1
|
Goujon M, Woszczyk J, Gaudelot K, Swierczewski T, Fellah S, Gibier JB, Van Seuningen I, Larrue R, Cauffiez C, Gnemmi V, Aubert S, Pottier N, Perrais M. A Double-Negative Feedback Interaction between miR-21 and PPAR-α in Clear Renal Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14030795. [PMID: 35159062 PMCID: PMC8834244 DOI: 10.3390/cancers14030795] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 02/04/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the main histotype of kidney cancer, which is typically highly resistant to conventional therapies and known for abnormal lipid accumulation. In this context, we focused our attention on miR-21, an oncogenic miRNA overexpressed in ccRCC, and peroxysome proliferator-activated receptor-α (PPAR- α), one master regulator of lipid metabolism targeted by miR-21. First, in a cohort of 52 primary ccRCC samples, using RT-qPCR and immunohistochemistry, we showed that miR-21 overexpression was correlated with PPAR-α downregulation. Then, in ACHN and 786-O cells, using RT-qPCR, the luciferase reporter gene, chromatin immunoprecipitation, and Western blotting, we showed that PPAR-α overexpression (i) decreased miR-21 expression, AP-1 and NF-κB transcriptional activity, and the binding of AP-1 and NF-κB to the miR-21 promoter and (ii) increased PTEN and PDCD4 expressions. In contrast, using pre-miR-21 transfection, miR-21 overexpression decreased PPAR-α expression and transcriptional activity mediated by PPAR-α, whereas the anti-miR-21 (LNA-21) strategy increased PPAR-α expression, but also the expression of its targets involved in fatty acid oxidation. In this study, we showed a double-negative feedback interaction between miR-21 and PPAR-α. In ccRCC, miR-21 silencing could be therapeutically exploited to restore PPAR-α expression and consequently inhibit the oncogenic events mediated by the aberrant lipid metabolism of ccRCC.
Collapse
Affiliation(s)
- Marine Goujon
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (M.G.); (J.W.); (K.G.); (T.S.); (S.F.); (J.-B.G.); (I.V.S.); (R.L.); (C.C.); (V.G.); (S.A.); (N.P.)
| | - Justine Woszczyk
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (M.G.); (J.W.); (K.G.); (T.S.); (S.F.); (J.-B.G.); (I.V.S.); (R.L.); (C.C.); (V.G.); (S.A.); (N.P.)
| | - Kelly Gaudelot
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (M.G.); (J.W.); (K.G.); (T.S.); (S.F.); (J.-B.G.); (I.V.S.); (R.L.); (C.C.); (V.G.); (S.A.); (N.P.)
| | - Thomas Swierczewski
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (M.G.); (J.W.); (K.G.); (T.S.); (S.F.); (J.-B.G.); (I.V.S.); (R.L.); (C.C.); (V.G.); (S.A.); (N.P.)
| | - Sandy Fellah
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (M.G.); (J.W.); (K.G.); (T.S.); (S.F.); (J.-B.G.); (I.V.S.); (R.L.); (C.C.); (V.G.); (S.A.); (N.P.)
| | - Jean-Baptiste Gibier
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (M.G.); (J.W.); (K.G.); (T.S.); (S.F.); (J.-B.G.); (I.V.S.); (R.L.); (C.C.); (V.G.); (S.A.); (N.P.)
- CHU Lille, Service d’Anatomo-Pathologie, F-59000 Lille, France
| | - Isabelle Van Seuningen
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (M.G.); (J.W.); (K.G.); (T.S.); (S.F.); (J.-B.G.); (I.V.S.); (R.L.); (C.C.); (V.G.); (S.A.); (N.P.)
| | - Romain Larrue
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (M.G.); (J.W.); (K.G.); (T.S.); (S.F.); (J.-B.G.); (I.V.S.); (R.L.); (C.C.); (V.G.); (S.A.); (N.P.)
- CHU Lille, Service de Toxicologie et Génopathies, F-59000 Lille, France
| | - Christelle Cauffiez
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (M.G.); (J.W.); (K.G.); (T.S.); (S.F.); (J.-B.G.); (I.V.S.); (R.L.); (C.C.); (V.G.); (S.A.); (N.P.)
| | - Viviane Gnemmi
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (M.G.); (J.W.); (K.G.); (T.S.); (S.F.); (J.-B.G.); (I.V.S.); (R.L.); (C.C.); (V.G.); (S.A.); (N.P.)
- CHU Lille, Service d’Anatomo-Pathologie, F-59000 Lille, France
| | - Sébastien Aubert
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (M.G.); (J.W.); (K.G.); (T.S.); (S.F.); (J.-B.G.); (I.V.S.); (R.L.); (C.C.); (V.G.); (S.A.); (N.P.)
- CHU Lille, Service d’Anatomo-Pathologie, F-59000 Lille, France
| | - Nicolas Pottier
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (M.G.); (J.W.); (K.G.); (T.S.); (S.F.); (J.-B.G.); (I.V.S.); (R.L.); (C.C.); (V.G.); (S.A.); (N.P.)
