1
|
Xie G, Si Q, Zhang G, Fan Y, Li Q, Leng P, Qiao F, Liang S, Yu R, Wang Y. The role of imprinting genes' loss of imprints in cancers and their clinical implications. Front Oncol 2024; 14:1365474. [PMID: 38812777 PMCID: PMC11133587 DOI: 10.3389/fonc.2024.1365474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024] Open
Abstract
Genomic imprinting plays an important role in the growth and development of mammals. When the original imprint status of these genes is lost, known as loss of imprinting (LOI), it may affect growth, neurocognitive development, metabolism, and even tumor susceptibility. The LOI of imprint genes has gradually been found not only as an early event in tumorigenesis, but also to be involved in progression. More than 120 imprinted genes had been identified in humans. In this review, we summarized the most studied LOI of two gene clusters and 13 single genes in cancers. We focused on the roles they played, that is, as growth suppressors and anti-apoptosis agents, sustaining proliferative signaling or inducing angiogenesis; the molecular pathways they regulated; and especially their clinical significance. It is notable that 12 combined forms of multi-genes' LOI, 3 of which have already been used as diagnostic models, achieved good sensitivity, specificity, and accuracy. In addition, the methods used for LOI detection in existing research are classified into detection of biallelic expression (BAE), differentially methylated regions (DMRs), methylation, and single-nucleotide polymorphisms (SNPs). These all indicated that the detection of imprinting genes' LOI has potential clinical significance in cancer diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Guojing Xie
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qin Si
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guangjie Zhang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Laboratory, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Yu Fan
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Key Laboratory of Medical Molecular Testing, Chengdu, China
| | - Qinghua Li
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Leng
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Key Laboratory of Medical Molecular Testing, Chengdu, China
| | - Fengling Qiao
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Key Laboratory of Medical Molecular Testing, Chengdu, China
| | - Simin Liang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Yu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Key Laboratory of Medical Molecular Testing, Chengdu, China
| | - Yingshuang Wang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Key Laboratory of Medical Molecular Testing, Chengdu, China
| |
Collapse
|
2
|
Liu Y, Chen S, Pang D, Zhou J, Xu X, Yang S, Huang Z, Yu B. Effects of paternal exposure to cigarette smoke on sperm DNA methylation and long-term metabolic syndrome in offspring. Epigenetics Chromatin 2022; 15:3. [PMID: 35063005 PMCID: PMC8780762 DOI: 10.1186/s13072-022-00437-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although paternal exposure to cigarette smoke may contribute to obesity and metabolic syndrome in offspring, the underlying mechanisms remain uncertain. METHODS In the present study, we analyzed the sperm DNA-methylation profiles in tobacco-smoking normozoospermic (SN) men, non-tobacco-smoking normozoospermic (N) men, and non-smoking oligoasthenozoospermic (OA) men. Using a mouse model, we also analyzed global methylation and differentially methylated regions (DMRs) of the DLK1 gene in paternal spermatozoa and the livers of progeny. In addition, we quantified DLK1 expression, executed an intra-peritoneal glucose tolerance test (IPGTT), measured serum metabolites, and analyzed liver lipid accumulation in the F1 offspring. RESULTS Global sperm DNA-methylation levels were significantly elevated (p < 0.05) in the SN group, and the methylation patterns were different among N, SN, and OA groups. Importantly, the methylation level of the DLK1 locus (cg11193865) was significantly elevated in the SN group compared to both N and OA groups (p < 0.001). In the mouse model, the group exposed to cigarette smoke extract (CSE) exhibited a significantly higher global methylation DNA level in spermatozoa (p < 0.001) and on the DMR sites of Dlk1 in 10-week-old male offspring (p < 0.05), with a significant increase in Dlk1 expression in their livers (p < 0.001). In addition, IPGTT and LDL levels were significantly altered (p < 0.001), with elevated liver fat accumulation (p < 0.05) in F1 offspring. CONCLUSION Paternal exposure to cigarette smoke led to increased global methylation of sperm DNA and alterations to the DMR of the DLK1 gene in the F1 generation, which may be inherited parentally and may perturb long-term metabolic function.
