805, China .,Department of Molecular Oncology, Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai 200438, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy & Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Lunxiu Qin
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
| |
Collapse
|
5
|
A recombinant adenoviral vector with a specific tropism to CD4-positive cells: a new tool for HIV-1 inhibition. Drug Deliv Transl Res 2022; 12:2561-2568. [DOI: 10.1007/s13346-021-01109-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2021] [Indexed: 11/03/2022]
|
6
|
Autophagy in Tumor Immunity and Viral-Based Immunotherapeutic Approaches in Cancer. Cells 2021; 10:cells10102672. [PMID: 34685652 PMCID: PMC8534833 DOI: 10.3390/cells10102672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 01/09/2023] Open
Abstract
Autophagy is a fundamental catabolic process essential for the maintenance of cellular and tissue homeostasis, as well as directly contributing to the control of invading pathogens. Unsurprisingly, this process becomes critical in supporting cellular dysregulation that occurs in cancer, particularly the tumor microenvironments and their immune cell infiltration, ultimately playing a role in responses to cancer therapies. Therefore, understanding "cancer autophagy" could help turn this cellular waste-management service into a powerful ally for specific therapeutics. For instance, numerous regulatory mechanisms of the autophagic machinery can contribute to the anti-tumor properties of oncolytic viruses (OVs), which comprise a diverse class of replication-competent viruses with potential as cancer immunotherapeutics. In that context, autophagy can either: promote OV anti-tumor effects by enhancing infectivity and replication, mediating oncolysis, and inducing autophagic and immunogenic cell death; or reduce OV cytotoxicity by providing survival cues to tumor cells. These properties make the catabolic process of autophagy an attractive target for therapeutic combinations looking to enhance the efficacy of OVs. In this article, we review the complicated role of autophagy in cancer initiation and development, its effect on modulating OVs and immunity, and we discuss recent progress and opportunities/challenges in targeting autophagy to enhance oncolytic viral immunotherapy.
Collapse
|
7
|
Jin KT, Tao XH, Fan YB, Wang SB. Crosstalk between oncolytic viruses and autophagy in cancer therapy. Biomed Pharmacother 2020; 134:110932. [PMID: 33370632 DOI: 10.1016/j.biopha.2020.110932] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/15/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Oncolytic viruses have attracted attention as a promising strategy in cancer therapy owing to their ability to selectively infect and kill tumor cells, without affecting healthy cells. They also exert their anti-tumor effects by releasing immunostimulatory molecules from dying cancer cells. Several regulatory mechanisms, such as autophagy, contribute to the anti-tumor properties of oncolytic viruses. Autophagy is a conserved catabolic process in responses to various stresses, such as nutrient deprivation, hypoxia, and infection that produces energy by lysosomal degradation of intracellular contents. Autophagy can support infectivity and replication of the oncolytic virus and enhance their anti-tumor effects via mediating oncolysis, autophagic cell death, and immunogenic cell death. On the other hand, autophagy can reduce the cytotoxicity of oncolytic viruses by providing survival nutrients for tumor cells. In his review, we summarize various types of oncolytic viruses in clinical trials, their mechanism of action, and autophagy machinery. Furthermore, we precisely discuss the interaction between oncolytic viruses and autophagy in cancer therapy and their combinational effects on tumor cells.
Collapse
Affiliation(s)
- Ke-Tao Jin
- Department of Colorectal Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, Zhejiang Province, PR China
| | - Xiao-Hua Tao
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, PR China
| | - Yi-Bin Fan
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, PR China.
| | - Shi-Bing Wang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, PR China.