- CHU Lille, Service de Toxicologie et Génopathies, F-59000 Lille, France
| | - Michaël Perrais
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (M.G.); (J.W.); (K.G.); (T.S.); (S.F.); (J.-B.G.); (I.V.S.); (R.L.); (C.C.); (V.G.); (S.A.); (N.P.)
- Correspondence: ; Tel.: +33-3-20-29-88-62
| |
Collapse
|
2
|
Chen SL, Zhu ZX, Yang X, Liu LL, He YF, Yang MM, Guan XY, Wang X, Yun JP. Cleavage and Polyadenylation Specific Factor 1 Promotes Tumor Progression via Alternative Polyadenylation and Splicing in Hepatocellular Carcinoma. Front Cell Dev Biol 2021; 9:616835. [PMID: 33748106 PMCID: PMC7969726 DOI: 10.3389/fcell.2021.616835] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/04/2021] [Indexed: 12/24/2022] Open
Abstract
Alternative polyadenylation (APA) is an important post-transcriptional regulatory mechanism required for cleavage and polyadenylation (CPA) of the 3′ untranslated region (3′ UTR) of mRNAs. Several aberrant APA events have been reported in hepatocellular carcinoma (HCC). However, the regulatory mechanisms underlying APA remain unclear. In this study, we found that the expression of cleavage and polyadenylation specific factor 1 (CPSF1), a major component of the CPA complex, was significantly increased in HCC tissues and correlated with unfavorable survival outcomes. Knockdown of CPSF1 inhibited HCC cell proliferation and migration, whereas overexpression of CPSF1 caused the opposite effect. Based on integrative analysis of Iso-Seq and RNA-seq data from HepG2.2.15 cells, we identified a series of transcripts with differential 3′ UTR lengths following the knockdown of CPSF1. These transcripts were related to the biological functions of gene transcription, cytoskeleton maintenance, and endomembrane system transportation. Moreover, knockdown of CPSF1 induced an increase in alternative splicing (AS) events in addition to APA. Taken together, this study provides new insights into our understanding of the post-transcriptional regulatory mechanisms in HCC and implies that CPSF1 may be a potential prognostic biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Shi-Lu Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhong-Xu Zhu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Xia Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li-Li Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yang-Fan He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ming-Ming Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xin-Yuan Guan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
| | - Jing-Ping Yun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
3
|
Syed SN, Brüne B. MicroRNAs as Emerging Regulators of Signaling in the Tumor Microenvironment. Cancers (Basel) 2020; 12:E911. [PMID: 32276464 PMCID: PMC7225969 DOI: 10.3390/cancers12040911] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
A myriad of signaling molecules in a heuristic network of the tumor microenvironment (TME) pose a challenge and an opportunity for novel therapeutic target identification in human cancers. MicroRNAs (miRs), due to their ability to affect signaling pathways at various levels, take a prominent space in the quest of novel cancer therapeutics. The role of miRs in cancer initiation, progression, as well as in chemoresistance, is being increasingly investigated. The canonical function of miRs is to target mRNAs for post-transcriptional gene silencing, which has a great implication in first-order regulation of signaling pathways. However, several reports suggest that miRs also perform non-canonical functions, partly due to their characteristic non-coding small RNA nature. Examples emerge when they act as ligands for toll-like receptors or perform second-order functions, e.g., to regulate protein translation and interactions. This review is a compendium of recent advancements in understanding the role of miRs in cancer signaling and focuses on the role of miRs as novel regulators of the signaling pathway in the TME.
Collapse
Affiliation(s)
- Shahzad Nawaz Syed
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, 60596 Frankfurt, Germany
| |
Collapse
|
4
|
Li X, Wang X, Cheng Z, Zhu Q. AGO2 and its partners: a silencing complex, a chromatin modulator, and new features. Crit Rev Biochem Mol Biol 2020; 55:33-53. [DOI: 10.1080/10409238.2020.1738331] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xiaojing Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Xueying Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Zeneng Cheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
The Butterfly Effect of RNA Alterations on Transcriptomic Equilibrium. Cells 2019; 8:cells8121634. [PMID: 31847302 PMCID: PMC6953095 DOI: 10.3390/cells8121634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 12/17/2022] Open
Abstract
: Post-transcriptional regulation plays a key role in modulating gene expression, and the perturbation of transcriptomic equilibrium has been shown to drive the development of multiple diseases including cancer. Recent studies have revealed the existence of multiple post-transcriptional processes that coordinatively regulate the expression and function of each RNA transcript. In this review, we summarize the latest research describing various mechanisms by which small alterations in RNA processing or function can potentially reshape the transcriptomic landscape, and the impact that this may have on cancer development.
