1
|
Lee JH, Seo KH, Yang JH, Cho SS, Kim NY, Kim JH, Kim KM, Ki SH. CCCP induces hepatic stellate cell activation and liver fibrogenesis via mitochondrial and lysosomal dysfunction. Free Radic Biol Med 2024; 225:181-192. [PMID: 39370054 DOI: 10.1016/j.freeradbiomed.2024.10.259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
Hepatic stellate cells (HSCs) are primary cells for development and progression of liver fibrosis. Mitophagy is an essential lysosomal process for mitochondrial homeostasis, which can be activated by carbonyl cyanide m-chlorophenyl hydrazone (CCCP), a representative mitochondrial uncoupler. However, little information is available on the role of CCCP-mediated mitophagy in HSC activation and liver fibrogenesis. In this study, we showed that CCCP treatment in HSCs caused mitochondrial dysfunction proved by decreased mitochondrial membrane potential, mitochondrial DNA, and ATP contents and increased mitochondrial ROS. Moreover, CCCP induced mitophagy and impaired mitophagy flux at the later stage. This blockade of mitophagic flux effect was mediated by suppression of lysosomal activity; CCCP decreased expression of lysosomal markers and cathepsin B activity, and increased lysosomal pH. Intriguingly, CCCP treatment in LX-2 cells or primary HSCs elevated plasminogen activator inhibitor-1 (PAI-1), a typical fibrogenic marker of HSCs which was attenuated by mitochondrial division inhibitor 1, a mitophagy inhibitor. The up-regulation of PAI-1 by CCCP was not due to altered transcriptional activity but lysosomal dysfunction. In vivo acute or sub-chronic treatment of CCCP to mice induced mitophagy and fibrogenesis of liver. Hepatic fibrogenic marker (PAI-1) was incremented with mitophagy markers (parkin and PTEN-induced putative kinase 1) in the livers of CCCP injected mice. Furthermore, we found that 5-aminoimidazole-4-carboxyamide ribonucleoside reversed CCCP-mediated mitophagy and subsequent HSC activation. To conclude, CCCP facilitated HSC activation and hepatic fibrogenesis via mitochondrial dysfunction and lysosomal blockade, implying that attenuation of CCCP-related signaling molecules may contribute to treat liver fibrosis.
Collapse
Affiliation(s)
- Ji Hyun Lee
- MRC-OSTRC, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, Gwangju, 61452, South Korea
| | - Kyu Hwa Seo
- General for Narcotics Safety Planning, Pharmaceutical Safety Bureau, Ministry of Food and Drug Safety (MFDS), Cheongju, South Korea
| | - Ji Hye Yang
- College of Korean Medicine, Dongshin University, Naju, Jeollanam-do, 58245, South Korea
| | - Sam Seok Cho
- MRC-OSTRC, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, Gwangju, 61452, South Korea; Non-Clinical Evaluation Center, Biomedical Research Institute, Chonbuk National University Hospital, Jeonju, Chonbuk, South Korea
| | - Na Yeon Kim
- MRC-OSTRC, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, Gwangju, 61452, South Korea
| | - Ji Hye Kim
- MRC-OSTRC, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, Gwangju, 61452, South Korea
| | - Kyu Min Kim
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452, South Korea; Institute of Well-Aging Medicare & Chosun University LAMP Project Group, Chosun University, Gwangju, 61452, South Korea; Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-associated Disorder Control Technology, Chosun University, Gwangju, 61452, South Korea.
| | - Sung Hwan Ki
- MRC-OSTRC, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, Gwangju, 61452, South Korea.
| |
Collapse
|
2
|
David T, Mallavialle A, Faget J, Alcaraz LB, Lapierre M, du Roure PD, Laurent-Matha V, Mansouri H, Jarlier M, Martineau P, Roger P, Guiu S, Chardès T, Liaudet-Coopman E. Anti-cathepsin D immunotherapy triggers both innate and adaptive anti-tumour immunity in breast cancer. Br J Pharmacol 2023. [PMID: 38030588 DOI: 10.1111/bph.16291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Triple-negative breast cancer (TNBC) has poorer outcomes than other breast cancers (BC), including HER2+ BC. Cathepsin D (CathD) is a poor prognosis marker overproduced by BC cells, hypersecreted in the tumour microenvironment with tumour-promoting activity. Here, we characterized the immunomodulatory activity of the anti-CathD antibody F1 and its improved Fab-aglycosylated version (F1M1) in immunocompetent mouse models of TNBC (C57BL/6 mice harbouring E0771 cell grafts) and HER2-amplified BC (BALB/c mice harbouring TUBO cell grafts). EXPERIMENTAL APPROACH CathD expression was evaluated by western blotting and immunofluorescence, and antibody binding to CathD by ELISA. Antibody anti-tumour efficacy was investigated in mouse models. Immune cell recruitment and activation were assessed by immunohistochemistry, immunophenotyping, and RT-qPCR. KEY RESULTS F1 and F1M1 antibodies remodelled the tumour immune landscape. Both antibodies promoted innate antitumour immunity by preventing the recruitment of immunosuppressive M2-polarized tumour-associated macrophages (TAMs) and by activating natural killer cells in the tumour microenvironment of both models. This translated into a reduction of T-cell exhaustion markers in the tumour microenvironment that could be locally supported by enhanced activation of anti-tumour antigen-presenting cell (M1-polarized TAMs and cDC1 cells) functions. Both antibodies inhibited tumour growth in the highly-immunogenic E0771 model, but only marginally in the immune-excluded TUBO model, indicating that anti-CathD immunotherapy is more relevant for BC with a high immune cell infiltrate, as often observed in TNBC. CONCLUSION AND IMPLICATION Anti-CathD antibody-based therapy triggers the anti-tumour innate and adaptive immunity in preclinical models of BC and is a promising immunotherapy for immunogenic TNBC.