| |
Collapse
|
8
|
Han Z, Joo Y, Lee J, Ko S, Xu R, Oh GH, Choi S, Hong JA, Choi HJ, Song JJ. High levels of Daxx due to low cellular levels of HSP25 in murine cancer cells result in inefficient adenovirus replication. Exp Mol Med 2019; 51:1-20. [PMID: 31615977 PMCID: PMC6802665 DOI: 10.1038/s12276-019-0321-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 11/25/2022] Open
Abstract
When the adenoviral protein E1B55K binds death domain-associated protein (Daxx), the proteasome-dependent degradation of Daxx is initiated, and adenoviral replication is effectively maintained. Here, we show that the cellular levels of Daxx differ between human and mouse cancer cell lines. Specifically, we observed higher cellular Daxx levels and the diminished replication of oncolytic adenovirus in mouse cancer cell lines, suggesting that cellular Daxx levels limit the replication of oncolytic adenoviruses that lack E1B55K in murine cells. Indeed, the replication of oncolytic adenoviruses that lack E1B55K was significantly increased following infection with oncolytic adenovirus expressing Daxx-specific shRNA. Cellular Daxx levels were decreased in mouse cells expressing heat shock protein 25 (HSP25; homolog of human HSP27) following heat shock or stable transfection with HSP25-bearing plasmids. Furthermore, Daxx expression in murine cell lines was primarily regulated at the transcriptional level via HSP25-mediated inhibition of the nuclear translocation of the signal transducer and activator of transcription 3 (stat3) protein, which typically upregulates Daxx transcription. Conversely, human HSP27 enhanced stat3 activity to increase Daxx transcription. Interestingly, human Daxx, but not mouse Daxx, was degraded as normal by ubiquitin-dependent lysosomal degradation; however, HSP27 downregulation induced the ubiquitin-independent proteasomal degradation of Daxx. Cancer therapies that use a virus to kill tumor cells may get a boost by suppressing a common, ubiquitously expressed protein called Daxx. The relatively new field of virotherapy uses engineered adenoviruses, which usually cause fevers, coughs, or sore throats, to attack tumor cells, enabling treatment of advanced stage cancers, or those that have spread through the body. However, the immune system can attack the therapeutic virus, preventing it from replicating and reducing its effectiveness. Hye Jin Choi and Jae Song at Yonsei University, Seoul, South Korea, and coworkers have been investigating ways to maximize replication of the therapeutic virus. They found that suppressing Daxx improved viral replication; further testing showed that suppressing Daxx acted via different mechanisms in mouse and human cancer cells. These results will help develop more effective virus-based cancer therapies.
Collapse
Affiliation(s)
- Zhezhu Han
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Department of Oncology, Affiliated Hospital of Yanbian University, Yanji, Jilin Province, PR China
| | - Yeonsoo Joo
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jihyun Lee
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Suwan Ko
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Rong Xu
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea
| | - Geun-Hyeok Oh
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Soojin Choi
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong A Hong
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Jin Choi
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
| | - Jae J Song
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea. .,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
9
|
Yang M, Yang CS, Guo W, Tang J, Huang Q, Feng S, Jiang A, Xu X, Jiang G, Liu YQ. A novel fiber chimeric conditionally replicative adenovirus-Ad5/F35 for tumor therapy. Cancer Biol Ther 2017; 18:833-840. [PMID: 29144842 DOI: 10.1080/15384047.2017.1395115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Significant progress has been made in the diagnosis and treatment of cancer; however, significant challenges remain. Conditionally replicating adenoviruses (CRAds), which not only kill cancer cells, but also serve as vectors to express therapeutic genes, are a novel and effective method to treat cancer. However, most adenoviruses are Ad5, which infect cells through the coxsackie and adenovirus receptor (CAR). The transduction efficacy of Ad5 is restricted because of the absent or low expression of CAR on several cancer cells. Ad serotype 35 has a different tropism pattern to Ad5. Ad35 attaches to cells via a non-CAR receptor, CD46, which is expressed widely on most tumor cells. Thus, chimeric adenoviral vectors consisting of the knob and shaft of Ad35 combined with Ad5 have been constructed. The chimeric fiber adenoviral vectors can transduce CAR-positive and CAR-negative cell lines. In this review, we explore the application of the novel fiber chimeric conditionally replicative adenovirus-Ad5/F35 in tumor therapy in terms of safety, mechanism, transduction efficacy, and antitumor effect.