Collapse
|
6
|
A comprehensive analysis of core polyadenylation sequences and regulation by microRNAs in a set of cancer predisposition genes. Gene 2019; 712:143943. [PMID: 31229581 DOI: 10.1016/j.gene.2019.143943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 12/27/2022]
Abstract
Two core polyadenylation elements (CPE) located in the 3' untranslated region of eukaryotic pre-mRNAs play an essential role in their processing: the polyadenylation signal (PAS) AAUAAA and the cleavage site (CS), preferentially a CA dinucleotide. Herein, we characterized PAS and CS sequences in a set of cancer predisposition genes (CPGs) and performed an in silico investigation of microRNAs (miRNAs) regulation to identify potential tumor-suppressive and oncogenic miRNAs. NCBI and alternative polyadenylation databases were queried to characterize CPE sequences in 117 CPGs, including 81 and 17 known tumor suppressor genes and oncogenes, respectively. miRNA-mediated regulation analysis was performed using predicted and validated data sources. Based on NCBI analyses, we did not find an established PAS in 21 CPGs, and verified that the majority of PAS already described (74.4%) had the canonical sequence AAUAAA. Interestingly, "AA" dinucleotide was the most common CS (37.5%) associated with this set of genes. Approximately 90% of CPGs exhibited evidence of alternative polyadenylation (more than one functional PAS). Finally, the mir-192 family was significantly overrepresented as regulator of tumor suppressor genes (P < 0.01), which suggests a potential oncogenic function. Overall, this study provides a landscape of CPE in CPGs, which might be useful in development of future molecular analyses covering these frequently neglected regulatory sequences.
Collapse
|
7
|
Jafari Najaf Abadi MH, Shafabakhsh R, Asemi Z, Mirzaei HR, Sahebnasagh R, Mirzaei H, Hamblin MR. CFIm25 and alternative polyadenylation: Conflicting roles in cancer. Cancer Lett 2019; 459:112-121. [PMID: 31181319 DOI: 10.1016/j.canlet.2019.114430] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/01/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022]
Abstract
Alternative polyadenylation (APA) is now widely recognized to regulate gene expression. APA is an RNA-processing mechanism that generates distinct 3' termini on mRNAs, producing mRNA isoforms. Different factors influence the initiation and development of this process. CFIm25 (among others) is a cleavage and polyadenylation factor that plays a key role in the regulation of APA. Shortening of the 3'UTRs on mRNAs leads to enhanced cellular proliferation and tumorigenicity. One reason may be the up-regulation of growth promoting factors, such as Cyclin D1. Different studies have reported a dual role of CFIm25 in cancer (both oncogenic and tumor suppressor). microRNAs (miRNAs) may be involved in CFIm25 function as well as competing endogenous RNAs (ceRNAs). The present review focuses on the role of CFIm25 in cancer, cancer treatment, and possible involvement in other human diseases. We highlight the involvement of miRNAs and ceRNAs in the function of CFIm25 to affect gene expression. The lack of understanding of the mechanisms and regulation of CFIm25 and APA has underscored the need for further research regarding their role in cancer and other diseases.
Collapse
Affiliation(s)
| | - Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Roxana Sahebnasagh
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA.
| |
Collapse
|
8
|
Lang X, Zhao W, Huang D, Liu W, Shen H, Xu L, Xu S, Huang Y, Cheng W. The role of NUDT21 in microRNA-binging sites of EZH2 gene increases the of risk preeclampsia. J Cell Mol Med 2019; 23:3202-3213. [PMID: 30883033 PMCID: PMC6484293 DOI: 10.1111/jcmm.14179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/11/2018] [Accepted: 01/04/2019] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Preeclampsia (PE) is a major cause of mortality and morbidity among pregnant mothers and their fetuses worldwide. Recent studies have shown that several microRNAs (miRNAs) play crucial role in pathogenesis of PE patients; however, the mechanisms responsible for differences in miRNA function in PE largely remain to be determined. MATERIALS AND METHODS We studied that NUDT21 expression was markedly increased, whereas EZH2 was decreased in placental samples from patients with PE. We identified NUDT21 as an interaction partner of enhancer of zeste homologue 2 (EZH2). NUDT21 co-localized with EZH2 in the human trophoblast cell line, HTR-8/SVneo and NUDT21 was shown to bind to EZH2 in RNA immunoprecipitation assays. NUDT21 has previously been reported to be involved in alternative polyadenylation; thus, the interaction between NUDT21 and EZH2 may play an important role in the crosstalk between alternative polyadenylation (APA) and miRNA-mediated gene silencing in PE. RESULTS In the human trophoblast cell line HTR-8/SVneo, loss-of-function assays indicated that knockdown of NUDT21 suppressed cell proliferation, migration and tube formation. Furthermore, functional studies showed that NUDT21 elongated the 3'-UTR of mRNAs thereby exposing more miRNA binding sites (including miR138 and miR363), which enhanced the efficiency of miRNA-mediated gene silencing and promoted EZH2 binding. CONCLUSIONS This is the first report about the relationship of NUDT21 and EZH2. The data indicate that the aberrant expression of NUDT21 contributes to PE by targeting 3'-UTR of EZH2 mRNA. These findings may provide novel targets for future investigations into therapeutic strategies for PE.
