1
|
Zhang P, Cao J, Liang X, Su Z, Zhang B, Wang Z, Xie J, Chen G, Chen X, Zhang J, Feng Y, Xu Q, Song J, Hong A, Chen X, Zhang Y. Lian-Mei-Yin formula alleviates diet-induced hepatic steatosis by suppressing Yap1/FOXM1 pathway-dependent lipid synthesis. Acta Biochim Biophys Sin (Shanghai) 2024; 56:621-633. [PMID: 38516704 DOI: 10.3724/abbs.2024025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, with a global prevalence of 25%. Patients with NAFLD are more likely to suffer from advanced liver disease, cardiovascular disease, or type II diabetes. However, unfortunately, there is still a shortage of FDA-approved therapeutic agents for NAFLD. Lian-Mei-Yin (LMY) is a traditional Chinese medicine formula used for decades to treat liver disorders. It has recently been applied to type II diabetes which is closely related to insulin resistance. Given that NAFLD is another disease involved in insulin resistance, we hypothesize that LMY might be a promising formula for NAFLD therapy. Herein, we verify that the LMY formula effectively reduces hepatic steatosis in diet-induced zebrafish and NAFLD model mice in a time- and dose-dependent manner. Mechanistically, LMY suppresses Yap1-mediated Foxm1 activation, which is crucial for the occurrence and development of NAFLD. Consequently, lipogenesis is ameliorated by LMY administration. In summary, the LMY formula alleviates diet-induced NAFLD in zebrafish and mice by inhibiting Yap1/Foxm1 signaling-mediated NAFLD pathology.
Collapse
Affiliation(s)
- Peiguang Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Jieqiong Cao
- Department of Cell Biology, College of Life Science and Technology, Jinan University; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Xujing Liang
- Department of Infectious Disease, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Zijian Su
- Department of Cell Biology, College of Life Science and Technology, Jinan University; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Bihui Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Zhenyu Wang
- Department of Cell Biology, College of Life Science and Technology, Jinan University; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Junye Xie
- Department of Cell Biology, College of Life Science and Technology, Jinan University; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Gengrui Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Xue Chen
- Department of Cell Biology, College of Life Science and Technology, Jinan University; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Jinting Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Yanxian Feng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Qin Xu
- Guangzhou University of Traditional Chinese Medicine, Guangzhou 510006, China
| | - Jianping Song
- Guangzhou University of Traditional Chinese Medicine, Guangzhou 510006, China
| | - An Hong
- Department of Cell Biology, College of Life Science and Technology, Jinan University; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Xiaojia Chen
- Department of Cell Biology, College of Life Science and Technology, Jinan University; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Yibo Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| |
Collapse
|
2
|
Yasir M, Park J, Chun W. EWS/FLI1 Characterization, Activation, Repression, Target Genes and Therapeutic Opportunities in Ewing Sarcoma. Int J Mol Sci 2023; 24:15173. [PMID: 37894854 PMCID: PMC10607184 DOI: 10.3390/ijms242015173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Despite their clonal origins, tumors eventually develop into complex communities made up of phenotypically different cell subpopulations, according to mounting evidence. Tumor cell-intrinsic programming and signals from geographically and temporally changing microenvironments both contribute to this variability. Furthermore, the mutational load is typically lacking in childhood malignancies of adult cancers, and they still exhibit high cellular heterogeneity levels largely mediated by epigenetic mechanisms. Ewing sarcomas represent highly aggressive malignancies affecting both bone and soft tissue, primarily afflicting adolescents. Unfortunately, the outlook for patients facing relapsed or metastatic disease is grim. These tumors are primarily fueled by a distinctive fusion event involving an FET protein and an ETS family transcription factor, with the most prevalent fusion being EWS/FLI1. Despite originating from a common driver mutation, Ewing sarcoma cells display significant variations in transcriptional activity, both within and among tumors. Recent research has pinpointed distinct fusion protein activities as a principal source of this heterogeneity, resulting in markedly diverse cellular phenotypes. In this review, we aim to characterize the role of the EWS/FLI fusion protein in Ewing sarcoma by exploring its general mechanism of activation and elucidating its implications for tumor heterogeneity. Additionally, we delve into potential therapeutic opportunities to target this aberrant fusion protein in the context of Ewing sarcoma treatment.
