1
|
Ihim SA, Abubakar SD, Zian Z, Sasaki T, Saffarioun M, Maleknia S, Azizi G. Interleukin-18 cytokine in immunity, inflammation, and autoimmunity: Biological role in induction, regulation, and treatment. Front Immunol 2022; 13:919973. [PMID: 36032110 PMCID: PMC9410767 DOI: 10.3389/fimmu.2022.919973] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/25/2022] [Indexed: 12/13/2022] Open
Abstract
Interleukin-18 (IL-18) is a potent pro-inflammatory cytokine involved in host defense against infections and regulates the innate and acquired immune response. IL-18 is produced by both hematopoietic and non-hematopoietic cells, including monocytes, macrophages, keratinocytes and mesenchymal cell. IL-18 could potentially induce inflammatory and cytotoxic immune cell activities leading to autoimmunity. Its elevated levels have been reported in the blood of patients with some immune-related diseases, including rheumatoid arthritis, systemic lupus erythematosus, type I diabetes mellitus, atopic dermatitis, psoriasis, and inflammatory bowel disease. In the present review, we aimed to summarize the biological properties of IL-18 and its pathological role in different autoimmune diseases. We also reported some monoclonal antibodies and drugs targeting IL-18. Most of these monoclonal antibodies and drugs have only produced partial effectiveness or complete ineffectiveness in vitro, in vivo and human studies. The ineffectiveness of these drugs targeting IL-18 may be largely due to the loophole caused by the involvement of other cytokines and proteins in the signaling pathway of many inflammatory diseases besides the involvement of IL-18. Combination drug therapies, that focus on IL-18 inhibition, in addition to other cytokines, are highly recommended to be considered as an important area of research that needs to be explored.
Collapse
Affiliation(s)
- Stella Amarachi Ihim
- Department of Molecular and Cellular Pharmacology, University of Shizuoka, Shizuoka, Japan
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Nigeria
- Department of Science Laboratory Technology, University of Nigeria, Nsukka, Nigeria
| | - Sharafudeen Dahiru Abubakar
- Division of Molecular Pathology, Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan
- Department of Medical Laboratory Science, College of Medical Science, Ahmadu Bello University, Zaria, Nigeria
| | - Zeineb Zian
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Takanori Sasaki
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Mohammad Saffarioun
- Biopharmaceutical Research Center, AryoGen Pharmed Inc., Alborz University of Medical Sciences, Karaj, Iran
| | - Shayan Maleknia
- Biopharmaceutical Research Center, AryoGen Pharmed Inc., Alborz University of Medical Sciences, Karaj, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- *Correspondence: Gholamreza Azizi,
| |
Collapse
|
2
|
Fucikova J, Palova-Jelinkova L, Klapp V, Holicek P, Lanickova T, Kasikova L, Drozenova J, Cibula D, Álvarez-Abril B, García-Martínez E, Spisek R, Galluzzi L. Immunological control of ovarian carcinoma by chemotherapy and targeted anticancer agents. Trends Cancer 2022; 8:426-444. [PMID: 35181272 DOI: 10.1016/j.trecan.2022.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Accepted: 01/19/2022] [Indexed: 12/24/2022]
Abstract
At odds with other solid tumors, epithelial ovarian cancer (EOC) is poorly sensitive to immune checkpoint inhibitors (ICIs), largely reflecting active immunosuppression despite CD8+ T cell infiltration at baseline. Accumulating evidence indicates that both conventional chemotherapeutics and targeted anticancer agents commonly used in the clinical management of EOC not only mediate a cytostatic and cytotoxic activity against malignant cells, but also drive therapeutically relevant immunostimulatory or immunosuppressive effects. Here, we discuss such an immunomodulatory activity, with a specific focus on molecular and cellular pathways that can be harnessed to develop superior combinatorial regimens for clinical EOC care.