Collapse
Affiliation(s)
- Yunyun Liu
- Department of Obstetrics and Gynecology, BioResource Research Center, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong, China
| | - Shengzhu Chen
- Department of Obstetrics and Gynecology, BioResource Research Center, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong, China
| | - Dejian Pang
- Department of Obstetrics and Gynecology, BioResource Research Center, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong, China
| | - Jiayi Zhou
- Department of Obstetrics and Gynecology, BioResource Research Center, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong, China
| | - Xiuting Xu
- Department of Obstetrics and Gynecology, BioResource Research Center, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong, China
| | - Si Yang
- Department of Obstetrics and Gynecology, BioResource Research Center, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong, China
| | - Zhaofeng Huang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bolan Yu
- Department of Obstetrics and Gynecology, BioResource Research Center, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong, China.
| |
Collapse
|
3
|
Analysis of the Paternally-Imprinted DLK1-MEG3 and IGF2-H19 Tandem Gene Loci in NT2 Embryonal Carcinoma Cells Identifies DLK1 as a Potential Therapeutic Target. Stem Cell Rev Rep 2019; 14:823-836. [PMID: 29980981 DOI: 10.1007/s12015-018-9838-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The paternally-imprinted genes insulin-like growth factor 2 (IGF2), H19, delta-like homologue 1 (DLK1), and maternally-expressed gene 3 (MEG3) are expressed from the tandem gene loci IGF2-H19 and DLK1-MEG3, which play crucial roles in initiating embryogenesis and development. The erasure of imprinting (EOI) at differentially methylated regions (DMRs) which regulate the expression of these genes maintains the developmental quiescence of primordial germ cells (PGCs) migrating through the embryo proper during embryogenesis and prevents them from forming teratomas. To address the potential involvement of the IGF2-H19 and DLK1-MEG3 loci in the pathogenesis of embryonal carcinoma (EC), we investigated their genomic imprinting at DMRs in the human PGC-derived EC cell line NTera-2 (NT2). We observed EOI at the IGF2-H19 locus and, somewhat to our surprise, a loss of imprinting (LOI) at the DLK1-MEG3 locus. As a result, NT2 cells express imprinted gene ratios from these loci such that there are i) low levels of the proliferation-promoting IGF2 relative to ii) high levels of the proliferation-inhibiting long noncoding RNA (lncRNA) H19 and iii) high levels of proliferation-promoting DLK1 relative to iv) low levels of the proliferation-inhibiting lncRNA MEG3. Consistent with this pattern of expression, the knockdown of DLK1 mRNA by shRNA resulted in decreased in vitro cell proliferation and in vivo tumor growth as well as decreased in vivo organ seeding by NT2 cells. Furthermore, treatment of NT2 cells with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-azaD) inhibited their proliferation. This inhibition was accompanied by changes in expression of both tandem gene sets: a decrease in the expression of DLK1 and upregulation of the proliferation-inhibiting lncRNA MEG3, and at the same time upregulation of IGF2 and downregulation of the lncRNA H19. These results suggest that the DLK1-MEG3 locus, and not the IGF2-H19 locus, drives the tumorigenicity of NT2 cells. Based on these results, we identified DLK1 as a novel treatment target for EC that could be downregulated by 5-azaD.
Collapse
|
4
|
Li J, Shen H, Xie H, Ying Y, Jin K, Yan H, Wang S, Xu M, Wang X, Xu X, Xie L. Dysregulation of ncRNAs located at the DLK1‑DIO3 imprinted domain: involvement in urological cancers. Cancer Manag Res 2019; 11:777-787. [PMID: 30697070 PMCID: PMC6339654 DOI: 10.2147/cmar.s190764] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Genomic imprinting has been found to be involved in human physical development and several diseases. The DLK1-DIO3 imprinted domain is located on human chromosome 14 and contains paternally expressed protein-coding genes (DLK1, RTL1, DIO3) and numerous maternally expressed ncRNA genes (MEG3, MEG8, antisense RTL1, miRNAs, piRNAs, and snoRNAs). Emerging evidence has implicated that dysregulation of the DLK1-DIO3 imprinted domain especially the imprinted ncRNAs is critical for tumor progressions. Multiple miRNAs and lncRNAs have been investigated in urological cancers, of which several are transcribed from this domain. In this review, we present current data about the associated miRNAs, lncRNAs, and piRNAs and the regulation of differentially methylated regions methylation status in the progression of urological cancers and preliminarily propose certain concepts about the potential regulatory networks involved in DLK1-DIO3 imprinted domain.