Collapse
Affiliation(s)
- Timothée David
- IRCM, INSERM U1194, Univ Montpellier, ICM, Montpellier, France
| | | | - Julien Faget
- IRCM, INSERM U1194, Univ Montpellier, ICM, Montpellier, France
| | | | - Marion Lapierre
- IRCM, INSERM U1194, Univ Montpellier, ICM, Montpellier, France
| | | | | | - Hanane Mansouri
- IRCM, INSERM U1194, Univ Montpellier, ICM, Montpellier, France
- RHEM, IRCM, Montpellier, France
| | | | | | - Pascal Roger
- IRCM, INSERM U1194, Univ Montpellier, ICM, Montpellier, France
- Department of Pathology, CHU Nîmes, Nîmes, France
| | - Séverine Guiu
- IRCM, INSERM U1194, Univ Montpellier, ICM, Montpellier, France
- Department of Medical Oncology, ICM, Montpellier, France
| | - Thierry Chardès
- IRCM, INSERM U1194, Univ Montpellier, ICM, Montpellier, France
- Centre national de la recherche Scientifique, CNRS, Paris, France
| | | |
Collapse
|
3
|
Li S, Pritchard DM, Yu LG. Galectin-3 promotes secretion of proteases that decrease epithelium integrity in human colon cancer cells. Cell Death Dis 2023; 14:268. [PMID: 37055381 PMCID: PMC10102123 DOI: 10.1038/s41419-023-05789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/15/2023]
Abstract
Galectin-3 is a galactoside-binding protein that is commonly overexpressed in many epithelial cancers. It is increasingly recognized as a multi-functional, multi-mode promoter in cancer development, progression, and metastasis. This study reports that galectin-3 secretion by human colon cancer cells induces cancer cell secretion, in an autocrine/paracrine manner, of a number of proteases including cathepsin-B, MMP-1 and MMP-13. The secretion of these proteases causes disruption of epithelial monolayer integrity, increases its permeability and promotes tumour cell invasion. This effect of galectin-3 is shown to be mediated through induction of cellular PYK2-GSK3α/β signalling and can be prevented by the presence of galectin-3 binding inhibitors. This study thus reveals an important mechanism in galectin-3-mediated promotion of cancer progression and metastasis. It provides further evidence to the increased realization of galectin-3 as a potential therapeutic target for the treatment of cancer.
Collapse
Affiliation(s)
- Shun Li
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - David Mark Pritchard
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Lu-Gang Yu
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
4
|
O’Connell C, VandenHeuvel S, Kamat A, Raghavan S, Godin B. The Proteolytic Landscape of Ovarian Cancer: Applications in Nanomedicine. Int J Mol Sci 2022; 23:9981. [PMID: 36077371 PMCID: PMC9456334 DOI: 10.3390/ijms23179981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Ovarian cancer (OvCa) is one of the leading causes of mortality globally with an overall 5-year survival of 47%. The predominant subtype of OvCa is epithelial carcinoma, which can be highly aggressive. This review launches with a summary of the clinical features of OvCa, including staging and current techniques for diagnosis and therapy. Further, the important role of proteases in OvCa progression and dissemination is described. Proteases contribute to tumor angiogenesis, remodeling of extracellular matrix, migration and invasion, major processes in OvCa pathology. Multiple proteases, such as metalloproteinases, trypsin, cathepsin and others, are overexpressed in the tumor tissue. Presence of these catabolic enzymes in OvCa tissue can be exploited for improving early diagnosis and therapeutic options in advanced cases. Nanomedicine, being on the interface of molecular and cellular scales, can be designed to be activated by proteases in the OvCa microenvironment. Various types of protease-enabled nanomedicines are described and the studies that focus on their diagnostic, therapeutic and theranostic potential are reviewed.
Collapse
Affiliation(s)
- Cailin O’Connell
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- School of Engineering Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Sabrina VandenHeuvel
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Aparna Kamat
- Division of Gynecologic Oncology, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Shreya Raghavan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Biana Godin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Obstetrics and Gynecology, Houston Methodist Hospital, Houston, TX 77030, USA
- Houston Methodist Neal Cancer Center, Houston, TX 77030, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences at McGovern Medical School-UTHealth, Houston, TX 77030, USA
| |
Collapse
|
5
|
Rudzinska-Radecka M, Frolova AS, Balakireva AV, Gorokhovets NV, Pokrovsky VS, Sokolova DV, Korolev DO, Potoldykova NV, Vinarov AZ, Parodi A, Zamyatnin AA. In Silico, In Vitro, and Clinical Investigations of Cathepsin B and Stefin A mRNA Expression and a Correlation Analysis in Kidney Cancer. Cells 2022; 11:1455. [PMID: 35563761 PMCID: PMC9101197 DOI: 10.3390/cells11091455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
The cysteine protease Cathepsin B (CtsB) plays a critical role in multiple signaling pathways, intracellular protein degradation, and processing. Endogenous inhibitors regulate its enzymatic activity, including stefins and other cystatins. Recent data proved that CtsB is implicated in tumor extracellular matrix remodeling, cell invasion, and metastasis: a misbalance between cathepsins and their natural inhibitors is often considered a sign of disease progression. In the present study, we investigated CtsB and stefin A (StfA) expression in renal cell carcinoma (RCC). mRNA analysis unveiled a significant CTSB and STFA increase in RCC tissues compared to adjacent non-cancerogenic tissues and a higher CtsB expression in malignant tumors than in benign renal neoplasms. Further analysis highlighted a positive correlation between CtsB and StfA expression as a function of patient sex, age, tumor size, grade, lymph node invasion, metastasis occurrence, and survival. Alternative overexpression and silencing of CtsB and StfA confirmed the correlation expression between these proteins in human RCC-derived cells through protein analysis and fluorescent microscopy. Finally, the ectopic expression of CtsB and StfA increased RCC cell proliferation. Our data strongly indicated that CtsB and StfA expression play an important role in RCC development by mutually stimulating their expression in RCC progression.
Collapse
Affiliation(s)
- Magdalena Rudzinska-Radecka
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.-R.); (A.S.F.); (A.V.B.); (N.V.G.); (A.P.)
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Anastasia S. Frolova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.-R.); (A.S.F.); (A.V.B.); (N.V.G.); (A.P.)
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia; (V.S.P.); (D.V.S.)
| | - Anastasia V. Balakireva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.-R.); (A.S.F.); (A.V.B.); (N.V.G.); (A.P.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Neonila V. Gorokhovets
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.-R.); (A.S.F.); (A.V.B.); (N.V.G.); (A.P.)
| | - Vadim S. Pokrovsky
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia; (V.S.P.); (D.V.S.)
- Laboratory of Combined Treatment, N.N. Blokhin Cancer Research Center, 115478 Moscow, Russia
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Darina V. Sokolova
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia; (V.S.P.); (D.V.S.)