Collapse
Affiliation(s)
| | | | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (J.P.)
| |
Collapse
|
3
|
Gong H, Xue B, Ru J, Pei G, Li Y. Targeted Therapy for EWS-FLI1 in Ewing Sarcoma. Cancers (Basel) 2023; 15:4035. [PMID: 37627063 PMCID: PMC10452796 DOI: 10.3390/cancers15164035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/05/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Ewing sarcoma (EwS) is a rare and predominantly pediatric malignancy of bone and soft tissue in children and adolescents. Although international collaborations have greatly improved the prognosis of most EwS, the occurrence of macrometastases or relapse remains challenging. The prototypic oncogene EWS-FLI1 acts as an aberrant transcription factor that drives the cellular transformation of EwS. In addition to its involvement in RNA splicing and the DNA damage response, this chimeric protein directly binds to GGAA repeats, thereby modifying the transcriptional profile of EwS. Direct pharmacological targeting of EWS-FLI1 is difficult because of its intrinsically disordered structure. However, targeting the EWS-FLI1 protein complex or downstream pathways provides additional therapeutic options. This review describes the EWS-FLI1 protein partners and downstream pathways, as well as the related target therapies for the treatment of EwS.
Collapse
Affiliation(s)
- Helong Gong
- Department of Orthopaedic Surgery, Shengjing Hospital, China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110004, China;
| | - Busheng Xue
- Department of Hematology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China;
| | - Jinlong Ru
- Institute of Virology, Helmholtz Centre Munich, German Research Centre for Environmental Health, 85764 Neuherberg, Germany;
| | - Guoqing Pei
- Department of Orthopedics, Xijing Hospital, Air Force Medical University, Xi’an 710032, China;
| | - Yan Li
- Department of Orthopaedic Surgery, Shengjing Hospital, China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110004, China;
| |
Collapse
|
4
|
Madhi H, Lee J, Choi YE, Li Y, Kim MH, Choi Y, Goh S. FOXM1 Inhibition Enhances the Therapeutic Outcome of Lung Cancer Immunotherapy by Modulating PD-L1 Expression and Cell Proliferation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202702. [PMID: 35975458 PMCID: PMC9561767 DOI: 10.1002/advs.202202702] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/14/2022] [Indexed: 05/31/2023]
Abstract
Programmed death-ligand 1 (PD-L1) is a major target to cancer immunotherapy, and anti-PD-L1 and anti-PD-1 antibody-mediated immunotherapy are being increasingly used. However, immune checkpoint inhibitors (ICIs) are ineffective in treating large tumors and cause various immune-related adverse events in nontarget organs, including life-threatening cardiotoxicity. Therefore, the development of new therapeutic strategies to overcome these limitations is crucial. The focus of this study is the forkhead box protein M1 (FOXM1), which is identified as a potential therapeutic target for cancer immunotherapy and is associated with the modulation of PD-L1 expression. Selective small interfering RNA knockdown of FOXM1 or treatment with thiostrepton (TST) significantly reduces PD-L1 expression in non-small-cell lung cancer (NSCLC) cells and inhibits proliferation. Chromatin immunoprecipitation-PCR reveals that FOXM1 selectively upregulates PD-L1 expression by binding directly to the PD-L1 promoter. In vivo animal studies have shown that TST treatment significantly downregulates PD-L1 expression in human NSCLC tumors, while greatly reducing tumor size without side effects on normal tissues. Combined treatment with TST and anti-4-1BB antibody in the LLC-1 syngeneic tumor model induces synergistic therapeutic outcomes against immune resistant lung tumors as well as 2.72-folds higher CD3+ T cells in tumor tissues compared to that in the anti-4-1BB antibody treatment group.