Collapse
Affiliation(s)
- Ming Yang
- a Department of Radiotherapy , Affiliated Hospital of Xuzhou Medical University , Xuzhou , China.,b Department of Oncology , Affiliated Nanyang Second General Hospital , Nanyang , China
| | - Chun Sheng Yang
- c Department of Dermatology , Affiliated Huai'an Hospital of Xuzhou Medical University , the Second People's Hospital of Huai'an, Huai'an , China
| | - WenWen Guo
- a Department of Radiotherapy , Affiliated Hospital of Xuzhou Medical University , Xuzhou , China
| | - JianQin Tang
- d Department of Dermatology , Affiliated Hospital of Xuzhou Medical University , Xuzhou , China
| | - Qian Huang
- a Department of Radiotherapy , Affiliated Hospital of Xuzhou Medical University , Xuzhou , China
| | - ShouXin Feng
- a Department of Radiotherapy , Affiliated Hospital of Xuzhou Medical University , Xuzhou , China
| | - AiJun Jiang
- a Department of Radiotherapy , Affiliated Hospital of Xuzhou Medical University , Xuzhou , China
| | - XiFeng Xu
- a Department of Radiotherapy , Affiliated Hospital of Xuzhou Medical University , Xuzhou , China
| | - Guan Jiang
- d Department of Dermatology , Affiliated Hospital of Xuzhou Medical University , Xuzhou , China
| | - Yan Qun Liu
- d Department of Dermatology , Affiliated Hospital of Xuzhou Medical University , Xuzhou , China
| |
Collapse
|
10
|
Morinaga T, Nguyễn TTT, Zhong B, Hanazono M, Shingyoji M, Sekine I, Tada Y, Tatsumi K, Shimada H, Hiroshima K, Tagawa M. An image cytometric technique is a concise method to detect adenoviruses and host cell proteins and to monitor the infection and cellular responses induced. Virol J 2017; 14:219. [PMID: 29126418 PMCID: PMC5681831 DOI: 10.1186/s12985-017-0888-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 10/31/2017] [Indexed: 11/30/2022] Open
Abstract
Background Genetically modified adenoviruses (Ad) with preferential replications in tumor cells have been examined for a possible clinical applicability as an anti-cancer agent. A simple method to detect viral and cellular proteins is valuable to monitor the viral infections and to predict the Ad-mediated cytotoxicity. Methods We used type 5 Ad in which the expression of E1A gene was activated by 5′-regulatory sequences of genes that were augmented in the expression in human tumors. The Ad were further modified to have the fiber-knob region replaced with that derived from type 35 Ad. We infected human mesothelioma cells with the fiber-replaced Ad, and sequentially examined cytotoxic processes together with an expression level of the viral E1A, hexon, and cellular cleaved caspase-3 with image cytometric and Western blot analyses. Results The replication-competent Ad produced cytotoxicity on mesothelioma cells. The infected cells expressed E1A and hexon 24 h after the infection and then showed cleavage of caspase-3, all of which were detected with image cytometry and Western blot analysis. Image cytometry furthermore demonstrated that increased Ad doses did not enhance an expression level of E1A and hexon in an individual cell and that caspase-3-cleaved cells were found more frequently in hexon-positive cells than in E1A-positive cells. Image cytometry thus detected these molecular changes in a sensitive manner and at a single cell level. We also showed that an image cytometric technique detected expression changes of other host cell proteins, cyclin-E and phosphorylated histone H3 at a single cell level. Conclusions Image cytometry is a concise procedure to detect expression changes of Ad and host cell proteins at a single cell level, and is useful to analyze molecular events after the infection. Electronic supplementary material The online version of this article (10.1186/s12985-017-0888-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Takao Morinaga