- Laboratory of Combined Treatment, N.N. Blokhin Cancer Research Center, 115478 Moscow, Russia
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Dmitry O. Korolev
- Institute for Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia; (D.O.K.); (N.V.P.); (A.Z.V.)
| | - Natalia V. Potoldykova
- Institute for Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia; (D.O.K.); (N.V.P.); (A.Z.V.)
| | - Andrey Z. Vinarov
- Institute for Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia; (D.O.K.); (N.V.P.); (A.Z.V.)
| | - Alessandro Parodi
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.-R.); (A.S.F.); (A.V.B.); (N.V.G.); (A.P.)
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia; (V.S.P.); (D.V.S.)
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.-R.); (A.S.F.); (A.V.B.); (N.V.G.); (A.P.)
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia; (V.S.P.); (D.V.S.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Immunology, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
6
|
Yan C, Liu Q, Jia R. Construction and Validation of a Prognostic Risk Model for Triple-Negative Breast Cancer Based on Autophagy-Related Genes. Front Oncol 2022; 12:829045. [PMID: 35186763 PMCID: PMC8854264 DOI: 10.3389/fonc.2022.829045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/10/2022] [Indexed: 01/14/2023] Open
Abstract
Background Autophagy plays an important role in triple-negative breast cancer (TNBC). However, the prognostic value of autophagy-related genes (ARGs) in TNBC remains unknown. In this study, we established a survival model to evaluate the prognosis of TNBC patients using ARGs signature. Methods A total of 222 autophagy-related genes were downloaded from The Human Autophagy Database. The RNA-sequencing data and corresponding clinical data of TNBC were obtained from The Cancer Genome Atlas (TCGA) database. Differentially expressed autophagy-related genes (DE-ARGs) between normal samples and TNBC samples were determined by the DESeq2 package. Then, univariate Cox, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analyses were performed. According to the LASSO regression results based on univariate Cox, we identified a prognostic signature for overall survival (OS), which was further validated by using the Gene Expression Omnibus (GEO) cohort. We also found an independent prognostic marker that can predict the clinicopathological features of TNBC. Furthermore, a nomogram was drawn to predict the survival probability of TNBC patients, which could help in clinical decision for TNBC treatment. Finally, we validated the requirement of an ARG in our model for TNBC cell survival and metastasis. Results There are 43 DE-ARGs identified between normal and tumor samples. A risk model for OS using CDKN1A, CTSD, CTSL, EIF4EBP1, TMEM74, and VAMP3 was established based on univariate Cox regression and LASSO regression analysis. Overall survival of TNBC patients was significantly shorter in the high-risk group than in the low-risk group for both the training and validation cohorts. Using the Kaplan–Meier curves and receiver operating characteristic (ROC) curves, we demonstrated the accuracy of the prognostic model. Multivariate Cox regression analysis was used to verify risk score as an independent predictor. Subsequently, a nomogram was proposed to predict 1-, 3-, and 5-year survival for TNBC patients. The calibration curves showed great accuracy of the model for survival prediction. Finally, we found that depletion of EIF4EBP1, one of the ARGs in our model, significantly reduced cell proliferation and metastasis of TNBC cells. Conclusion Based on six ARGs (CDKN1A, CTSD, CTSL, EIF4EBP1, TMEM74, and VAMP3), we developed a risk prediction model that can help clinical doctors effectively predict the survival status of TNBC patients. Our data suggested that EIF4EBP1 might promote the proliferation and migration in TNBC cell lines. These findings provided a novel insight into the vital role of the autophagy-related genes in TNBC and may provide new therapeutic targets for TNBC.
Collapse
Affiliation(s)
- Cheng Yan
- School of Pharmacy, Xinxiang University, Xinxiang, China
- Key Laboratory of Nano-Carbon Modified Film Technology of Henan Province, Xinxiang University, Xinxiang, China
- Diagnostic Laboratory of Animal Diseases, Xinxiang University, Xinxiang, China
| | - Qingling Liu
- School of Pharmacy, Xinxiang University, Xinxiang, China
| | - Ruoling Jia
- School of Pharmacy, Xinxiang University, Xinxiang, China
- *Correspondence: Ruoling Jia,
| |
Collapse
|
7
|
Kos J, Mitrović A, Perišić Nanut M, Pišlar A. Lysosomal peptidases – Intriguing roles in cancer progression and neurodegeneration. FEBS Open Bio 2022; 12:708-738. [PMID: 35067006 PMCID: PMC8972049 DOI: 10.1002/2211-5463.13372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/04/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
Lysosomal peptidases are hydrolytic enzymes capable of digesting waste proteins that are targeted to lysosomes via endocytosis and autophagy. Besides intracellular protein catabolism, they play more specific roles in several other cellular processes and pathologies, either within lysosomes, upon secretion into the cell cytoplasm or extracellular space, or bound to the plasma membrane. In cancer, lysosomal peptidases are generally associated with disease progression, as they participate in crucial processes leading to changes in cell morphology, signaling, migration, and invasion, and finally metastasis. However, they can also enhance the mechanisms resulting in cancer regression, such as apoptosis of tumor cells or antitumor immune responses. Lysosomal peptidases have also been identified as hallmarks of aging and neurodegeneration, playing roles in oxidative stress, mitochondrial dysfunction, abnormal intercellular communication, dysregulated trafficking, and the deposition of protein aggregates in neuronal cells. Furthermore, deficiencies in lysosomal peptidases may result in other pathological states, such as lysosomal storage disease. The aim of this review was to highlight the role of lysosomal peptidases in particular pathological processes of cancer and neurodegeneration and to address the potential of lysosomal peptidases in diagnosing and treating patients.