Collapse
Affiliation(s)
- Jiangfeng Li
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China, ;
| | - Haixiang Shen
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China, ;
| | - Haiyun Xie
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China, ;
| | - Yufan Ying
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China, ;
| | - Ke Jin
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China, ;
| | - Huaqing Yan
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China, ;
| | - Song Wang
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China, ;
| | - Mingjie Xu
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China, ;
| | - Xiao Wang
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China, ;
| | - Xin Xu
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China, ;
| | - Liping Xie
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China, ;
| |
Collapse
|
5
|
Sellers ZP, Schneider G, Bujko K, Suszynska M, Pedziwiatr D. Do Cancer Cell Lines Have Fixed or Fluctuating Stem Cell Phenotypes? - Studies with the NTera2 Cell Line. Stem Cell Rev Rep 2018. [PMID: 28624968 DOI: 10.1007/s12015-017-9743-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
One of the important questions when studying established cancer cell lines is whether such cells contain a subpopulation of primitive cancer stem cells that maintains the expansion of the cell line. To address this issue, we performed studies on the established human embryonal carcinoma cell line NTera2 by evaluating the potential stemness of cells sorted according to their expression of the cell surface stem cell markers CD133 and SSEA4. By performing in vitro and in vivo assays, we observed different properties of cells expressing both, one, or neither of these antigens. While sorted SSEA4+ subpopulations exhibited the greatest propensity for migration toward normal serum and the highest seeding efficiency in the lungs of immunodeficient mice, CD133-SSEA4- cells displayed high seeding efficiency to the bone marrow after injection in vivo. It is worth noting that these properties did not depend on the size of the evaluated cells. To address the question of whether cancer stem cell phenotypes in cell lines are fixed or fluctuating, we sorted single cells according to their expression of CD133 and SSEA4 antigens and observed that cells which did not express these cancer stem cell markers gave rise to cells that express these markers after expansion in vitro. Therefore, our results support the idea that within established cancer cell lines, the phenotype of the cell subpopulation expressing cancer stem cell markers is not fixed but fluctuates during cell line expansion, and cells negative for these markers may acquire their expression.
Collapse
Affiliation(s)
- Zachariah P Sellers
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA.
| | - Gabriela Schneider
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Kamila Bujko
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Malwina Suszynska
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Daniel Pedziwiatr
- Department of Regenerative Medicine, Warsaw Medical University, Warsaw, Poland
| |
Collapse
|
6
|
Size-based detection of sarcoma circulating tumor cells and cell clusters. Oncotarget 2017; 8:78965-78977. [PMID: 29108279 PMCID: PMC5668012 DOI: 10.18632/oncotarget.20697] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/29/2017] [Indexed: 01/30/2023] Open
Abstract
Metastatic disease is the most important factor in determining the survival of sarcoma patients. Since sarcoma metastasis is predominantly hematogenous, we hypothesized that detection and quantification of circulating tumor cells (CTCs) could reflect response to therapy and risk of metastatic relapse. We evaluated the presence of CTCs using a novel animal model and in the blood of patients with high grade sarcomas utilizing the CellSieve™ size-based low pressure microfiltration system. Sarcoma CTCs were identified based on antibody staining patterns and nuclear morphology. Additionally, RNA was extracted from the CTCs for molecular analysis including demonstration of an EWS-FLI1 translocation, identification of a previously unrecognized p53 mutation in a patient with Ewing sarcoma, and single cell RNA sequencing of CTC from a child with alveolar rhabdomyosarcoma. In mouse xenograft models, the presence of CTC correlates with disease burden and with clinically silent metastases. In human patients, CTCs were readily detected at diagnosis, decreased with successful treatment, and were detectable in the blood of patients with no radiographic evidence of disease prior to the development of overt metastasis. Although evaluation of CTC is established in the care of patients with carcinomas, this technology has yet to be effectively applied to the evaluation and treatment of sarcoma patients. Our work demonstrates that the CellSieve™ microfiltration system can be used to study the biology of CTC in both mouse models and human sarcoma patients, with the potential for application to the monitoring of disease response and prediction of metastatic relapse.