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
| | - Thảo Thi Thanh Nguyễn
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Boya Zhong
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Michiko Hanazono
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
| | | | - Ikuo Sekine
- Department of Medical Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuji Tada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideaki Shimada
- Department of Surgery, School of Medicine, Toho University, Tokyo, Japan
| | - Kenzo Hiroshima
- Department of Pathology, Tokyo Women's Medical University Yachiyo Medical Center, Yachiyo, Japan
| | - Masatoshi Tagawa
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan. .,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| |
Collapse
|
11
|
Kim SY, Kang D, Choi HJ, Joo Y, Kim JH, Song JJ. Prime-boost immunization by both DNA vaccine and oncolytic adenovirus expressing GM-CSF and shRNA of TGF-β2 induces anti-tumor immune activation. Oncotarget 2017; 8:15858-15877. [PMID: 28178658 PMCID: PMC5362529 DOI: 10.18632/oncotarget.15008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 12/31/2016] [Indexed: 12/21/2022] Open
Abstract
A successful DNA vaccine for the treatment of tumors should break established immune tolerance to tumor antigen. However, due to the relatively low immunogenicity of DNA vaccines, compared to other kinds of vaccines using live virus or protein, a recombinant viral vector was used to enhance humoral and cellular immunity. In the current study, we sought to develop a novel anti-cancer agent as a complex of DNA and oncolytic adenovirus for the treatment of malignant melanoma in the C57BL/6 mouse model. MART1, a human melanoma-specific tumor antigen, was used to induce an increased immune reaction, since a MART1-protective response is required to overcome immune tolerance to the melanoma antigen MelanA. Because GM-CSF is a potent inducer of anti-tumor immunity and TGF-β2 is involved in tumor survival and host immune suppression, mouse GM-CSF (mGM-CSF) and shRNA of mouse TGF-β2 (shmTGF-β2) genes were delivered together with MART1 via oncolytic adenovirus. MART1 plasmid was also used for antigen-priming. To compare the anti-tumor effect of oncolytic adenovirus expressing both mGM-CSF and shmTGF-β2 (AdGshT) with that of oncolytic adenovirus expressing mGM-CSF only (AdG), each virus was intratumorally injected into melanoma-bearing C57BL/6 mice. As a result, mice that received AdGshT showed delayed tumor growth than those that received AdG. Heterologous prime-boost immunization was combined with oncolytic AdGshT and MART1 expression to result in further delayed tumor growth. This regression is likely due to the following 4 combinations: MART1-derived mouse melanoma antigen-specific immune reaction, immune stimulation by mGM-CSF/shmTGF-β2, tumor growth inhibition by shmTGF-β2, and tumor cell-specific lysis via an oncolytic adenovirus. Immune activation was mainly induced by mature tumor-infiltrating dendritic cell (TIDC) and lowered regulatory T cells in tumor-infiltrating lymphocytes (TIL). Taken together, these findings demonstrate that human MART1 induces a mouse melanoma antigen-specific immune reaction. In addition, the results also indicate that combination therapy of MART1 plasmid, together with an oncolytic adenovirus expressing MART1, mGM-CSF, and shmTGF-β2, is a promising candidate for the treatment of malignant melanoma.