Collapse
Affiliation(s)
- Hamadi Madhi
- Research InstituteNational Cancer Center323 Ilsan‐ro, GoyangGyeonggi‐Do10408Republic of Korea
- Department of AnatomyGraduate School of Medical SciencesYonsei University College of MedicineSeoul03722Republic of Korea
| | - Jeon‐Soo Lee
- Research InstituteNational Cancer Center323 Ilsan‐ro, GoyangGyeonggi‐Do10408Republic of Korea
| | - Young Eun Choi
- Research InstituteNational Cancer Center323 Ilsan‐ro, GoyangGyeonggi‐Do10408Republic of Korea
| | - Yan Li
- Research InstituteNational Cancer Center323 Ilsan‐ro, GoyangGyeonggi‐Do10408Republic of Korea
| | - Myoung Hee Kim
- Department of AnatomyGraduate School of Medical SciencesYonsei University College of MedicineSeoul03722Republic of Korea
| | - Yongdoo Choi
- Research InstituteNational Cancer Center323 Ilsan‐ro, GoyangGyeonggi‐Do10408Republic of Korea
| | - Sung‐Ho Goh
- Research InstituteNational Cancer Center323 Ilsan‐ro, GoyangGyeonggi‐Do10408Republic of Korea
| |
Collapse
|
5
|
Bailly C. The bacterial thiopeptide thiostrepton. An update of its mode of action, pharmacological properties and applications. Eur J Pharmacol 2022; 914:174661. [PMID: 34863996 DOI: 10.1016/j.ejphar.2021.174661] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/29/2021] [Indexed: 12/20/2022]
Abstract
The bacterial thiopeptide thiostrepton (TS) is used as a veterinary medicine to treat bacterial infections. TS is a protein translation inhibitor, essentially active against Gram-positive bacteria and some Gram-negative bacteria. In procaryotes, TS abrogates binding of GTPase elongation factors to the 70S ribosome, by altering the structure of rRNA-L11 protein complexes. TS exerts also antimalarial effects by disrupting protein synthesis in the apicoplast genome of Plasmodium falciparum. Interestingly, the drug targets both the infectious pathogen (bacteria or parasite) and host cell, by inducing endoplasmic reticulum stress-mediated autophagy which contributes to enhance the host cell defense. In addition, TS has been characterized as a potent chemical inhibitor of the oncogenic transcription factor FoxM1, frequently overexpressed in cancers or other diseases. The capacity of TS to crosslink FoxM1, and a few other proteins such as peroxiredoxin 3 (PRX3) and the 19S proteasome, contributes to the anticancer effects of the thiopeptide. The anticancer activities of TS evidenced using diverse tumor cell lines, in vivo models and drug combinations are reviewed here, together with the implicated targets and mechanisms. The difficulty to formulate TS is a drag on the pharmaceutical development of the natural product. However, the design of hemisynthetic analogues and the use of micellar drug delivery systems should facilitate a broader utilization of the compound in human and veterinary medicines. This review shed light on the many pharmacological properties of TS, with the objective to promote its use as a pharmacological tool and medicinal product.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, Lille, Wasquehal, 59290, France.
| |
Collapse
|
6
|
Cai X, Xiao W, Shen J, Lian H, Lu Y, Liu X, Gu J. Thiostrepton and miR-216b synergistically promote osteosarcoma cell cytotoxicity and apoptosis by targeting FoxM1. Oncol Lett 2020; 20:391. [PMID: 33193851 PMCID: PMC7656114 DOI: 10.3892/ol.2020.12254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/07/2020] [Indexed: 01/08/2023] Open
Abstract
Osteosarcoma is a common primary bone cancer that there are currently no effective treatment strategies for. Forkhead box M1 (FoxM1) is key in the development of osteosarcoma, and microRNA (miR)-216b serves an antitumor role by targeting FoxM1. Moreover, thiostrepton (TST), a natural thiazole antibiotic, induces antitumor effects and specifically targets FoxM1. Therefore, the present study investigated whether thiostrepton and miR-216b synergistically inhibited osteosarcoma cells by targeting FoxM1. The MTT assay, reverse transcription-quantitative PCR, a dual-luciferase reporter assay and flow cytometry were performed. Compared with the human osteoblast cell line hFOB1.19, miR-216b expression was significantly downregulated in the osteosarcoma cell lines U2OS, MG63 and Saos-2. By contrast, FoxM1 expression was significantly upregulated in osteosarcoma cell lines compared with the hFOB1.19 cell line. The results indicated that miR-216b targeted the 3′-untranslated region of FoxM1. Moreover, the results suggested that miR-216b cooperated with TST to decrease cell cytotoxicity and increase cell apoptosis. In addition, miR-216b cooperated with TST to increase Bax expression and decrease Bcl-2 expression. In conclusion, the combination of TST and miR-216b synergistically promoted osteosarcoma cell cytotoxicity and apoptosis by targeting FoxM1. Therefore, the present study suggested that the combination of TST and miR-216b may serve as a promising therapeutic strategy for osteosarcoma.