Collapse
Affiliation(s)
- Janko Kos
- University of Ljubljana Faculty of Pharmacy Aškerčeva 7 1000 Ljubljana Slovenia
- Jožef Stefan Institute Department of Biotechnology Jamova 39 1000 Ljubljana Slovenia
| | - Ana Mitrović
- Jožef Stefan Institute Department of Biotechnology Jamova 39 1000 Ljubljana Slovenia
| | - Milica Perišić Nanut
- Jožef Stefan Institute Department of Biotechnology Jamova 39 1000 Ljubljana Slovenia
| | - Anja Pišlar
- University of Ljubljana Faculty of Pharmacy Aškerčeva 7 1000 Ljubljana Slovenia
| |
Collapse
|
8
|
Moraes JDN, Francisco AF, Dill LM, Diniz RS, Oliveira CSD, Silva TMRD, Caldeira CADS, Corrêa EDA, Coutinho-Neto A, Zanchi FB, Fontes MRDM, Soares AM, Calderon LDA. New multienzymatic complex formed between human cathepsin D and snake venom phospholipase A2. J Venom Anim Toxins Incl Trop Dis 2022; 28:e20220002. [DOI: 10.1590/1678-9199-jvatitd-2022-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/16/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
| | - Aleff Ferreira Francisco
- São Paulo State University (UNESP), Brazil; Oswaldo Cruz Foundation (FIOCRUZ), Brazil; National Institute of Science and Technology of Epidemiology of the Western Amazon, Brazil; Smart Active Ingredients Lab (SAIL), Brazil
| | | | - Rafaela Souza Diniz
- Oswaldo Cruz Foundation (FIOCRUZ), Brazil; Federal University of Rondônia (UNIR), Brazil; Oswaldo Cruz Foundation (FIOCRUZ), Brazil; National Institute of Science and Technology of Epidemiology of the Western Amazon, Brazil
| | | | | | | | | | | | - Fernando Berton Zanchi
- Federal University of Rondônia (UNIR), Brazil; Oswaldo Cruz Foundation (FIOCRUZ), Brazil
| | | | - Andreimar Martins Soares
- Oswaldo Cruz Foundation (FIOCRUZ), Brazil; National Institute of Science and Technology of Epidemiology of the Western Amazon, Brazil; São Lucas University Center (UniSL), Brazil
| | - Leonardo de Azevedo Calderon
- Oswaldo Cruz Foundation (FIOCRUZ), Brazil; Federal University of Rondônia (UNIR), Brazil; Smart Active Ingredients Lab (SAIL), Brazil; Aparicio Carvalho University Center (FIMCA), Brazil
| |
Collapse
|
9
|
Sullivan P, Krunic A, Davis LJ, Kim HS, Burdette JE, Orjala J. Phormidepistatin from the Cyanobacterium UIC 10484: Assessing the Phylogenetic Distribution of the Statine Pharmacophore. JOURNAL OF NATURAL PRODUCTS 2021; 84:2256-2264. [PMID: 34314586 PMCID: PMC8403167 DOI: 10.1021/acs.jnatprod.1c00334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A new linear lipopeptide, phormidepistatin (1), containing an epi-statine amino acid was isolated from cf. Phormidium sp. strain UIC 10484. The planar structure was elucidated by 1D and 2D NMR experimentation. The relative configuration was determined by J-based configurational analysis and the absolute configuration by advanced Marfey's analysis. Given that the statine moiety is an established pharmacophore known to inhibit aspartic proteases, phormidepistatin was evaluated against cathepsin D and displayed limited activity. With 1 containing a statine-like moiety, we sought to assess the distribution of this γ-amino acid within the phylum Cyanobacteria. In-depth MS/MS analysis identified the presence of phormidepistatin in cf. Phormidium sp. UIC 10045 and cf. Trichormus sp. UIC 10039. A structure database search identified 33 known cyanobacterial metabolites containing a statine or statine-like amino acid and, along with phormidepistatin, were grouped into 10 distinct compound classes. A phylogenetic tree was built comprising all cyanobacteria with established 16S rRNA sequences known to produce statine or statine-like-containing compound classes. This analysis suggests the incorporation of the γ-amino acid into secondary metabolites is taxonomically widespread within the phylum. Overall, it is our assessment that cyanobacteria are a potential source for statine or statine-like-containing compounds.
Collapse
|
10
|
Morelli AP, Tortelli TC, Pavan ICB, Silva FR, Granato DC, Peruca GF, Pauletti BA, Domingues RR, Bezerra RMN, De Moura LP, Paes Leme AF, Chammas R, Simabuco FM. Metformin impairs cisplatin resistance effects in A549 lung cancer cells through mTOR signaling and other metabolic pathways. Int J Oncol 2021; 58:28. [PMID: 33846781 PMCID: PMC8041480 DOI: 10.3892/ijo.2021.5208] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/19/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the leading cause of cancer‑associated death worldwide and exhibits intrinsic and acquired therapeutic resistance to cisplatin (CIS). The present study investigated the role of mTOR signaling and other signaling pathways after metformin (MET) treatment in control and cisplatin‑resistant A549 cells, mapping pathways and possible targets involved in CIS sensitivity. MTT, flow cytometry, clonogenic assay, western blotting, proteomic analysis using the Stable Isotope Labeling by Amino acids in Cell culture (SILAC) approach and reverse transcription‑quantitative PCR were performed. The results revealed that CIS treatment induced mTOR signaling pathway overactivation, and the mTOR status was restored by MET. MET and the mTOR inhibitor rapamycin (RAPA) decreased the viability in control and resistant cells, and decreased the cell size increase induced by CIS. In control cells, MET and RAPA decreased colony formation after 72 h and decreased IC50 values, potentiating the effects of CIS. Proteomics analysis revealed important pathways regulated by MET, including transcription, RNA processing and IL‑12‑mediated signaling. In CIS‑resistant cells, MET regulated the apoptotic process, oxidative stress and G2/M transition. Annexin 4 (ANXA4) and superoxide dismutase 2 (SOD2), involved in apoptosis and oxidative stress, respectively, were chosen to validate the SILAC analysis and may represent potential therapeutic targets for lung cancer treatment. In conclusion, the chemosensitizing and antiproliferative effects of MET were associated with mTOR signaling and with potential novel targets, such as ANXA4 and SOD2, in human lung cancer cells.