Collapse
|
7
|
Zhang Z, Liu T, Wang K, Qu X, Pang Z, Liu S, Liu Q, Du J. Down-regulation of long non-coding RNA MEG3 indicates an unfavorable prognosis in non-small cell lung cancer: Evidence from the GEO database. Gene 2017; 630:49-58. [PMID: 28782577 DOI: 10.1016/j.gene.2017.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/20/2017] [Accepted: 08/01/2017] [Indexed: 02/07/2023]
Abstract
Long non-coding RNA (lncRNA) MEG3 (maternally expressed gene 3) is an imprinted gene that suppresses cells growth in various tumors. However, the association between MEG3 expression and prognosis in non-small cell lung cancer (NSCLC) has not been fully investigated. Seven datasets with 1144 patients were obtained from Gene Expression Omnibus (GEO) database (Affymetrix U133 Plus 2.0 platform). Association between MEG3 and other variables was tested using the chi-squared test. Kaplan-Meier survival analysis was carried out to explore the association between MEG3 expression and overall survival (OS)/progression free survival (PFS). Results of univariate and multivariate Cox regression analysis were represented in HR and 95%CI form. Summarized results and publication bias were showed by forest plots and funnel plots respectively. Differential expression of MEG3 was related to stage (GSE31210OS and GSE31210PFS), histology (GSE29013OS and GSE29013PFS) and gender (GSE29013PFS). In summary, low MEG3 expression was associated with shorter long-term survival time in several datasets (GSE3141 (p=0.039), GSE30219 (p=0.008) for OS and GSE30219 (p=0.048) for PFS). We found that MEG3 was an independent prognostic factor in GSE30219 for PFS (HR 0.666, 95%CI 0.458-0.969, p=0.033). The summarized results suggested that low MEG3 expression was a poor prognostic factor in NSCLC (HR=0.77, 95%CI 0.63-0.95). Specifically, the association between low MEG3 expression and poor prognosis was markedly significant in younger patients (≤60years old) (HR0.602, 95%CI 0.417-0.867, p=0.007). These findings indicate that MEG3 could be a novel prognostic factor for NSCLC patients.
Collapse
Affiliation(s)
- Zichao Zhang
- School of Medicine, Shandong University, 44 Cultural West Road, Jinan 250012, PR China; Linyi Health School of Shandong Province, Linyi 276002, PR China
| | - Tiantian Liu
- School of Medicine, Shandong University, 44 Cultural West Road, Jinan 250012, PR China; Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan 250021, PR China
| | - Kai Wang
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan 250021, PR China; Department of Healthcare Respiratory, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan 250021, PR China
| | - Xiao Qu
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan 250021, PR China
| | - Zhaofei Pang
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan 250021, PR China
| | - Shaorui Liu
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan 250021, PR China
| | - Qi Liu
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan 250021, PR China.
| | - Jiajun Du
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan 250021, PR China; Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan 250021, PR China.
| |
Collapse
|
8
|
Poniewierska-Baran A, Schneider G, Sun W, Abdelbaset-Ismail A, Barr FG, Ratajczak MZ. Human rhabdomyosarcoma cells express functional pituitary and gonadal sex hormone receptors: Therapeutic implications. Int J Oncol 2016; 48:1815-24. [PMID: 26983595 PMCID: PMC4809652 DOI: 10.3892/ijo.2016.3439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/20/2016] [Indexed: 12/16/2022] Open
Abstract
Evidence has accumulated that sex hormones play an important role in several types of cancer. Because they are also involved in skeletal muscle development and regeneration, we were therefore interested in their potential involvement in the pathogenesis of human rhabdomyosarcoma (RMS), a skeletal muscle tumor. In the present study, we employed eight RMS cell lines (three fusion positive and five fusion negative RMS cell lines) and mRNA samples obtained from RMS patients. The expression of sex hormone receptors was evaluated by RT-PCR and their functionality by chemotaxis, adhesion and direct cell proliferation assays. We report here for the first time that follicle-stimulating hormone (FSH) and luteinizing hormone (LH) receptors are expressed in established human RMS cell lines as well as in primary tumor samples isolated from RMS patients. We also report that human RMS cell lines responded both to pituitary and gonadal sex hormone stimulation by enhanced proliferation, chemotaxis, cell adhesion and phosphorylation of MAPKp42/44 and AKT. In summary, our results indicate that sex hormones are involved in the pathogenesis and progression of RMS, and therefore, their therapeutic application should be avoided in patients that have been diagnosed with RMS.