Collapse
Affiliation(s)
- Jitka Fucikova
- Sotio, Prague, Czech Republic; Department of Immunology, Charles University, Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic.
| | - Lenka Palova-Jelinkova
- Department of Immunology, Charles University, Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Vanessa Klapp
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Peter Holicek
- Sotio, Prague, Czech Republic; Department of Immunology, Charles University, Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Tereza Lanickova
- Sotio, Prague, Czech Republic; Department of Immunology, Charles University, Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | | | - Jana Drozenova
- Department of Pathology, Third Faculty of Medicine and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - David Cibula
- Gynecologic Oncology Center, Department of Obstetrics and Gynecology, Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Beatriz Álvarez-Abril
- Department of Hematology and Oncology, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Elena García-Martínez
- Department of Hematology and Oncology, Hospital Universitario Morales Meseguer, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain; Universidad Católica San Antonio de Murcia, Guadalupe, Spain
| | - Radek Spisek
- Sotio, Prague, Czech Republic; Department of Immunology, Charles University, Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Centre, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Circulating exosomal microRNAs reveal the mechanism of Fructus Meliae Toosendan-induced liver injury in mice. Sci Rep 2018; 8:2832. [PMID: 29434260 PMCID: PMC5809479 DOI: 10.1038/s41598-018-21113-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/29/2018] [Indexed: 02/07/2023] Open
Abstract
The toxicological mechanisms of liver injury caused by most traditional Chinese medicine (TCM) remain largely unknown. Due to the unique features, exosomal microRNAs (miRNAs) are currently attracting major interests to provide further insights into toxicological mechanisms. Thus, taking Fructus Meliae Toosendan as an example of hepatoxic TCM, this study aimed to elucidate its hepatotoxicity mechanisms through profiling miRNAs in circulating exosomes of Fructus Meliae Toosendan water extract (FMT)-exposed mice. Biological pathway analysis of the 64 differentially expressed exosomal miRNAs (DEMs) showed that hepatic dysfunction induced by FMT likely related to apoptosis, mitochondrial dysfunction, and cell cycle dysregulation. Integrated analysis of serum exosomal DEMs and hepatic differentially expressed mRNAs further enriched oxidative stress and apoptosis related pathways. In vitro validation studies for omics results suggested that FMT-induced DNA damage was mediated by generating intracellular reactive oxygen species, leading to cell apoptosis through p53-dependent mitochondrial damage and S-phase arrest. Nrf2-mediated antioxidant response was activated to protect liver cells. Moreover, serum exosomal miR-370-3p, the most down-regulated miRNA involving in these pathways, might be the momentous event in aggravating cytotoxic effect of FMT by elevating p21 and Cyclin E. In conclusion, circulating exosomal miRNAs profiling could contribute to deepen the understanding of TCM-induced hepatotoxicity.
Collapse
|
4
|
The human organic cation transporter OCT1 mediates high affinity uptake of the anticancer drug daunorubicin. Sci Rep 2016; 6:20508. [PMID: 26861753 PMCID: PMC4748219 DOI: 10.1038/srep20508] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/05/2016] [Indexed: 01/11/2023] Open
Abstract
Anthracyclines such as daunorubicin are anticancer agents that are transported into cells, and exert cytotoxicity by blocking DNA metabolism. Although there is evidence for active uptake of anthracyclines into cells, the specific transporter involved in this process has not been identified. Using the high-grade serous ovarian cancer cell line TOV2223G, we show that OCT1 mediated the high affinity (Km ~ 5 μM) uptake of daunorubicin into the cells, and that micromolar amounts of choline completely abolished the drug entry. OCT1 downregulation by shRNA impaired daunorubicin uptake into the TOV2223G cells, and these cells were significantly more resistant to the drug in comparison to the control shRNA. Transfection of HEK293T cells, which accommodated the ectopic expression of OCT1, with a plasmid expressing OCT1-EYFP showed that the transporter was predominantly localized to the plasma membrane. These transfected cells exhibited an increase in the uptake of daunorubicin in comparison to control cells transfected with an empty EYFP vector. Furthermore, a variant of OCT1, OCT1-D474C-EYFP, failed to enhance daunorubicin uptake. This is the first report demonstrating that human OCT1 is involved in the high affinity transport of anthracyclines. We postulate that OCT1 defects may contribute to the resistance of cancer cells treated with anthracyclines.