Collapse
Affiliation(s)
- Xiaobing Cai
- Department of Orthopedics, Chongming Branch of Tongji Univercity Affiliated the Tenth People's Hospital, Shanghai 202157, P.R. China
| | - Wenyu Xiao
- Department of Orthopedics, Jiangwan Hospital, Shanghai 200434, P.R. China
| | - Juexin Shen
- Department of Orthopedics, Jiangwan Hospital, Shanghai 200434, P.R. China
| | - Hui Lian
- Department of Orthopedics, Jiangwan Hospital, Shanghai 200434, P.R. China
| | - Yi Lu
- Department of Orthopedics, Jiangwan Hospital, Shanghai 200434, P.R. China
| | - Xianmiao Liu
- Department of Orthopedics, Jiangwan Hospital, Shanghai 200434, P.R. China
| | - Jisheng Gu
- Department of Orthopedics, Jiangwan Hospital, Shanghai 200434, P.R. China
| |
Collapse
|
7
|
Amadei SS, Notario V. A Significant Question in Cancer Risk and Therapy: Are Antibiotics Positive or Negative Effectors? Current Answers and Possible Alternatives. Antibiotics (Basel) 2020; 9:E580. [PMID: 32899961 PMCID: PMC7558931 DOI: 10.3390/antibiotics9090580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer is predominantly considered as an environmental disease caused by genetic or epigenetic alterations induced by exposure to extrinsic (e.g., carcinogens, pollutants, radiation) or intrinsic (e.g., metabolic, immune or genetic deficiencies). Over-exposure to antibiotics, which is favored by unregulated access as well as inappropriate prescriptions by physicians, is known to have led to serious health problems such as the rise of antibiotic resistance, in particular in poorly developed countries. In this review, the attention is focused on evaluating the effects of antibiotic exposure on cancer risk and on the outcome of cancer therapeutic protocols, either directly acting as extrinsic promoters, or indirectly, through interactions with the human gut microbiota. The preponderant evidence derived from information reported over the last 10 years confirms that antibiotic exposure tends to increase cancer risk and, unfortunately, that it reduces the efficacy of various forms of cancer therapy (e.g., chemo-, radio-, and immunotherapy alone or in combination). Alternatives to the current patterns of antibiotic use, such as introducing new antibiotics, bacteriophages or enzybiotics, and implementing dysbiosis-reducing microbiota modulatory strategies in oncology, are discussed. The information is in the end considered from the perspective of the most recent findings on the tumor-specific and intracellular location of the tumor microbiota, and of the most recent theories proposed to explain cancer etiology on the notion of regression of the eukaryotic cells and systems to stages characterized for a lack of coordination among their components of prokaryotic origin, which is promoted by injuries caused by environmental insults.
Collapse
Affiliation(s)
| | - Vicente Notario
- Department of Radiation Medicine, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA;
| |
Collapse
|
8
|
Franco S, Stranz A, Ljumani F, Urabe G, Chaudhary M, Stewart D, Pilli VS, Kelly M, Yamanouchi D, Kent KC, Liu B. Role of FOXM1 in vascular smooth muscle cell survival and neointima formation following vascular injury. Heliyon 2020; 6:e04028. [PMID: 32577545 PMCID: PMC7303564 DOI: 10.1016/j.heliyon.2020.e04028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 03/15/2020] [Accepted: 05/15/2020] [Indexed: 11/04/2022] Open
Abstract
Background Accelerated smooth muscle cell (SMC) proliferation is the primary cause of intimal hyperplasia (IH) following vascular interventions. Forkhead Box M1 (FOXM1) is considered a proliferation-associated transcription factor. However, the presence and role of FOXM1 in IH following vascular injury have not been determined. Objective We examined the expression of FOXM1 in balloon-injured rat carotid arteries and investigated the effect of FOXM1 inhibition in SMCs and on the development of IH. Methods and results FOXM1 was detected by immunofluorescent staining in balloon-injured rat carotid arteries where we observed an upregulation at day 7, 14, and 28 compared to uninjured controls. Immunofluorescence staining revealed FOXM1 coincided with proliferating cell nuclear antigen (PCNA). FOXM1 was also detectable in human carotid plaque samples. Western blot showed an upregulation of FOXM1 protein in serum-stimulated SMCs. Inhibition of FOXM1 using siRNA or chemical inhibition led to the induction of apoptosis as measured by flow cytometry and western blot for cleaved caspase 3. Perturbations in survival signaling were measured by western blot following FOXM1 inhibition, which showed a decrease in phosphorylated AKT and β-catenin. The chemical inhibitor thiostrepton was delivered by intraperitoneal injection in rats that underwent balloon injury and led to reduced intimal thickening compared to DMSO controls. Conclusions FOXM1 is an important molecular mediator of IH that contributes to the proliferation and survival of SMCs following vascular injury.