Collapse
Affiliation(s)
- Agata Poniewierska-Baran
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Gabriela Schneider
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Wenyue Sun
- Department of Regenerative Medicine, Warsaw Medical University, Warsaw, Poland
| | - Ahmed Abdelbaset-Ismail
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Frederic G Barr
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| |
Collapse
|
9
|
Poniewierska-Baran A, Suszynska M, Sun W, Abdelbaset-Ismail A, Schneider G, Barr FG, Ratajczak MZ. Human rhabdomyosarcoma cells express functional erythropoietin receptor: Potential therapeutic implications. Int J Oncol 2015; 47:1989-97. [PMID: 26412593 PMCID: PMC4599192 DOI: 10.3892/ijo.2015.3184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/19/2015] [Indexed: 01/25/2023] Open
Abstract
The erythropoietin receptor (EpoR) is expressed by cells from the erythroid lineage; however, evidence has accumulated that it is also expressed by some solid tumors. This is an important observation, because recombinant erythropoietin (EPO) is employed in cancer patients to treat anemia related to chemo/radiotherapy. In our studies we employed eight rhabdomyosarcoma (RMS) cell lines (three alveolar-type RMS cell lines and five embrional-type RMS cell lines), and mRNA samples obtained from positive, PAX7-FOXO1-positive, and fusion-negative RMS patient samples. Expression of EpoR was evaluated by RT-PCR, gene array and FACS. The functionality of EpoR in RMS cell lines was evaluated by chemotaxis, adhesion, and direct cell proliferation assays. In some of the experiments, RMS cells were exposed to vincristine (VCR) in the presence or absence of EPO to test whether EPO may impair the therapeutic effect of VCR. We report for a first time that functional EpoR is expressed in human RMS cell lines as well as by primary tumors from RMS patients. Furthermore, EpoR is detectably expressed in both embryonal and alveolar RMS subtypes. At the functional level, several human RMS cell lines responded to EPO stimulation by enhanced proliferation, chemotaxis, cell adhesion, and phosphorylation of MAPKp42/44 and AKT. Moreover, RMS cells became more resistant to VCR treatment in the presence of EPO. Our findings have important potential clinical implications, indicating that EPO supplementation in RMS patients may have the unwanted side effect of tumor progression.
Collapse
Affiliation(s)
- Agata Poniewierska-Baran
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Malwina Suszynska
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Wenyue Sun
- Department of Regenerative Medicine, Warsaw Medical University, Warsaw, Poland
| | - Ahmed Abdelbaset-Ismail
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Gabriela Schneider
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Frederic G Barr
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| |
Collapse
|
10
|
Tarnowski M, Tkacz M, Czerewaty M, Poniewierska-Baran A, Grymuła K, Ratajczak MZ. 5‑Azacytidine inhibits human rhabdomyosarcoma cell growth by downregulating insulin‑like growth factor 2 expression and reactivating the H19 gene product miR‑675, which negatively affects insulin‑like growth factors and insulin signaling. Int J Oncol 2015; 46:2241-50. [PMID: 25707431 DOI: 10.3892/ijo.2015.2906] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 12/29/2014] [Indexed: 11/05/2022] Open
Abstract
Insulin-like growth factor 2 (IGF2) and 1 (IGF1) and insulin (INS) promote proliferation of rhabdomyosarcoma (RMS) cells by interacting with the insulin-like growth factor 1 receptor (IGF1R) and the insulin receptor (INSR). Loss of imprinting (LOI) by DNA hypermethylation at the differentially methylated region (DMR) for the IGF2‑H19 locus is commonly observed in RMS cells and results in an increase in the expression of proliferation-promoting IGF2 and downregulation of proliferation-inhibiting non-coding H19 miRNAs. One of these miRNAs, miR‑675, has been reported in murine cells to be a negative regulator of IGF1R expression. To better address the role of IGF2 and 1, as well as INS signaling in the pathogenesis of RMS and the involvement of LOI at the IGF2‑H19 locus, we employed the DNA demethylating agent 5‑azacytidine (AzaC). We observed that AzaC‑mediated demethylation of the DMR at the IGF2‑H19 locus resulted in downregulation of IGF2 and an increase in the expression of H19. This epigenetic change resulted in a decrease in RMS proliferation due to downregulation of IGF2 and, IGF1R expression in an miR‑675‑dependent manner. Interestingly, we observed that miR‑675 not only inhibited the expression of IGF1R in a similar manner in human and murine cells, but we also observed its negative effect on the expression of the INSR. These results confirm the crucial role of LOI at the IGF2‑H19 DMR in the pathogenesis of RMS and are relevant to the development of new treatment strategies.