Collapse
Affiliation(s)
- Xiao Lang
- Department of Obstetrics and Gynecology, School of MedicineInternational Peace Maternity and Child Health Hospital, Shanghai Jiao Tong UniversityShanghaiChina
| | - Wenxia Zhao
- Department of Obstetrics and GynecologyJiangwan Hospital of Shanghai Hongkou DistrictShanghaiChina
| | - Ding Huang
- Department of Obstetrics and Gynecology, School of MedicineInternational Peace Maternity and Child Health Hospital, Shanghai Jiao Tong UniversityShanghaiChina
| | - Wei Liu
- Department of Obstetrics and Gynecology, School of MedicineInternational Peace Maternity and Child Health Hospital, Shanghai Jiao Tong UniversityShanghaiChina
| | - Hong Shen
- Department of Obstetrics and Gynecology, School of MedicineInternational Peace Maternity and Child Health Hospital, Shanghai Jiao Tong UniversityShanghaiChina
| | - Liang Xu
- Department of Obstetrics and Gynecology, School of MedicineInternational Peace Maternity and Child Health Hospital, Shanghai Jiao Tong UniversityShanghaiChina
| | - Shan Xu
- Department of Obstetrics and GynecologyJiangwan Hospital of Shanghai Hongkou DistrictShanghaiChina
| | - Yongfang Huang
- Department of Obstetrics and GynecologyJiangwan Hospital of Shanghai Hongkou DistrictShanghaiChina
| | - Weiwei Cheng
- Department of Obstetrics and Gynecology, School of MedicineInternational Peace Maternity and Child Health Hospital, Shanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
9
|
Shirafkan N, Shomali N, Kazemi T, Shanehbandi D, Ghasabi M, Baghbani E, Ganji M, Khaze V, Mansoori B, Baradaran B. microRNA-193a-5p inhibits migration of human HT-29 colon cancer cells via suppression of metastasis pathway. J Cell Biochem 2019; 120:8775-8783. [PMID: 30506718 DOI: 10.1002/jcb.28164] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/08/2018] [Indexed: 01/24/2023]
Abstract
PURPOSE Altered expression of microRNAs (miRNAs) is indicated strongly in colorectal cancer (CRC). This study aims to evaluate the inhibitory role of miR-193a-5p on epithelial-mesenchymal transition markers in CRC lines. The cellular effects and potential mechanisms of miR-193a-5p were also examined. METHODS Quantitative reverse-transcription polymerase chain reaction (RT-PCR) was performed to determine the expression of miR-193a-5p in three CRC cell lines (HCT-116, SW-480, and HT-29) and its impact on metastasis-related genes ( vimentin and CXCR4) before and after mimic transfection. Of those, the cell line with the highest changes was selected for the next upcoming experiments such as wound-healing assay, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and annexin-V staining tests. RESULTS Our results revealed that miR-193a-5p was significantly downregulated in three CRC cell lines and that HT-29 displayed the most decrease ( P < 0.0001). The restoration of miR-193a-5p in human HT-29 cell line inhibited cell migration. But, miR-193a-5p transfection did not affect cell viability and had no significant effect on apoptosis induction. Also, the quantitative RT-PCR analysis of miR-193a-5p mimic transfected cells revealed a significant increase in miR-193a-5p messenger RNA (mRNA) expression level ( P < 0.0001) with reduction of vimentin and CXCR4 mRNA expression levels in HT-29 cell line ( P < 0.01 and < 0.05, respectively). CONCLUSION Our results indicated that miR-193a-5p acts as a tumor suppressor miRNA and its downregulation plays an important role in metastasis via upregulation of metastasis-related genes in CRC. Therefore, it can be considered as a potential therapeutic target for applying in CRC management in the future.