Collapse
Affiliation(s)
- Sarah Franco
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA.,Department of Cellular and Molecular Pathology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Amelia Stranz
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Fiona Ljumani
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Go Urabe
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Mirnal Chaudhary
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA.,Department of Cellular and Molecular Pathology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Danielle Stewart
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Vijaya Satish Pilli
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Matthew Kelly
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Dai Yamanouchi
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - K Craig Kent
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Bo Liu
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA.,Department of Cellular and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
9
|
Casey DL, Lin TY, Cheung NKV. Exploiting Signaling Pathways and Immune Targets Beyond the Standard of Care for Ewing Sarcoma. Front Oncol 2019; 9:537. [PMID: 31275859 PMCID: PMC6593481 DOI: 10.3389/fonc.2019.00537] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022] Open
Abstract
Ewing sarcoma (ES) family of tumors includes bone and soft tissue tumors that are often characterized by a specific translocation between chromosome 11 and 22, resulting in the EWS-FLI1 fusion gene. With the advent of multi-modality treatment including cytotoxic chemotherapy, surgery, and radiation therapy, the prognosis for patients with ES has substantially improved. However, a therapeutic plateau is now reached for both localized and metastatic disease over the last two decades. Burdened by the toxicity limits associated with the current frontline systemic therapy, there is an urgent need for novel targeted therapeutic strategies. In this review, we discuss the current treatment paradigm of ES, and explore preclinical evidence and emerging treatments directed at tumor signaling pathways and immune targets.
Collapse
Affiliation(s)
- Dana L Casey
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Tsung-Yi Lin
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
10
|
Jacques C, Lamoureux F, Baud'huin M, Rodriguez Calleja L, Quillard T, Amiaud J, Tirode F, Rédini F, Bradner JE, Heymann D, Ory B. Targeting the epigenetic readers in Ewing sarcoma inhibits the oncogenic transcription factor EWS/Fli1. Oncotarget 2018; 7:24125-40. [PMID: 27006472 PMCID: PMC5029689 DOI: 10.18632/oncotarget.8214] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/02/2016] [Indexed: 11/25/2022] Open
Abstract
Ewing Sarcoma is a rare bone and soft tissue malignancy affecting children and young adults. Chromosomal translocations in this cancer produce fusion oncogenes as characteristic molecular signatures of the disease. The most common case is the translocation t (11; 22) (q24;q12) which yields the EWS-Fli1 chimeric transcription factor. Finding a way to directly target EWS-Fli1 remains a central therapeutic approach to eradicate this aggressive cancer. Here we demonstrate that treating Ewing Sarcoma cells with JQ1(+), a BET bromodomain inhibitor, represses directly EWS-Fli1 transcription as well as its transcriptional program. Moreover, the Chromatin Immuno Precipitation experiments demonstrate for the first time that these results are a consequence of the depletion of BRD4, one of the BET bromodomains protein from the EWS-Fli1 promoter. In vitro, JQ1(+) treatment reduces the cell viability, impairs the cell clonogenic and the migratory abilities, and induces a G1-phase blockage as well as a time- and a dose-dependent apoptosis. Furthermore, in our in vivo model, we observed a tumor burden delay, an inhibition of the global vascularization and an increase of the mice overall survival. Taken together, our data indicate that inhibiting the BET bromodomains interferes with EWS-FLi1 transcription and could be a promising strategy in the Ewing tumors context.