Collapse
Affiliation(s)
- Maciej Tarnowski
- Department of Physiology Pomeranian Medical University, Szczecin, Poland
| | - Marta Tkacz
- Department of Physiology Pomeranian Medical University, Szczecin, Poland
| | - Michał Czerewaty
- Department of Physiology Pomeranian Medical University, Szczecin, Poland
| | | | - Katarzyna Grymuła
- Department of Physiology Pomeranian Medical University, Szczecin, Poland
| | - Mariusz Z Ratajczak
- Stem Cell Biology Program at the James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| |
Collapse
|
11
|
Hettmer S, Li Z, Billin AN, Barr FG, Cornelison DDW, Ehrlich AR, Guttridge DC, Hayes-Jordan A, Helman LJ, Houghton PJ, Khan J, Langenau DM, Linardic CM, Pal R, Partridge TA, Pavlath GK, Rota R, Schäfer BW, Shipley J, Stillman B, Wexler LH, Wagers AJ, Keller C. Rhabdomyosarcoma: current challenges and their implications for developing therapies. Cold Spring Harb Perspect Med 2014; 4:a025650. [PMID: 25368019 PMCID: PMC4208704 DOI: 10.1101/cshperspect.a025650] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Rhabdomyosarcoma (RMS) represents a rare, heterogeneous group of mesodermal malignancies with skeletal muscle differentiation. One major subgroup of RMS tumors (so-called "fusion-positive" tumors) carries exclusive chromosomal translocations that join the DNA-binding domain of the PAX3 or PAX7 gene to the transactivation domain of the FOXO1 (previously known as FKHR) gene. Fusion-negative RMS represents a heterogeneous spectrum of tumors with frequent RAS pathway activation. Overtly metastatic disease at diagnosis is more frequently found in individuals with fusion-positive than in those with fusion-negative tumors. RMS is the most common pediatric soft-tissue sarcoma, and approximately 60% of all children and adolescents diagnosed with RMS are cured by currently available multimodal therapies. However, a curative outcome is achieved in <30% of high-risk individuals with RMS, including all those diagnosed as adults, those diagnosed with fusion-positive tumors during childhood (including metastatic and nonmetastatic tumors), and those diagnosed with metastatic disease during childhood (including fusion-positive and fusion-negative tumors). This white paper outlines current challenges in RMS research and their implications for developing more effective therapies. Urgent clinical problems include local control, systemic disease, need for improved risk stratification, and characterization of differences in disease course in children and adults. Biological challenges include definition of the cellular functions of PAX-FOXO1 fusion proteins, clarification of disease heterogeneity, elucidation of the cellular origins of RMS, delineation of the tumor microenvironment, and identification of means for rational selection and testing of new combination therapies. To streamline future therapeutic developments, it will be critical to improve access to fresh tumor tissue for research purposes, consider alternative trial designs to optimize early clinical testing of candidate drugs, coalesce advocacy efforts to garner public and industry support, and facilitate collaborative efforts between academia and industry.
Collapse
|
12
|
Benetatos L, Vartholomatos G, Hatzimichael E. DLK1-DIO3 imprinted cluster in induced pluripotency: landscape in the mist. Cell Mol Life Sci 2014; 71:4421-30. [PMID: 25098353 PMCID: PMC11113449 DOI: 10.1007/s00018-014-1698-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 07/29/2014] [Accepted: 07/31/2014] [Indexed: 12/20/2022]
Abstract
DLK1-DIO3 represents an imprinted cluster which genes are involved in physiological cell biology as early as the stem cell level and in the pathogenesis of several diseases. Transcription factor-mediated induced pluripotent cells (iPSCs) are considered an unlimited source of patient-specific hematopoietic stem cells for clinical application in patient-tailored regenerative medicine. However, to date there is no marker established able to distinguish embryonic stem cell-equivalent iPSCs or safe human iPSCs. Recent findings suggest that the DLK1-DIO3 locus possesses the potential to represent such a marker but there are also contradictory data. This review aims to report the current data on the topic describing both sides of the coin.