Collapse
Affiliation(s)
- So Young Kim
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea
| | - Dongxu Kang
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Department of Oncology, Affiliated Hospital of Yanbian University, Yanji, Jilin Province, P.R. China
| | - Hye Jin Choi
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Yeonsoo Joo
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Joo-Hang Kim
- CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Jae J Song
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
12
|
Yamauchi S, Zhong B, Kawamura K, Yang S, Kubo S, Shingyoji M, Sekine I, Tada Y, Tatsumi K, Shimada H, Hiroshima K, Tagawa M. Cytotoxicity of replication-competent adenoviruses powered by an exogenous regulatory region is not linearly correlated with the viral infectivity/gene expression or with the E1A-activating ability but is associated with the p53 genotypes. BMC Cancer 2017; 17:622. [PMID: 28874135 PMCID: PMC5584036 DOI: 10.1186/s12885-017-3621-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 08/28/2017] [Indexed: 12/26/2022] Open
Abstract
Background Replication-competent adenoviruses (Ad) produced cytotoxic effects on infected tumors and have been examined for the clinical applicability. A biomarkers to predict the cytotoxicity is valuable in a clinical setting. Methods We constructed type 5 Ad (Ad5) of which the expression of E1A gene was activated by a 5′ regulatory sequences of survivin, midkine or cyclooxygenase-2, which were highly expressed in human tumors. We also produced the same replication-competent Ad of which the fiber-knob region was replaced by that of Ad35 (AdF35). The cytotoxicity was examined by a colorimetric assay with human tumor cell lines, 4 kinds of pancreatic, 9 esophageal carcinoma and 5 mesothelioma. Ad infectivity and Ad-mediated gene expression were examined with replication-incompetent Ad5 and AdF35 which expressed the green fluorescence protein gene. Expression of cellular receptors for Ad5 and AdF35 was also examined with flow cytometry. A transcriptional activity of the regulatory sequences was investigated with a luciferase assay in the tumor cells. We then investigated a possible correlation between Ad-mediated cytotoxicity and the infectivity/gene expression, the transcriptional activity or the p53 genotype. Results We found that the cytotoxicity was greater with AdF35 than with Ad5 vectors, but was not correlated with the Ad infectivity/gene expression irrespective of the fiber-knob region or the E1A-activating transcriptional activity. In contrast, replication-competent Ad produced greater cytotoxicity in p53 mutated than in wild-type esophageal carcinoma cells, suggesting a possible association between the cytotoxicity and the p53 genotype. Conclusions Sensitivity to Ad-mediated cytotoxic activity was linked with the p53 genotype but was not lineally correlated with the infectivity/gene expression or the E1A expression. Electronic supplementary material The online version of this article (10.1186/s12885-017-3621-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Suguru Yamauchi
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Boya Zhong
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kiyoko Kawamura
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Shan Yang
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shuji Kubo
- Department of Genetics, Hyogo College of Medicine, Nishinomiya, Japan
| | | | - Ikuo Sekine
- Department of Medical Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuji Tada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideaki Shimada
- Department of Surgery, School of Medicine, Toho University, Tokyo, Japan
| | - Kenzo Hiroshima
- Department of Pathology, Tokyo Women's Medical University Yachiyo Medical Center, Yachiyo, Japan
| | - Masatoshi Tagawa
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan. .,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| |
Collapse
|
13
|
Guo Z, Gao HY, Zhang TY, Lou JX, Yang K, Liu XD, He XP, Chen HR. Adenovirus co-expressing CD40 ligand and interleukin (IL)-2 contributes to maturation of dendritic cells and production of IL-12. Biomed Rep 2016; 5:567-573. [PMID: 27882218 DOI: 10.3892/br.2016.773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 09/14/2016] [Indexed: 01/06/2023] Open
Abstract
The aim of the present study was to construct a chimeric adenovirus (Ad)5/F35 co-expressing human CD4O ligand (CD4OL) and interleukin (IL)-2 (Ad5/F35 CD40L-IL-2). The infection efficiency to human monocyte-derived dendritic cells (Mo-DCs), expression of genes, phenotype changes and IL-12 production of Mo-DC by Ad5/F35 CD40L-IL-2 were investigated. CD40L and IL-2 from total RNA extracted from human peripheral blood mononuclear cells (PBMCs) were cloned by reverse transcription-polymerase chain reaction and used to construct Ad5/F35 CD40L-IL-2. The infection efficiency, expression of CD40L, and phenotype changes of Mo-DC infected with Ad5/F35 CD40L-IL-2 were analyzed using flow cytometry. The quantities of IL-2 and IL-12 in the supernatants of Mo-DC following infection of Ad5/F35 CD40L-IL-2 were measured by enzyme-linked immunosorbent assay. The CD40L and IL-2 genes were successfully cloned and the Ad5/F35 CD40L-IL-2 was constructed. Ad5/F35 CD40L-IL-2 efficiently infected Mo-DCs with an infection efficiency of >75%, and the infected Mo-DCs expressed CD40L and secreted IL-2. The expression levels of cluster of differentiation (CD)80, CD86, CD40, and human leukocyte antigen-antigen D related on Mo-DC were moderate; however, CD83 was low prior to infection of Ad5/F35 CD40L-IL-2. Those molecules, particularly CD83, were markedly upregulated 24 h after the infection. Increasing quantities of IL-12 in the supernatants were detected subsequent to infection at different time points in a time-dependent manner. Thus, Ad5/F35 CD40L-IL-2 efficiently infected human Mo-DCs and its products, CD40L and IL-2, were subsequently expressed. In addition, infection with Ad5/F35 CD40L-IL-2 stimulated the maturation of Mo-DC and high levels of IL-12 production.