Collapse
Affiliation(s)
- Ana Paula Morelli
- Multidisciplinary Laboratory of Food and Health, School of Applied Sciences, State University of Campinas, Limeira, SP 13484‑350, Brazil
| | - Tharcísio Citrângulo Tortelli
- Centro de Investigação Translacional em Oncologia, Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, SP 04021‑001, Brazil
| | - Isadora Carolina Betim Pavan
- Multidisciplinary Laboratory of Food and Health, School of Applied Sciences, State University of Campinas, Limeira, SP 13484‑350, Brazil
| | - Fernando Riback Silva
- Laboratory of Signaling Mechanisms, School of Pharmaceutical Sciences, State University of Campinas, Campinas, SP 13083‑871, Brazil
| | - Daniela Campos Granato
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP 13083‑970, Brazil
| | - Guilherme Francisco Peruca
- Exercise Cell Biology Laboratory, School of Applied Sciences, State University of Campinas, Limeira, SP 13484‑350, Brazil
| | - Bianca Alves Pauletti
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP 13083‑970, Brazil
| | - Romênia Ramos Domingues
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP 13083‑970, Brazil
| | - Rosangela Maria Neves Bezerra
- Multidisciplinary Laboratory of Food and Health, School of Applied Sciences, State University of Campinas, Limeira, SP 13484‑350, Brazil
| | - Leandro Pereira De Moura
- Exercise Cell Biology Laboratory, School of Applied Sciences, State University of Campinas, Limeira, SP 13484‑350, Brazil
| | - Adriana Franco Paes Leme
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP 13083‑970, Brazil
| | - Roger Chammas
- Centro de Investigação Translacional em Oncologia, Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, SP 04021‑001, Brazil
| | - Fernando Moreira Simabuco
- Multidisciplinary Laboratory of Food and Health, School of Applied Sciences, State University of Campinas, Limeira, SP 13484‑350, Brazil
| |
Collapse
|
11
|
Abstract
Epidemiological studies have reported an inverse correlation between cancer and neurodegenerative disorders, and increasing evidence shows that similar genes and pathways are dysregulated in both diseases but in a contrasting manner. Given the genetic convergence of the neuronal ceroid lipofuscinoses (NCLs), a family of rare neurodegenerative disorders commonly known as Batten disease, and other neurodegenerative diseases, we sought to explore the relationship between cancer and the NCLs. In this review, we survey data from The Cancer Genome Atlas and available literature on the roles of NCL genes in different oncogenic processes to reveal links between all the NCL genes and cancer-related processes. We also discuss the potential contributions of NCL genes to cancer immunology. Based on our findings, we propose that further research on the relationship between cancer and the NCLs may help shed light on the roles of NCL genes in both diseases and possibly guide therapy development.
Collapse
|
12
|
Wang CH, Wang LK, Wu CC, Chen ML, Kuo CY, Shyu RY, Tsai FM. Cathepsin V Mediates the Tazarotene-induced Gene 1-induced Reduction in Invasion in Colorectal Cancer Cells. Cell Biochem Biophys 2020; 78:483-494. [PMID: 32918681 DOI: 10.1007/s12013-020-00940-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/28/2020] [Indexed: 01/06/2023]
Abstract
Tazarotene-induced gene 1 (TIG1) is a retinoid acid receptor-responsive gene involved in cell differentiation and tumorigenesis. Aberrant methylation of CpG islands in the TIG1 promoter is found in multiple cancers. Currently, the exact mechanism underlying the anticancer effect of TIG1 is unknown. Here, we show that TIG1 interacts with cathepsin V (CTSV), which reduces CTSV stability and subsequently affects the production of activated urokinase-type plasminogen activator (uPA), an epithelial-mesenchymal transition-associated protein. Ectopic expression of CTSV increased the expression of activated uPA and the number of migrated and invaded cells, whereas ectopic TIG1 expression reversed the effects of CTSV on the uPA signaling pathway. Similar patterns in the production of activated uPA and number of migrated and invaded cells were also observed in TIG1-expressing and CTSV-knockdown cells. The results suggest that CTSV may participate in TIG1-regulated uPA activity and the associated downstream signaling pathway.
Collapse
Affiliation(s)
- Chun-Hua Wang
- Department of Dermatology, Taipei Tzuchi Hospital, Buddhist Tzuchi Medical Foundation, New Taipei City, 231, Taiwan
- School of Medicine, Tzu Chi University, Hualien, 970, Taiwan
| | - Lu-Kai Wang
- Radiation Biology Core Laboratory, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Linkou, Taoyuan, 333, Taiwan
| | - Chang-Chieh Wu
- Department of Surgery, Tri-Service General Hospital Keelung Branch, National Defense Medical Center, Keelung, 202, Taiwan
| | - Mao-Liang Chen
- Department of Research, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, New Taipei City, 231, Taiwan
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, New Taipei City, 231, Taiwan
| | - Rong-Yaun Shyu
- Department of Internal Medicine, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, New Taipei City, 231, Taiwan.
| | - Fu-Ming Tsai
- Department of Research, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, New Taipei City, 231, Taiwan.
| |
Collapse
|
13
|
Cathepsin D in the Tumor Microenvironment of Breast and Ovarian Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1259:1-16. [PMID: 32578168 DOI: 10.1007/978-3-030-43093-1_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer remains a major and leading health problem worldwide. Lack of early diagnosis, chemoresistance, and recurrence of cancer means vast research and development are required in this area. The complexity of the tumor microenvironment in the biological milieu poses greater challenges in having safer, selective, and targeted therapies. Existing strategies such as chemotherapy, radiotherapy, and antiangiogenic therapies moderately improve progression-free survival; however, they come with side effects that reduce quality of life. Thus, targeting potential candidates in the microenvironment, such as extracellular cathepsin D (CathD) which has been known to play major pro-tumorigenic roles in breast and ovarian cancers, could be a breakthrough in cancer treatment, specially using novel treatment modalities such as immunotherapy and nanotechnology-based therapy. This chapter discusses CathD as a pro-cancerous, more specifically a proangiogenic factor, that acts bi-functionally in the tumor microenvironment, and possible ways of targeting the protein therapeutically.