Collapse
Affiliation(s)
- Camille Jacques
- INSERM, UMR 957, Équipe Labellisée Ligue 2012, Nantes, France.,Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Université de Nantes, Nantes Atlantique Universités, EA3822, Nantes, France
| | - François Lamoureux
- INSERM, UMR 957, Équipe Labellisée Ligue 2012, Nantes, France.,Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Université de Nantes, Nantes Atlantique Universités, EA3822, Nantes, France
| | - Marc Baud'huin
- INSERM, UMR 957, Équipe Labellisée Ligue 2012, Nantes, France.,Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Université de Nantes, Nantes Atlantique Universités, EA3822, Nantes, France.,Nantes University Hospital, Nantes, France
| | - Lidia Rodriguez Calleja
- INSERM, UMR 957, Équipe Labellisée Ligue 2012, Nantes, France.,Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Université de Nantes, Nantes Atlantique Universités, EA3822, Nantes, France
| | - Thibaut Quillard
- INSERM, UMR 957, Équipe Labellisée Ligue 2012, Nantes, France.,Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Université de Nantes, Nantes Atlantique Universités, EA3822, Nantes, France
| | - Jérôme Amiaud
- INSERM, UMR 957, Équipe Labellisée Ligue 2012, Nantes, France.,Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Université de Nantes, Nantes Atlantique Universités, EA3822, Nantes, France
| | | | - Françoise Rédini
- INSERM, UMR 957, Équipe Labellisée Ligue 2012, Nantes, France.,Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Université de Nantes, Nantes Atlantique Universités, EA3822, Nantes, France
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Dominique Heymann
- INSERM, UMR 957, Équipe Labellisée Ligue 2012, Nantes, France.,Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Université de Nantes, Nantes Atlantique Universités, EA3822, Nantes, France.,Nantes University Hospital, Nantes, France
| | - Benjamin Ory
- INSERM, UMR 957, Équipe Labellisée Ligue 2012, Nantes, France.,Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Université de Nantes, Nantes Atlantique Universités, EA3822, Nantes, France
| |
Collapse
|
11
|
Kelleher FC, O'Sullivan H. FOXM1 in sarcoma: role in cell cycle, pluripotency genes and stem cell pathways. Oncotarget 2018; 7:42792-42804. [PMID: 27074562 PMCID: PMC5173172 DOI: 10.18632/oncotarget.8669] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/29/2016] [Indexed: 01/25/2023] Open
Abstract
FOXM1 is a pro-proliferative transcription factor that promotes cell cycle progression at the G1-S, and G2-M transitions. It is activated by phosphorylation usually mediated by successive cyclin – cyclin dependent kinase complexes, and is highly expressed in sarcoma. p53 down regulates FOXM1 and FOXM1 inhibition is also partly dependent on Rb and p21. Abnormalities of p53 or Rb are frequent in sporadic sarcomas with bone or soft tissue sarcoma, accounting for 36% of index cancers in the high penetrance TP53 germline disorder, Li-Fraumeni syndrome. FOXM1 stimulates transcription of pluripotency related genes including SOX2, KLF4, OCT4, and NANOG many of which are important in sarcoma, a disorder of mesenchymal stem cell/ partially committed progenitor cells. In a selected specific, SOX2 is uniformly expressed in synovial sarcoma. Embryonic pathways preferentially used in stem cell such as Hippo, Hedgehog, and Wnt dominate in FOXM1 stoichiometry to alter rates of FOXM1 production or degradation. In undifferentiated pleomorphic sarcoma, liposarcoma, and fibrosarcoma, dysregulation of the Hippo pathway increases expression of the effector co-transcriptional activator Yes-Associated Protein (YAP). A complex involving YAP and the transcription factor TEAD elevates FOXM1 in these sarcoma subtypes. In another scenario 80% of desmoid tumors have nuclear localization of β-catenin, the Wnt pathway effector molecule. Thiazole antibiotics inhibit FOXM1 and because they have an auto-regulator loop FOXM1 expression is also inhibited. Current systemic treatment of sarcoma is of limited efficacy and inhibiting FOXM1 represents a potential new strategy.
Collapse
Affiliation(s)
- Fergal C Kelleher
- St. James Hospital, Dublin, Ireland.,Trinity College Dublin, Dublin, Ireland
| | | |
Collapse
|
12
|
Cell-to-cell heterogeneity of EWSR1-FLI1 activity determines proliferation/migration choices in Ewing sarcoma cells. Oncogene 2017; 36:3505-3514. [PMID: 28135250 PMCID: PMC5541267 DOI: 10.1038/onc.2016.498] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 12/22/2022]
Abstract
Ewing sarcoma is characterized by the expression of the chimeric EWSR1-FLI1 transcription factor. Proteomic analyses indicate that the decrease of EWSR1-FLI1 expression leads to major changes in effectors of the dynamics of the actin cytoskeleton and the adhesion processes with a shift from cell-to-cell to cell-matrix adhesion. These changes are associated with a dramatic increase of in vivo cell migration and invasion potential. Importantly, EWSR1-FLI1 expression, evaluated by single-cell RT-ddPCR/immunofluorescence analyses, and activity, assessed by expression of EWSR1-FLI1 downstream targets, are heterogeneous in cell lines and in tumours and can fluctuate along time in a fully reversible process between EWSR1-FLI1high states, characterized by highly active cell proliferation, and EWSR1-FLI1low states where cells have a strong propensity to migrate, invade and metastasize. This new model of phenotypic plasticity proposes that the dynamic fluctuation of the expression level of a dominant oncogene is an intrinsic characteristic of its oncogenic potential.