Collapse
Affiliation(s)
- Zhi Guo
- Department of Hematology, Beijing Military General Hospital, Beijing 100700, P.R. China
| | - Hong-Yan Gao
- Department of Hematology, Beijing Military General Hospital, Beijing 100700, P.R. China
| | - Tian-Yang Zhang
- Department of Hematology, Beijing Military General Hospital, Beijing 100700, P.R. China
| | - Jin-Xing Lou
- Department of Hematology, Beijing Military General Hospital, Beijing 100700, P.R. China
| | - Kai Yang
- Department of Hematology, Beijing Military General Hospital, Beijing 100700, P.R. China
| | - Xiao-Dong Liu
- Department of Hematology, Beijing Military General Hospital, Beijing 100700, P.R. China
| | - Xue-Peng He
- Department of Hematology, Beijing Military General Hospital, Beijing 100700, P.R. China
| | - Hui-Ren Chen
- Department of Hematology, Beijing Military General Hospital, Beijing 100700, P.R. China
| |
Collapse
|
14
|
Han Z, Lee S, Je S, Eom CY, Choi HJ, Song JJ, Kim JH. Survivin silencing and TRAIL expression using oncolytic adenovirus increase anti-tumorigenic activity in gemcitabine-resistant pancreatic cancer cells. Apoptosis 2015; 21:351-64. [DOI: 10.1007/s10495-015-1208-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Silencing Daxx increases the anti-tumor activity of a TRAIL/shRNA Bcl-xL-expressing oncolytic adenovirus through enhanced viral replication and cellular arrest. Cell Signal 2015; 27:1214-24. [PMID: 25748050 DOI: 10.1016/j.cellsig.2015.02.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/28/2015] [Indexed: 01/05/2023]
Abstract
We previously showed that an increase of cellular Bcl-xL mediates acquired resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and knockdown of Bcl-xL expression greatly sensitized TRAIL-induced cytotoxicity. Here, we show that Daxx downregulation increases the anti-tumorigenic activity through enhancement of viral replication and cellular arrest with combination of TRAIL/shBcl-xL-induced apoptosis. This study was conducted to determine the effect of Daxx downregulation on the anti-tumorigenesis induced by oncolytic adenovirus arming TRAIL or TRAIL/shRNA of Bcl-xL genes. Unlike the enhanced cancer cell death induced by exogenous TRAIL or TRAIL plus shRNA of Bcl-xL, oncolytic adenovirus expressing TRAIL or TRAIL plus shRNA of Bcl-xL did not show much enhanced cancer cell death compared to oncolytic adenovirus itself. On the other hand, enhanced cytotoxic cell death and viral replication was observed after infection with oncolytic adenovirus expressing TRAIL plus shRNA of Bcl-xL and shRNA of Daxx at the same construct. Then we realized that enhanced adenoviral replication through Daxx downregulation was caused by increased adenoviral E1A protein expression and Daxx downregulation also stimulated cellular arrest through p21/p53 accumulation. Taken all together, we have shown here that Daxx downregulation should be essentially needed for the increase of anti-tumor activity through enhancement of viral replication and cellular arrest with the combination of TRAIL/shBcl-xL-induced apoptosis and oncolytic adenovirus.