Collapse
Affiliation(s)
- Naghmeh Shirafkan
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehri Ghasabi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maziar Ganji
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Khaze
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Hu DG, Hulin JA, Wijayakumara DD, McKinnon RA, Mackenzie PI, Meech R. Intergenic Splicing between Four Adjacent UGT Genes (2B15, 2B29P2, 2B17, 2B29P1) Gives Rise to Variant UGT Proteins That Inhibit Glucuronidation via Protein-Protein Interactions. Mol Pharmacol 2018; 94:938-952. [DOI: 10.1124/mol.118.111773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/08/2018] [Indexed: 01/12/2023] Open
|
11
|
Xu P, Wang J, Sun B, Xiao Z. Comprehensive analysis of miRNAs expression profiles revealed potential key miRNA/mRNAs regulating colorectal cancer stem cell self-renewal. Gene 2018; 656:30-39. [DOI: 10.1016/j.gene.2018.02.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 02/08/2018] [Accepted: 02/24/2018] [Indexed: 12/24/2022]
|
12
|
Liu Y, Huang X, Timani KA, Broxmeyer HE, He JJ. Regulation of Constitutive Tip110 Expression in Human Cord Blood CD34 + Cells Through Selective Usage of the Proximal and Distal Polyadenylation Sites Within the 3'Untranslated Region. Stem Cells Dev 2018; 27:566-576. [PMID: 29583087 DOI: 10.1089/scd.2017.0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tip110 plays important roles for stem cell pluripotency and hematopoiesis. However, little is known about the regulatory mechanisms of Tip110 expression in this process. In this study, we first showed that constitutive Tip110 expression was cell proliferation and differentiation dependent and self-regulated in both human cord blood CD34+ cells. Using a series of molecular techniques, we found that ectopic Tip110 expression led to increased constitutive Tip110 expression through its 3'-untranslated region (3'UTR), specifically through preferential usage of proximal polyadenylation sites within its 3'UTR in cells, including human cord blood CD34+ cells, which indeed led to an increased number of CD34+ cells during differentiation of those cells. Lastly, we showed that Tip110 protein interacted with cleavage stimulation factor 64 (CstF64) protein and that more CstF64 was recruited to the promixal polyadenylation site than the distal polyadenylation site within its 3'UTR. These finding together demonstrates that constitutive Tip110 expression is regulated, at least in part, through its interaction with CstF64, recruitment of CstF64 to, and selective usage of those two polyadenylation sites within its 3'UTR.
Collapse
Affiliation(s)
- Ying Liu
- 1 Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center , Fort Worth, Texas
| | - Xinxin Huang
- 2 Department of Microbiology and Immunology, Indiana University , Indianapolis, Indiana
| | - Khalid A Timani
- 1 Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center , Fort Worth, Texas
| | - Hal E Broxmeyer
- 2 Department of Microbiology and Immunology, Indiana University , Indianapolis, Indiana
| | - Johnny J He
- 1 Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center , Fort Worth, Texas
| |
Collapse
|
13
|
NUDT21 regulates 3'-UTR length and microRNA-mediated gene silencing in hepatocellular carcinoma. Cancer Lett 2017; 410:158-168. [PMID: 28964783 DOI: 10.1016/j.canlet.2017.09.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/05/2017] [Accepted: 09/21/2017] [Indexed: 12/12/2022]
Abstract
Recent studies have shown that several microRNAs (miRNAs) are involved in hepatocellular carcinoma (HCC) tumorigenesis and metastasis; however, the mechanisms responsible for the differences in the functions of these miRNAs in liver cancer remain a mystery. In our previous study, we identified NUDT21 as an interaction partner of argonaute 2 (AGO2). NUDT21 has been reported to be involved in alternative polyadenylation (APA); thus, the interaction between NUDT21 and AGO2 may be a key component of the crosstalk between APA and miRNA-mediated gene silencing in HCC. Our data showed that NUDT21 expression was decreased in HCC. Moreover, our results showed that NUDT21 co-localized with AGO2 in P/GW bodies in normal liver cells; however, this co-localization was diminished in cancer cells. Functional studies showed that NUDT21 elongated the 3'-UTR of mRNA and enhanced the efficiency of miRNA-mediated gene silencing by increasing the efficiency of AGO2-mRNA binding, which played an important role in cell proliferation. In summary, loss of NUDT21 shortened the 3'-UTR of various oncogenes in HCC cells. The shorter 3'-UTR contained less miRNA binding sites, which enabled the oncogenes to evade miRNA regulation and become overexpressed in HCC, leading to unregulated cancer cell proliferation.
Collapse
|
14
|
He XJ, Zhang Q, Ma LP, Li N, Chang XH, Zhang YJ. Aberrant Alternative Polyadenylation is Responsible for Survivin Up-regulation in Ovarian Cancer. Chin Med J (Engl) 2017; 129:1140-6. [PMID: 27174320 PMCID: PMC4878157 DOI: 10.4103/0366-6999.181965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Survivin is an oncoprotein silenced in normal mature tissues but reactivated in serous ovarian cancer (SOC). Although transcriptional activation is assumed for its overexpression, the long 3'-untranslated region (3'-UTR) in survivin gene, which contains many alternate polyadenylation (APA) sites, implies a propensity for posttranscriptional control and therefore was the aim of our study. METHODS The abundance of the coding region, the proximal and the distal region of survivin mRNA 3'-UTR, was evaluated by real-time polymerase chain reaction (PCR) in SOC samples, cell lines, and normal fallopian tube (NFT) tissues. The APA sites were confirmed by rapid amplification of cDNA 3' ends and DNA sequencing. Real-time PCR were used to screen survivin-targeting microRNAs (miRNAs) that were inversely correlated with survivin. The expression of an inversely correlated miRNA was restored by pre-miRNA transfection or induction with a genotoxic agent to test its inhibitory effect on survivin overexpression. RESULTS Varying degrees of APA were observed in SOC by comparing the abundance of the proximal and the distal region of survivin 3'-UTR, and changes of 3'-UTR correlated significantly with survivin expression (r = 0.708, P< 0.01). The main APA sites are proved at 1197 and 1673 of survivin 3'-UTR by DNA sequencing. Higher level of 3'-UTR proximal region than coding region was observed in NFT, as well as in SOC and cell lines. Among the survivin-targeting miRNAs, only a few highly expressed miRNAs were inversely correlated with survivin levels, and they mainly targeted the distal part of the 3'-UTR. However, in ovarian cancer cells, restoration of an inversely correlated miRNA (miR-34c) showed little effect on survivin expression. CONCLUSIONS In NFT tissues, survivin is not transcriptionally silenced but regulate posttranscriptionally. In SOC, aberrant APA leads to the shortening of survivin 3'-UTR which enables it to escape the negative regulation of miRNAs and is responsible for survivin up-regulation.