Collapse
|
13
|
Kuda M, Kohashi K, Yamada Y, Maekawa A, Kinoshita Y, Nakatsura T, Iwamoto Y, Taguchi T, Oda Y. FOXM1 expression in rhabdomyosarcoma: a novel prognostic factor and therapeutic target. Tumour Biol 2015; 37:5213-23. [PMID: 26553361 DOI: 10.1007/s13277-015-4351-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/30/2015] [Indexed: 01/07/2023] Open
Abstract
The transcription factor Forkhead box M1 (FOXM1) is known to play critical roles in the development and progression of various types of cancer, but the clinical significance of FOXM1 expression in rhabdomyosarcoma (RMS) is unknown. This study aimed to determine the role of FOXM1 in RMS. We investigated the expression levels of FOXM1 and vascular endothelial growth factor (VEGF) and angiogenesis in a large series of RMS clinical cases using immunohistochemistry (n = 92), and we performed clinicopathologic and prognostic analyses. In vitro studies were conducted to examine the effect of FOXM1 knock-down on VEGF expression, cell proliferation, migration, and invasion in embryonal RMS (ERMS) and alveolar RMS (ARMS) cell lines, using small interference RNA (siRNA). High FOXM1 expression was significantly increased in the cases of ARMS, which has an adverse prognosis compared to ERMS (p = 0.0310). The ERMS patients with high FOXM1 expression (n = 25) had a significantly shorter survival than those with low FOXM1 expression (n = 24; p = 0.0310). FOXM1 expression was statistically correlated with VEGF expression in ERMS at the protein level as shown by immunohistochemistry and at the mRNA level by RT-PCR. The in vitro study demonstrated that VEGF mRNA levels were decreased in the FOXM1 siRNA-transfected ERMS and ARMS cells. FOXM1 knock-down resulted in a significant decrease of cell proliferation and migration in all four RMS cell lines and invasion in three of the four cell lines. Our results indicate that FOXM1 overexpression may be a prognostic factor of RMS and that FOXM1 may be a promising therapeutic target for the inhibition of RMS progression.
Collapse
Affiliation(s)
- Masaaki Kuda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kenichi Kohashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuichi Yamada
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Akira Maekawa
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshiaki Kinoshita
- Department of Pediatric Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Yukihide Iwamoto
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomoaki Taguchi
- Department of Pediatric Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
14
|
Cidre-Aranaz F, Alonso J. EWS/FLI1 Target Genes and Therapeutic Opportunities in Ewing Sarcoma. Front Oncol 2015; 5:162. [PMID: 26258070 PMCID: PMC4507460 DOI: 10.3389/fonc.2015.00162] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/06/2015] [Indexed: 12/31/2022] Open
Abstract
Ewing sarcoma is an aggressive bone malignancy that affect children and young adults. Ewing sarcoma is the second most common primary bone malignancy in pediatric patients. Although significant progress has been made in the treatment of Ewing sarcoma since it was first described in the 1920s, in the last decade survival rates have remained unacceptably invariable, thus pointing to the need for new approaches centered in the molecular basis of the disease. Ewing sarcoma driving mutation, EWS–FLI1, which results from a chromosomal translocation, encodes an aberrant transcription factor. Since its first characterization in 1990s, many molecular targets have been described to be regulated by this chimeric transcription factor. Their contribution to orchestrate Ewing sarcoma phenotype has been reported over the last decades. In this work, we will focus on the description of a selection of EWS/FLI1 targets, their functional role, and their potential clinical relevance. We will also discuss their role in other types of cancer as well as the need for further studies to be performed in order to achieve a broader understanding of their particular contribution to Ewing sarcoma development.