Collapse
|
16
|
Kang D, Choi HJ, Kang S, Kim SY, Hwang YS, Je S, Han Z, Kim JH, Song JJ. Ratio of phosphorylated HSP27 to nonphosphorylated HSP27 biphasically acts as a determinant of cellular fate in gemcitabine-resistant pancreatic cancer cells. Cell Signal 2015; 27:807-17. [PMID: 25615626 DOI: 10.1016/j.cellsig.2015.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/15/2014] [Accepted: 01/13/2015] [Indexed: 01/24/2023]
Abstract
Gemcitabine has been used most commonly as an anticancer drug to treat advanced pancreatic cancer patients. However, intrinsic or acquired resistance of pancreatic cancer to gemcitabine was also developed, which leads to very low five-year survival rates. Here, we investigated whether cellular levels of HSP27 phosphorylation act as a determinant of cellular fate with gemcitabine. In addition we have demonstrated whether HSP27 downregulation effectively could overcome the acquisition of gemcitabine resistance by using transcriptomic analysis. We observed that gemcitabine induced p38/HSP27 phosphorylation and caused acquired resistance. After acquisition of gemcitabine resistance, cancer cells showed higher activity of NF-κB. NF-κB activity, as well as colony formation in gemcitabine-resistant pancreatic cancer cells, was significantly decreased by HSP27 downregulation and subsequent TRAIL treatment, showing that HSP27 was a common network mediator of gemcitabine/TRAIL-induced cell death. After transcriptomic analysis, gene fluctuation after HSP27 downregulation was very similar to that of pancreatic cancer cells susceptible to gemcitabine, and then in opposite position to that of acquired gemcitabine resistance, which makes it possible to downregulate HSP27 to overcome the acquired gemcitabine resistance to function as an overall survival network inhibitor. Most importantly, we demonstrated that the ratio of phosphorylated HSP27 to nonphosphorylated HSP27 rather than the cellular level of HSP27 itself acts biphasically as a determinant of cellular fate in gemcitabine-resistant pancreatic cancer cells.
Collapse
Affiliation(s)
- Dongxu Kang
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Oncology, Affiliated Hospital of Yanbian University, Yanji, Jilin Province, PR China
| | - Hye Jin Choi
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sujin Kang
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - So Young Kim
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Sic Hwang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Suyeon Je
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Zhezhu Han
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Oncology, Affiliated Hospital of Yanbian University, Yanji, Jilin Province, PR China
| | - Joo-Hang Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Jae J Song
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Kang S, Kim JH, Kim SY, Kang D, Je S, Song JJ. Establishment of a mouse melanoma model system for the efficient infection and replication of human adenovirus type 5-based oncolytic virus. Biochem Biophys Res Commun 2014; 453:480-5. [PMID: 25280999 DOI: 10.1016/j.bbrc.2014.09.107] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/24/2014] [Indexed: 01/02/2023]
Abstract
Due to poor adenoviral infectivity and replication in mouse tumor cell types compared with human tumor cell types, use of human-type adenoviral vectors in mouse animal model systems was limited. Here, we demonstrate enhanced infectivity and productive replication of adenovirus in mouse melanoma cells following introduction of both the Coxsackievirus and adenovirus receptor (CAR) and E1B-55K genes. Introduction of CAR into B16BL6 or B16F10 cells increased the infectivity of GFP-expressing adenovirus; however, viral replication was unaffected. We demonstrated a dramatic increase of adenoviral replication (up to 100-fold) in mouse cells via E1B-55K expression and subsequent viral spreading in mouse tissue. These results reveal for the first time that human adenovirus type 5 (Ad5)-based oncolytic virus can be applied to immunocompetent mouse with the introduction of CAR and E1B-55K to syngenic mouse cell line.
Collapse
Affiliation(s)
- Sujin Kang
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joo-Hang Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - So Young Kim
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dongxu Kang
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Oncology, Affiliated Hospital of Yanbian University, Yanji, Jilin Province, PR China
| | - Suyeon Je
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae J Song
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|