Collapse
Affiliation(s)
- Xiang-Jun He
- Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Qi Zhang
- Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Li-Ping Ma
- Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Na Li
- Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Xiao-Hong Chang
- Gynecology Oncology Center, Peking University People's Hospital, Beijing 100044, China
| | - Yu-Jun Zhang
- Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
15
|
Khabar KSA. Hallmarks of cancer and AU-rich elements. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27251431 PMCID: PMC5215528 DOI: 10.1002/wrna.1368] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/05/2016] [Accepted: 05/09/2016] [Indexed: 12/14/2022]
Abstract
Post‐transcriptional control of gene expression is aberrant in cancer cells. Sustained stabilization and enhanced translation of specific mRNAs are features of tumor cells. AU‐rich elements (AREs), cis‐acting mRNA decay determinants, play a major role in the posttranscriptional regulation of many genes involved in cancer processes. This review discusses the role of aberrant ARE‐mediated posttranscriptional processes in each of the hallmarks of cancer, including sustained cellular growth, resistance to apoptosis, angiogenesis, invasion, and metastasis. WIREs RNA 2017, 8:e1368. doi: 10.1002/wrna.1368 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Khalid S A Khabar
- King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Wu CW, Biggar KK, Luu BE, Szereszewski KE, Storey KB. Analysis of microRNA expression during the torpor-arousal cycle of a mammalian hibernator, the 13-lined ground squirrel. Physiol Genomics 2016; 48:388-96. [PMID: 27084747 DOI: 10.1152/physiolgenomics.00005.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/04/2016] [Indexed: 01/06/2023] Open
Abstract
Hibernation is a highly regulated stress response that is utilized by some mammals to survive harsh winter conditions and involves a complex metabolic reprogramming at the cellular level to maintain tissue protections at low temperature. In this study, we profiled the expression of 117 conserved microRNAs in the heart, muscle, and liver of the 13-lined ground squirrel (Ictidomys tridecemlineatus) across four stages of the torpor-arousal cycle (euthermia, early torpor, late torpor, and interbout arousal) by real-time PCR. We found significant differential regulation of numerous microRNAs that were both tissue specific and torpor stage specific. Among the most significant regulated microRNAs was miR-208b, a positive regulator of muscle development that was found to be upregulated by fivefold in the heart during late torpor (13-fold during arousal), while decreased by 3.7-fold in the skeletal muscle, implicating a potential regulatory role in the development of cardiac hypertrophy and skeletal muscle atrophy in the ground squirrels during torpor. In addition, the insulin resistance marker miR-181a was upregulated by 5.7-fold in the liver during early torpor, which supports previous suggestions of hyperinsulinemia in hibernators during the early stages of the hibernation cycle. Although microRNA expression profiles were largely unique between the three tissues, GO annotation analysis revealed that the putative targets of upregulated microRNAs tend to enrich toward suppression of progrowth-related processes in all three tissues. These findings implicate microRNAs in the regulation of both tissue-specific processes and general suppression of cell growth during hibernation.
Collapse
Affiliation(s)
- Cheng-Wei Wu
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Kyle K Biggar
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Bryan E Luu
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Kama E Szereszewski
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
17
|
Colorectal cancer characterization and therapeutic target prediction based on microRNA expression profile. Sci Rep 2016; 6:20616. [PMID: 26852921 PMCID: PMC4745004 DOI: 10.1038/srep20616] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/08/2016] [Indexed: 01/09/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and a major cause of cancer death. However, the molecular mechanisms underlying CRC initiation, growth and metastasis are poorly understood. In this study, based on our previous work for comprehensively analyzing miRNA sequencing data, we examined a series of colorectal cancer microRNAs expression profiles data. Results show that all these CRC samples share the same four pathways including TGF-beta signaling pathway, which is important in colorectal carcinogenesis. Twenty-one microRNAs that evolved in the four overlapped pathways were then discovered. Further analysis selected miR-21 as an important regulator for CRC through TGF-beta pathways. This study develops methods for discovering tumor specific miRNA cluster as biomarker and for screening new cancer therapy targets based on miRNA sequencing.