Collapse
Affiliation(s)
- Florencia Cidre-Aranaz
- Unidad de Tumores Sólidos Infantiles, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III , Madrid , Spain
| | - Javier Alonso
- Unidad de Tumores Sólidos Infantiles, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III , Madrid , Spain
| |
Collapse
|
15
|
Jiang L, Wu X, Wang P, Wen T, Yu C, Wei L, Chen H. Targeting FoxM1 by thiostrepton inhibits growth and induces apoptosis of laryngeal squamous cell carcinoma. J Cancer Res Clin Oncol 2014; 141:971-81. [PMID: 25391371 DOI: 10.1007/s00432-014-1872-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 11/05/2014] [Indexed: 12/29/2022]
Abstract
PURPOSE We have previously reported that forkhead box M1 (FoxM1) transcription factor was overexpressed in laryngeal squamous cell carcinoma (LSCC) and was associated with development of LSCC. However, there are limited studies regarding the functional significance of FoxM1 and FoxM1 inhibitor thiostrepton in LSCC. Therefore, the aim of this study was to examine both in vitro and in vivo activity of FoxM1 inhibitor thiostrepton against LSCC cell line and nude mice. METHODS Cell viability was studied by CCK-8 assay. Cell growth was evaluated by CFSE staining and cell cycle analysis. Apoptosis was measured by flow cytometry. The mRNA and protein expression were detected by quantitative real-time RT-PCR, Western blot and immunohistochemical staining. Xenograft model of tumor formation was used to investigate how thiostrepton influences tumorigenesis in vivo. RESULTS Overexpression of FoxM1 in LSCC cells was down-regulated by thiostrepton in a dose-dependent manner. Thiostrepton caused dose- and time-dependent suppression of cell viability of LSCC. Moreover, thiostrepton induced cell cycle arrest at S phase at early time and inhibited DNA synthesis in LSCC cells in a dose- and time-dependent manner by down-regulation of cyclin D1 and cyclin E1. Thiostrepton also induced dose- and time-dependent apoptosis of LSCC cells by down-regulation of Bcl-2, up-regulation of Bax and p53, and inducing release of cytochrome c accompanied by activation of cleaved caspase-9, cleaved caspase-3 and cleaved PARP. In addition, z-VAD-fmk, a universal inhibitor of caspases, prevented activation of cleavage caspase-3 and abrogates cell death induced by thiostrepton treatment. Furthermore, FADD and cleaved caspase-8 were activated, and expression of cIAP1, XIAP and survivin were inhibited by thiostrepton. Finally, treatment of LSCC cell line xenografts with thiostrepton resulted in tumorigenesis inhibition of tumors in nude mice by reducing proliferation and inducing apoptosis of LSCC cells. CONCLUSIONS Collectively, our finding suggest that targeting FoxM1 by thiostrepton inhibit growth and induce apoptosis of LSCC through mitochondrial- and caspase-dependent intrinsic pathway and Fas-dependent extrinsic pathway as well as IAP family. Thiostrepton may represent a novel lead compound for targeted therapy of LSCC.
Collapse
Affiliation(s)
- Lizhu Jiang
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
16
|
Kovar H. Blocking the road, stopping the engine or killing the driver? Advances in targeting EWS/FLI-1 fusion in Ewing sarcoma as novel therapy. Expert Opin Ther Targets 2014; 18:1315-28. [PMID: 25162919 DOI: 10.1517/14728222.2014.947963] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Ewing sarcoma (ES) represents the paradigm of an aberrant E-twenty-six (ETS) oncogene-driven cancer. It is characterized by specific rearrangements of one of five alternative ETS family member genes with EWSR1. There is experimental evidence that the resulting fusion proteins act as aberrant transcription factors driving ES pathogenesis. The transcriptional gene regulatory network driven by EWS-ETS proteins provides the oncogenic engine to the tumor. Therefore, EWS-ETS and their downstream machinery are considered ideal tumor-specific therapeutic targets. AREAS COVERED This review critically discusses the literature on the development of EWS-ETS-directed ES targeting strategies considering current knowledge of EWS-ETS biology and cellular context. It focuses on determinants of EWS-FLI1 function with an emphasis on interactions with chromatin structure. We speculate about the relevance of poorly investigated aspects in ES research such as chromatin remodeling and DNA damage repair for the development of targeted therapies. EXPERT OPINION This review questions the specificity of signature-based screening approaches to the identification of EWS-FLI1-targeted compounds. It challenges the view that targeting the downstream gene regulatory network carries potential for therapeutic breakthroughs because of resistance-inducing network rewiring. Instead, we propose to combine targeting of the fusion protein with epigenetic therapy as a future treatment strategy in ES.
Collapse
Affiliation(s)
- Heinrich Kovar
- Children´s Cancer Research Institute, St. Anna Kinderkrebsforschung, and Medical University Vienna, Department of Pediatrics , Zimmermannplatz 10, A1090 Vienna , Austria +43 1 40470 4092 ; +43 1 40470 64092 ;
| |
Collapse
|