Collapse
|
14
|
Ashraf Y, Mansouri H, Laurent-Matha V, Alcaraz LB, Roger P, Guiu S, Derocq D, Robin G, Michaud HA, Delpech H, Jarlier M, Pugnière M, Robert B, Puel A, Martin L, Landomiel F, Bourquard T, Achour O, Fruitier-Arnaudin I, Pichard A, Deshayes E, Turtoi A, Poupon A, Simony-Lafontaine J, Boissière-Michot F, Pirot N, Bernex F, Jacot W, du Manoir S, Theillet C, Pouget JP, Navarro-Teulon I, Bonnefoy N, Pèlegrin A, Chardès T, Martineau P, Liaudet-Coopman E. Immunotherapy of triple-negative breast cancer with cathepsin D-targeting antibodies. J Immunother Cancer 2019; 7:29. [PMID: 30717773 PMCID: PMC6360707 DOI: 10.1186/s40425-019-0498-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/01/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) treatment is currently restricted to chemotherapy. Hence, tumor-specific molecular targets and/or alternative therapeutic strategies for TNBC are urgently needed. Immunotherapy is emerging as an exciting treatment option for TNBC patients. The aspartic protease cathepsin D (cath-D), a marker of poor prognosis in breast cancer (BC), is overproduced and hypersecreted by human BC cells. This study explores whether cath-D is a tumor cell-associated extracellular biomarker and a potent target for antibody-based therapy in TNBC. METHODS Cath-D prognostic value and localization was evaluated by transcriptomics, proteomics and immunohistochemistry in TNBC. First-in-class anti-cath-D human scFv fragments binding to both human and mouse cath-D were generated using phage display and cloned in the human IgG1 λ format (F1 and E2). Anti-cath-D antibody biodistribution, antitumor efficacy and in vivo underlying mechanisms were investigated in TNBC MDA-MB-231 tumor xenografts in nude mice. Antitumor effect was further assessed in TNBC patient-derived xenografts (PDXs). RESULTS High CTSD mRNA levels correlated with shorter recurrence-free survival in TNBC, and extracellular cath-D was detected in the tumor microenvironment, but not in matched normal breast stroma. Anti-cath-D F1 and E2 antibodies accumulated in TNBC MDA-MB-231 tumor xenografts, inhibited tumor growth and improved mice survival without apparent toxicity. The Fc function of F1, the best antibody candidate, was essential for maximal tumor inhibition in the MDA-MB-231 model. Mechanistically, F1 antitumor response was triggered through natural killer cell activation via IL-15 upregulation, associated with granzyme B and perforin production, and the release of antitumor IFNγ cytokine. The F1 antibody also prevented the tumor recruitment of immunosuppressive tumor-associated macrophages M2 and myeloid-derived suppressor cells, a specific effect associated with a less immunosuppressive tumor microenvironment highlighted by TGFβ decrease. Finally, the antibody F1 inhibited tumor growth of two TNBC PDXs, isolated from patients resistant or not to neo-adjuvant chemotherapy. CONCLUSION Cath-D is a tumor-specific extracellular target in TNBC suitable for antibody-based therapy. Immunomodulatory antibody-based strategy against cath-D is a promising immunotherapy to treat patients with TNBC.
Collapse
Affiliation(s)
- Yahya Ashraf
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
| | - Hanane Mansouri
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
| | - Valérie Laurent-Matha
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
| | - Lindsay B Alcaraz
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
| | - Pascal Roger
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
- Department of Pathology, CHU Nîmes, Nîmes, France
| | - Séverine Guiu
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
- Department of Medical Oncology, ICM, Montpellier, France
| | - Danielle Derocq
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
| | - Gautier Robin
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
| | - Henri-Alexandre Michaud
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
| | - Helène Delpech
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
| | | | - Martine Pugnière
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
| | - Bruno Robert
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
| | - Anthony Puel
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
| | - Lucie Martin
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
| | | | | | | | | | - Alexandre Pichard
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
| | - Emmanuel Deshayes
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
| | - Andrei Turtoi
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
| | | | | | | | - Nelly Pirot
- Réseau d'Histologie Expérimentale de Montpellier, BioCampus, UMS3426 CNRS-US009 INSERM-UM, Montpellier, France
| | - Florence Bernex
- Réseau d'Histologie Expérimentale de Montpellier, BioCampus, UMS3426 CNRS-US009 INSERM-UM, Montpellier, France
| | - William Jacot
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
- Department of Medical Oncology, ICM, Montpellier, France
- Translational Research Unit, ICM, Montpellier, France
| | - Stanislas du Manoir
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
| | - Charles Theillet
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
| | - Jean-Pierre Pouget
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
| | - Isabelle Navarro-Teulon
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
| | - Nathalie Bonnefoy
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
| | - André Pèlegrin
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
| | - Thierry Chardès
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
| | - Pierre Martineau
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
| | - Emmanuelle Liaudet-Coopman
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France.
| |
Collapse
|
15
|
Zhang M, Wu JS, Yang X, Pang X, Li L, Wang SS, Wu JB, Tang YJ, Liang XH, Zheng M, Tang YL. Overexpression Cathepsin D Contributes to Perineural Invasion of Salivary Adenoid Cystic Carcinoma. Front Oncol 2018; 8:492. [PMID: 30430081 PMCID: PMC6220369 DOI: 10.3389/fonc.2018.00492] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/11/2018] [Indexed: 02/05/2023] Open
Abstract
Objective: Cathepsin D (CTSD) is a pivotal orchestrator in the occurrence and development of tumors. Recently, CTSD was detected in salivary adenoid cystic carcinoma (SACC). However, its functional role in perineural invasion (PNI) of SACC remained elusive. We conducted the present study to detect the expression of CTSD in SACC, analyze the correlation between CTSD expression and prognosis of SACC patients and elucidate the role of CTSD in occurrence of PNI in SACC to lay the foundation for further studies. Methods: Immunohistochemical analysis was conducted to assess CTSD and Ki67 expression in 158 SACC samples and 20 normal salivary gland samples adjacent to carcinoma. Meanwhile, the correlation between CTSD and PNI of SACC specimens was analyzed using Wilcoxon test. QRT-PCR, immunofluorescence and western blot analysis were used to examine the levels of CTSD mRNA and protein in SACC-LM cell line. SiRNA-mediated CTSD silence was performed. Scratch wound healing assay, transwell invasion assay and DRG co-culture assay of PNI was used to detect the ability of migration, invasion and PNI. FITC-phalloidin was used to detect cytoskeletal organization. Results: Our data demonstrated that the positive expression of CTSD was observed in 74.1% (117/158) of SACC cases, and the expression of CTSD was significantly correlated with the PNI (p < 0.05). The ability of migration, invasion, and PNI could be inhibited significantly by siRNA-mediated CTSD silence (p < 0.01). Furthermore, siRNA-mediated CTSD silence inhibited cytoskeletal organization and pseudo foot formation in SACC-LM cells. Conclusion: Our results suggested that an association between PNI and expression of CTSD existed. CTSD may promote PNI of SACC accompanied by cytoskeletal organization and pseudo foot formation.