Collapse
|
18
|
Neve J, Burger K, Li W, Hoque M, Patel R, Tian B, Gullerova M, Furger A. Subcellular RNA profiling links splicing and nuclear DICER1 to alternative cleavage and polyadenylation. Genome Res 2015; 26:24-35. [PMID: 26546131 PMCID: PMC4691748 DOI: 10.1101/gr.193995.115] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 11/04/2015] [Indexed: 11/25/2022]
Abstract
Alternative cleavage and polyadenylation (APA) plays a crucial role in the regulation of gene expression across eukaryotes. Although APA is extensively studied, its regulation within cellular compartments and its physiological impact remains largely enigmatic. Here, we used a rigorous subcellular fractionation approach to compare APA profiles of cytoplasmic and nuclear RNA fractions from human cell lines. This approach allowed us to extract APA isoforms that are subjected to differential regulation and provided us with a platform to interrogate the molecular regulatory pathways that shape APA profiles in different subcellular locations. Here, we show that APA isoforms with shorter 3' UTRs tend to be overrepresented in the cytoplasm and appear to be cell-type-specific events. Nuclear retention of longer APA isoforms occurs and is partly a result of incomplete splicing contributing to the observed cytoplasmic bias of transcripts with shorter 3' UTRs. We demonstrate that the endoribonuclease III, DICER1, contributes to the establishment of subcellular APA profiles not only by expected cytoplasmic miRNA-mediated destabilization of APA mRNA isoforms, but also by affecting polyadenylation site choice.
Collapse
Affiliation(s)
- Jonathan Neve
- Department of Biochemistry, University of Oxford, OX1 3QU, United Kingdom
| | - Kaspar Burger
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE, United Kingdom
| | - Wencheng Li
- Department of Biochemistry and Molecular Biology, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Mainul Hoque
- Department of Biochemistry and Molecular Biology, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Radhika Patel
- Department of Biochemistry, University of Oxford, OX1 3QU, United Kingdom
| | - Bin Tian
- Department of Biochemistry and Molecular Biology, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE, United Kingdom
| | - Andre Furger
- Department of Biochemistry, University of Oxford, OX1 3QU, United Kingdom
| |
Collapse
|
19
|
MicroRNA-221 targets PTEN to reduce the sensitivity of cervical cancer cells to gefitinib through the PI3K/Akt signaling pathway. Tumour Biol 2015; 37:3939-47. [DOI: 10.1007/s13277-015-4247-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/13/2015] [Indexed: 10/22/2022] Open
|
20
|
Sohn EJ, Won G, Lee J, Lee S, Kim SH. Upregulation of miRNA3195 and miRNA374b Mediates the Anti-Angiogenic Properties of Melatonin in Hypoxic PC-3 Prostate Cancer Cells. J Cancer 2015; 6:19-28. [PMID: 25553085 PMCID: PMC4278911 DOI: 10.7150/jca.9591] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/13/2014] [Indexed: 12/14/2022] Open
Abstract
Recently microRNAs (miRNAs) have been attractive targets with their key roles in biological regulation through post-transcription to control mRNA stability and protein translation. Though melatonin was known as an anti-angiogenic agent, the underlying mechanism of melatonin in PC-3 prostate cancer cells under hypoxia still remains unclear. Thus, in the current study, we elucidated the important roles of miRNAs in melatonin-induced anti-angiogenic activity in hypoxic PC-3 cells. miRNA array revealed that 33 miRNAs (>2 folds) including miRNA3195 and miRNA 374b were significantly upregulated and 16 miRNAs were downregulated in melatonin-treated PC-3 cells under hypoxia compared to untreated control. Melatonin significantly attenuated the expression of hypoxia-inducible factor (HIF)-1 alpha, HIF-2 alpha and vascular endothelial growth factor (VEGF) at mRNA level in hypoxic PC-3 cells. Consistently, melatonin enhanced the expression of miRNA3195 and miRNA 374b in hypoxic PC-3 cells by qRT-PCR analysis. Of note, overexpression of miRNA3195 and miRNA374b mimics attenuated the mRNA levels of angiogenesis related genes such as HIF-1alpha, HIF-2 alpha and VEGF in PC-3 cells under hypoxia. Furthermore, overexpression of miRNA3195 and miRNA374b suppressed typical angiogenic protein VEGF at the protein level and VEGF production induced by melatonin, while antisense oligonucleotides against miRNA 3195 or miRNA 374b did not affect VEGF production induced by melatonin. Also, overexpression of miR3195 or miR374b reduced HIF-1 alpha immunofluorescent expression in hypoxic PC-3 compared to untreated control. Overall, our findings suggest that upregulation of miRNA3195 and miRNA374b mediates anti-angiogenic property induced by melatonin in hypoxic PC-3 cells.