Collapse
Affiliation(s)
- Leonidas Benetatos
- Blood Bank, Selefkeias 2, Preveza General Hospital, 48100, Preveza, Greece,
| | | | | |
Collapse
|
13
|
Schneider G, Sellers ZP, Abdel-Latif A, Morris AJ, Ratajczak MZ. Bioactive lipids, LPC and LPA, are novel prometastatic factors and their tissue levels increase in response to radio/chemotherapy. Mol Cancer Res 2014; 12:1560-73. [PMID: 25033840 DOI: 10.1158/1541-7786.mcr-14-0188] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
UNLABELLED Bioactive lipids are fundamental mediators of a number of critical biologic processes such as inflammation, proliferation, and apoptosis. Rhabdomyosarcoma (RMS) is common in adolescence with histologic subtypes that favor metastasis. However, the factors that influence metastasis are not well appreciated. Here, it is shown that lysophosphatidylcholine (LPC) and its derivative, lysophosphatidic acid (LPA), strongly enhance motility and adhesion of human RMS cells. Importantly, these metastatic-associated phenotypes were observed at physiologic concentrations of these lipids, which naturally occur in biologic fluids. Moreover, the effects of these bioactive lipids were much stronger as compared with known peptide-based prometastatic factors in RMS, such as stromal-derived factor-1 or hepatocyte growth factor/scatter factor. Finally, both LPC and LPA levels were increased in several organs after γ-irradiation or chemotherapy, supporting the hypothesis that radio/chemotherapy induces an unwanted prometastatic environment in these organs. IMPLICATIONS LPC and LPA play a previously underappreciated role in dissemination of RMS and suggest that antimetastatic treatment with specific molecules blocking LPC/LPA activity should be part of standard radio/chemotherapy arsenal.
Collapse
Affiliation(s)
- Gabriela Schneider
- Stem Cell Institute, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | - Zachariah Payne Sellers
- Stem Cell Institute, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | - Ahmed Abdel-Latif
- Division of Cardiovascular Medicine, Gill Heart Institute, University of Kentucky, Lexington, Kentucky
| | - Andrew J Morris
- Division of Cardiovascular Medicine, Gill Heart Institute, University of Kentucky, Lexington, Kentucky
| | - Mariusz Z Ratajczak
- Stem Cell Institute, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky. Department of Physiology Pomeranian Medical University, Szczecin, Poland.
| |
Collapse
|
14
|
Cieśla M, Dulak J, Józkowicz A. MicroRNAs and epigenetic mechanisms of rhabdomyosarcoma development. Int J Biochem Cell Biol 2014; 53:482-92. [PMID: 24831881 DOI: 10.1016/j.biocel.2014.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/04/2014] [Accepted: 05/05/2014] [Indexed: 01/10/2023]
Abstract
Rhabdomyosarcoma is the most common type of soft tissue sarcoma in children. Two main subtypes of rhabdomyosarcoma with different molecular pattern and distinct clinical behaviour may be identified - embryonal and alveolar rhabdomyosarcoma. All types of rhabdomyosarcoma are believed to be of myogenic origin as they express high levels of myogenesis-related factors. They all, however, fail to undergo a terminal differentiation which results in tumour formation. In the aberrant regulation of myogenesis in rhabdomyosarcoma, microRNAs and epigenetic factors are particularly involved. Indeed, these mediators seem to be even more significant for the development of rhabdomyosarcoma than canonical myogenic transcription factors like MyoD, a master regulatory switch for myogenesis. Therefore, in this review we focus on the regulation of rhabdomyosarcoma progression by microRNAs, and especially on microRNAs of the myo-miRNAs family (miR-1, -133a/b and -206), other well-known myogenic regulators like miR-29, and on microRNAs recently recognized to play a role in the differentiation of rhabdomyosarcoma, such as miR-450b-5p or miR-203. We also review changes in epigenetic modifiers associated with rhabdomyosarcoma, namely histone deacetylases and methyltransferases, especially from the Polycomp Group, like Yin Yang1 and Enhancer of Zeste Homolog2. Finally, we summarize how the functioning of these molecules can be affected by oxidative stress and how antioxidative enzymes can influence the development of this tumour. This article is part of a Directed Issue entitled: Rare Cancers.
Collapse
Affiliation(s)
- Maciej Cieśla
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Gronostajowa 7, 30-387 Krakow, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Alicja Józkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Gronostajowa 7, 30-387 Krakow, Poland.
| |
Collapse
|