Collapse
Affiliation(s)
- Mei Zhang
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jia-Shun Wu
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiao Yang
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Pang
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Li
- Department of Stomatology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, China
| | - Sha-Sha Wang
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing-Biao Wu
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-Jie Tang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Min Zheng
- Department of Stomatology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Increased Cathepsin D Correlates with Clinical Parameters in Newly Diagnosed Type 2 Diabetes. DISEASE MARKERS 2017; 2017:5286408. [PMID: 29375176 PMCID: PMC5742441 DOI: 10.1155/2017/5286408] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/24/2017] [Indexed: 12/17/2022]
Abstract
Background Cathepsin D has been recently implicated in insulin resistance and cardiovascular disease. This study was designed to investigate the relationship between cathepsin D and newly diagnosed type 2 diabetes. Methods Circulating cathepsin D levels and metabolic variables were measured in 98 cases and 98 controls. Myocardial performance index "Tei index" that reflects both left ventricular systolic and diastolic function was measured with Doppler echocardiography in cases. Results Newly diagnosed type 2 diabetes demonstrated significantly higher circulating cathepsin D concentrations than controls (median level: 227 ng/ml versus 174 ng/ml, P < 0.01). In newly diagnosed type 2 diabetes, a significant correlation was found between cathepsin D levels and HOMA-IR (homeostatic model assessment of insulin resistance) (r = 0.25, P = 0.01). In contrast, no significant correlation was found between cathepsin D levels and clinical parameters in the control group (all P > 0.05). Interestingly, correlation analysis revealed a positive association between cathepsin D levels and Tei index in type 2 diabetes (r = 0.22, P = 0.03). Conclusions Increased levels of circulating cathepsin D are closely linked with the presence of type 2 diabetes, and cathepsin D might serve as a novel biomarker for cardiac dysfunction in newly diagnosed type 2 diabetes.
Collapse
|
17
|
Al-Awadhi FH, Law BK, Paul VJ, Luesch H. Grassystatins D-F, Potent Aspartic Protease Inhibitors from Marine Cyanobacteria as Potential Antimetastatic Agents Targeting Invasive Breast Cancer. JOURNAL OF NATURAL PRODUCTS 2017; 80:2969-2986. [PMID: 29087712 PMCID: PMC5764543 DOI: 10.1021/acs.jnatprod.7b00551] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Three new modified peptides named grassystatins D-F (1-3) were discovered from a marine cyanobacterium from Guam. Their structures were elucidated using NMR spectroscopy and mass spectrometry. The hallmark structural feature in the peptides is a statine unit, which contributes to their aspartic protease inhibitory activity preferentially targeting cathepsins D and E. Grassystatin F (3) was the most potent analogue, with IC50 values of 50 and 0.5 nM against cathepsins D and E, respectively. The acidic tumor microenvironment is known to increase the activation of some of the lysosomal proteases associated with tumor metastasis such as cathepsins. Because cathepsin D is a biomarker in aggressive forms of breast cancer and linked to poor prognosis, the effects of cathepsin D inhibition by 1 and 3 on the downstream cellular substrates cystatin C and PAI-1 were investigated. Furthermore, the functional relevance of targeting cathepsin D substrates was evaluated by examining the effect of 1 and 3 on the migration of MDA-MD-231 cells. Grassystatin F (3) inhibited the cleavage of cystatin C and PAI-1, the activities of their downstream targets cysteine cathepsins and tPA, and the migration of the highly aggressive triple negative breast cancer cells, phenocopying the effect of siRNA-mediated knockdown of cathepsin D.
Collapse
Affiliation(s)
- Fatma H. Al-Awadhi
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Brian K. Law
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
- Department of Pharmacology and Therapeutics, University of Florida, 1600 Archer Road, Gainesville, Florida 32610, United States
| | - Valerie J. Paul
- Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, Florida 34949, United States
| | - Hendrik Luesch
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| |
Collapse
|
18
|
Loss of Kaiso expression in breast cancer cells prevents intra-vascular invasion in the lung and secondary metastasis. PLoS One 2017; 12:e0183883. [PMID: 28880889 PMCID: PMC5589175 DOI: 10.1371/journal.pone.0183883] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 08/14/2017] [Indexed: 01/04/2023] Open
Abstract
The metastatic activity of breast carcinomas results from complex genetic changes in epithelial tumor cells and accounts for 90% of deaths in affected patients. Although the invasion of the local lymphatic vessels and veins by malignant breast tumor cells and their subsequent metastasis to the lung, has been recognized, the mechanisms behind the metastatic activity of breast tumor cells to other distal organs and the pathogenesis of metastatic cancer are not well understood. In this study, we utilized derivatives of the well-established and highly metastatic triple negative breast cancer (TNBC) cell line MDA-MB-231 (MDA-231) to study breast tumor metastasis in a mouse model. These MDA-231 derivatives had depleted expression of Kaiso, a POZ-ZF transcription factor that is highly expressed in malignant, triple negative breast cancers. We previously reported that Kaiso depletion attenuates the metastasis of xenografted MDA-231 cells. Herein, we describe the pathological features of the metastatic activity of parental (Kaisopositive) versus Kaisodepleted MDA-231 cells. Both Kaisopositive and Kaisodepleted MDA-231 cells metastasized from the original tumor in the mammary fat pad to the lung. However, while Kaisopositive cells formed large masses in the lung parenchyma, invaded large pulmonary blood vessels and formed secondary metastases and large tumors in the distal organs, Kaisodepleted cells metastasized only to the lung where they formed small metastatic lesions. Importantly, intravascular invasion and secondary metastases in distal organs were not observed in mice xenografted with Kaisodepleted cells. It thus appears that the lung may constitute a barrier for less invasive breast tumors such as the Kaisodepleted TNBC cells; this barrier may limit tumor growth and prevents Kaisodepleted TNBC cells from invading the pulmonary blood vessels and forming secondary metastases in distal organs.