Collapse
Affiliation(s)
- Eun Jung Sohn
- 1. College of Oriental Medicine, Kyung Hee University, Seoul 130-701, South Korea
| | - Gunho Won
- 1. College of Oriental Medicine, Kyung Hee University, Seoul 130-701, South Korea
| | - Jihyun Lee
- 1. College of Oriental Medicine, Kyung Hee University, Seoul 130-701, South Korea
| | - Sangyoon Lee
- 2. Graduate School of East-West Medical Science, Kyung Hee University, Yongin 449-701, Republic of Korea
| | - Sung-Hoon Kim
- 1. College of Oriental Medicine, Kyung Hee University, Seoul 130-701, South Korea
| |
Collapse
|
21
|
Zhu C, Zhao Y, Zhang Z, Ni Y, Li X, Yong H. MicroRNA-33a inhibits lung cancer cell proliferation and invasion by regulating the expression of β-catenin. Mol Med Rep 2014; 11:3647-51. [PMID: 25544258 DOI: 10.3892/mmr.2014.3134] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 08/12/2014] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs) are short, non‑coding RNAs that are aberrantly expressed in tumors. miRNA‑33a (miR‑33a) is closely associated with cholesterol metabolism and is essential for cellular growth. The aim of the present study was to explore the role of miR‑33a and identify its clinical significance in lung cancer cells. miR‑33a was observed to be overexpressed in the lung cancer cell lines A549 and NCI‑H460. MTT assay results demonstrated that the overexpression of miR‑33a significantly inhibited the proliferation of A549 cells, and similar results were obtained from the colony formation assay. This suggests that transfection of miR‑33a may suppress the growth of lung cancer cells. Overexpression of miR‑33a was also observed to result in marked G1/S phase cell cycle arrest in A549 and NCI‑H460 cell lines using fluorescence‑activated cell sorting analysis. Western blot analysis revealed that overexpression of miR‑33a significantly reduced the expression of β‑catenin in A549 and NCI‑H460 cells, suggesting a direct or indirect regulation of β‑catenin by miR‑33a in lung cancer cells. In conclusion, the current study may provide strategies for the treatment of lung cancer and clarify the mechanism of its progression.
Collapse
Affiliation(s)
- Changliang Zhu
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yachao Zhao
- Department of Thoracic Surgery, The 309th Hospital of the Chinese PLA, Beijing 100091, P.R. China
| | - Zhipei Zhang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yunfeng Ni
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Han Yong
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
22
|
Griseri P, Pagès G. Regulation of the mRNA half-life in breast cancer. World J Clin Oncol 2014; 5:323-334. [PMID: 25114848 PMCID: PMC4127604 DOI: 10.5306/wjco.v5.i3.323] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/31/2014] [Accepted: 05/14/2014] [Indexed: 02/06/2023] Open
Abstract
The control of the half-life of mRNA plays a central role in normal development and in disease progression. Several pathological conditions, such as breast cancer, correlate with deregulation of the half-life of mRNA encoding growth factors, oncogenes, cell cycle regulators and inflammatory cytokines that participate in cancer. Substantial stability means that a mRNA will be available for translation for a longer time, resulting in high levels of protein gene products, which may lead to prolonged responses that subsequently result in over-production of cellular mediators that participate in cancer. The stability of these mRNA is regulated at the 3’UTR level by different mechanisms involving mRNA binding proteins, micro-RNA, long non-coding RNA and alternative polyadenylation. All these events are tightly inter-connected to each other and lead to steady state levels of target mRNAs. Compelling evidence also suggests that both mRNA binding proteins and regulatory RNAs which participate to mRNA half-life regulation may be useful prognostic markers in breast cancers, pointing to a potential therapeutic approach to treatment of patients with these tumors. In this review, we summarize the main mechanisms involved in the regulation of mRNA decay and discuss the possibility of its implication in breast cancer aggressiveness and the efficacy of targeted therapy.
Collapse
|
23
|
MicroRNA-630 is a prognostic marker for patients with colorectal cancer. Tumour Biol 2014; 35:9787-92. [PMID: 24981248 DOI: 10.1007/s13277-014-2223-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 06/10/2014] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs are noncoding RNAs that regulate multiple cellular processes during cancer progression. Among various microRNAs, miR-630 has recently been identified to be implicated in many critical processes in human malignancies. We investigated the expression pattern and prognostic value of miR-630 in human colorectal cancer by utilizing cancer and adjacent normal specimens from 206 patients. Quantitative real-time PCR assay was used to detect the expression of miR-630, and appropriate statistical analysis was used to evaluate the association of miR-630 with overall survival. It was found that miR-630 expression was significantly increased in colorectal cancer specimens compared with that in adjacent normal specimens. It was also proved that miR-630 expression in colorectal cancer was associated with tumor invasion, lymph node metastasis, distant metastasis, and tumor-node-metastasis (TNM) stage. The Kaplan-Meier survival analysis proved that increased miR-630 expression was associated with poor overall survival of patients with colorectal cancer. Multivariate analysis proved that miR-630 was an independent prognostic marker after adjusted for known prognostic factors. These results confirmed the overexpression of miR-630 in human colorectal cancer and its association with tumor progression. It also suggested that miR-630 expression might serve as a prognostic biomarker for patients with colorectal cancer.
Collapse
|