Collapse
|
19
|
Increased cathepsin D protein expression is a biomarker for osteosarcomas, pulmonary metastases and other bone malignancies. Oncotarget 2016. [PMID: 26203049 PMCID: PMC4599286 DOI: 10.18632/oncotarget.4140] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cancer proteomics provide a powerful approach to identify biomarkers for personalized medicine. Particularly, biomarkers for early detection, prognosis and therapeutic intervention of bone cancers, especially osteosarcomas, are missing. Initially, we compared two-dimensional gel electrophoresis (2-DE)-based protein expression pattern between cell lines of fetal osteoblasts, osteosarcoma and pulmonary metastasis derived from osteosarcoma. Two independent statistical analyses by means of PDQuest® and SameSpot® software revealed a common set of 34 differentially expressed protein spots (p < 0.05). 17 Proteins were identified by mass spectrometry and subjected to Ingenuity Pathway Analysis resulting in one high-ranked network associated with Gene Expression, Cell Death and Cell-To-Cell Signaling and Interaction. Ran/TC4-binding protein (RANBP1) and Cathepsin D (CTSD) were further validated by Western Blot in cell lines while the latter one showed higher expression differences also in cytospins and in clinical samples using tissue microarrays comprising osteosarcomas, metastases, other bone malignancies, and control tissues. The results show that protein expression patterns distinguish fetal osteoblasts from osteosarcomas, pulmonary metastases, and other bone diseases with relevant sensitivities between 55.56% and 100% at ≥87.50% specificity. Particularly, CTSD was validated in clinical material and could thus serve as a new biomarker for bone malignancies and potentially guide individualized treatment regimes.
Collapse
|
20
|
Vezenkov LL, Sanchez CA, Bellet V, Martin V, Maynadier M, Bettache N, Lisowski V, Martinez J, Garcia M, Amblard M, Hernandez JF. Structure-Activity Relationships of JMV4463, a Vectorized Cathepsin D Inhibitor with Antiproliferative Properties: The Unique Role of the AMPA-Based Vector. ChemMedChem 2015; 11:302-8. [DOI: 10.1002/cmdc.201500457] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/19/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Lubomir L. Vezenkov
- Institut des Biomolécules Max Mousseron (IBMM); UMR5247 CNRS; Université de Montpellier; ENSCM, Faculté de Pharmacie; 15 avenue Charles Flahault 34093 Montpellier Cedex 5 France
| | - Clément A. Sanchez
- Institut des Biomolécules Max Mousseron (IBMM); UMR5247 CNRS; Université de Montpellier; ENSCM, Faculté de Pharmacie; 15 avenue Charles Flahault 34093 Montpellier Cedex 5 France
| | - Virginie Bellet
- Institut des Biomolécules Max Mousseron (IBMM); UMR5247 CNRS; Université de Montpellier; ENSCM, Faculté de Pharmacie; 15 avenue Charles Flahault 34093 Montpellier Cedex 5 France
| | - Vincent Martin
- Institut des Biomolécules Max Mousseron (IBMM); UMR5247 CNRS; Université de Montpellier; ENSCM, Faculté de Pharmacie; 15 avenue Charles Flahault 34093 Montpellier Cedex 5 France
| | - Marie Maynadier
- Institut des Biomolécules Max Mousseron (IBMM); UMR5247 CNRS; Université de Montpellier; ENSCM, Faculté de Pharmacie; 15 avenue Charles Flahault 34093 Montpellier Cedex 5 France
| | - Nadir Bettache
- Institut des Biomolécules Max Mousseron (IBMM); UMR5247 CNRS; Université de Montpellier; ENSCM, Faculté de Pharmacie; 15 avenue Charles Flahault 34093 Montpellier Cedex 5 France
| | - Vincent Lisowski
- Institut des Biomolécules Max Mousseron (IBMM); UMR5247 CNRS; Université de Montpellier; ENSCM, Faculté de Pharmacie; 15 avenue Charles Flahault 34093 Montpellier Cedex 5 France
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron (IBMM); UMR5247 CNRS; Université de Montpellier; ENSCM, Faculté de Pharmacie; 15 avenue Charles Flahault 34093 Montpellier Cedex 5 France
| | - Marcel Garcia
- Institut des Biomolécules Max Mousseron (IBMM); UMR5247 CNRS; Université de Montpellier; ENSCM, Faculté de Pharmacie; 15 avenue Charles Flahault 34093 Montpellier Cedex 5 France
| | - Muriel Amblard
- Institut des Biomolécules Max Mousseron (IBMM); UMR5247 CNRS; Université de Montpellier; ENSCM, Faculté de Pharmacie; 15 avenue Charles Flahault 34093 Montpellier Cedex 5 France
| | - Jean-François Hernandez
- Institut des Biomolécules Max Mousseron (IBMM); UMR5247 CNRS; Université de Montpellier; ENSCM, Faculté de Pharmacie; 15 avenue Charles Flahault 34093 Montpellier Cedex 5 France
| |
Collapse
|
21
|
Pavlíková N, Bartoňová I, Balušíková K, Kopperova D, Halada P, Kovář J. Differentially expressed proteins in human MCF-7 breast cancer cells sensitive and resistant to paclitaxel. Exp Cell Res 2014; 333:1-10. [PMID: 25557873 DOI: 10.1016/j.yexcr.2014.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 12/08/2014] [Accepted: 12/10/2014] [Indexed: 10/24/2022]
Abstract
Resistance of cancer cells to chemotherapeutic agents is one of the main causes of treatment failure. In order to detect proteins potentially involved in the mechanism of resistance to taxanes, we assessed differences in protein expression in MCF-7 breast cancer cells that are sensitive to paclitaxel and in the same cells with acquired resistance to paclitaxel (established in our lab). Proteins were separated using two-dimensional electrophoresis. Changes in their expression were determined and proteins with altered expression were identified using mass spectrometry. Changes in their expression were confirmed using western blot analysis. With these techniques, we found three proteins expressed differently in resistant MCF-7 cells, i.e., thyroid hormone-interacting protein 6 (TRIP6; upregulated to 650%), heat shock protein 27 (HSP27; downregulated to 50%) and cathepsin D (downregulated to 28%). Silencing of TRIP6 expression by specific siRNA leads to decreased number of grown resistant MCF-7 cells. In the present study we have pointed at some new directions in the studies of the mechanism of resistance to paclitaxel in breast cancer cells.
Collapse
Affiliation(s)
- Nela Pavlíková
- Department of Cell & Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Irena Bartoňová
- Department of Cell & Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kamila Balušíková
- Department of Cell & Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dana Kopperova
- Department of Cell & Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Petr Halada
- Laboratory of Molecular Structure Characterization, Institute of Microbiology,v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jan Kovář
- Department of Cell & Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|