Collapse
|
5
|
Yao X, Dong Z, Zhang Q, Wang Q, Lai D. Epithelial ovarian cancer stem-like cells expressing α-gal epitopes increase the immunogenicity of tumor associated antigens. BMC Cancer 2015; 15:956. [PMID: 26673159 PMCID: PMC4682262 DOI: 10.1186/s12885-015-1973-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/04/2015] [Indexed: 12/18/2022] Open
Abstract
Background As ovarian cancer stem cells (CSCs) are responsible for tumor initiation, invasion, metastasis, and chemo-resistance, new stratagems that selectively target ovarian CSCs are critically significant. Our previous work have demonstrated that ovarian cancer spheroid cells are tumorigenic and chemo-resistant, and have the properties of ovarian CSCs. Herein, we hypothesized that expressing α-gal epitopes on ovarian spheroid cells may help eliminate CSCs and improve the outcome of therapeutic intervention for ovarian cancer patients. Methods Lentivirus-mediated transfer of a pig α(1,3)galactosyltransferase [α1,3GT] enzyme gene into human ovarian cell line SKOV3 cells formed α-gal epitope-expressing cells (SKOV3-gal cells), and then these cells were maintained in a serum-free culture system to form SKOV3-gal spheroid cells. Efficacy of this cell vaccine was demonstrated in α1,3GT knockout mice (α1,3GT KO mice). Results The antibody titers to α-gal epitopes measured by ELISA were significantly increased in α1,3GT KO mice after immunization with SKOV3-gal spheroid cells. Furthermore, compared with the non-immunized KO mice, the SKOV3 tumors grafted under renal capsules of KO mice immunized with SKOV3-gal spheroid cells grew slower and began to shrink on day 12. Western blot analysis also showed that immunized KO mice can produce effective antibody against certain tumor associated antigens (TAAs) derived from both SKOV3 cells and SKOV3 spheroid cells. The TAAs were further investigated by mass spectrometry and RNA interference (RNAi) technology. The results suggested that antibodies responding to protein c-erbB-2 may be raised in the sera of the mice after immunization with SKOV3-gal spheroid cells. Ultimately, vaccination with SKOV3-gal spheroid cells induced more CD3 + CD4 + T cells in the spleen of immunized mice than non-immunized KO mice. Conclusions The results suggest that vaccination using ovarian cancer stem-like cells engineered to express α-gal epitopes may be a novel strategy for treatment of ovarian cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1973-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaofen Yao
- The Center of Research Laboratory, and Department of Gynecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Zhangli Dong
- The Center of Research Laboratory, and Department of Gynecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Qiuwan Zhang
- The Center of Research Laboratory, and Department of Gynecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Qian Wang
- The Center of Research Laboratory, and Department of Gynecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Dongmei Lai
- The Center of Research Laboratory, and Department of Gynecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
6
|
Arsenic R, Braicu EI, Letsch A, Dietel M, Sehouli J, Keilholz U, Ochsenreither S. Cancer-testis antigen cyclin A1 is broadly expressed in ovarian cancer and is associated with prolonged time to tumor progression after platinum-based therapy. BMC Cancer 2015; 15:784. [PMID: 26499264 PMCID: PMC4619521 DOI: 10.1186/s12885-015-1824-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 10/16/2015] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Cyclin A1 is essential for male gametopoiesis. In acute myeloid leukemia, it acts as a leukemia-associated antigen. Cyclin A1 expression has been reported in several epithelial malignancies, including testicular, endometrial, and epithelial ovarian cancer (EOC). We analyzed Cyclin A1 expression in EOC and its correlation with clinical features to evaluate Cyclin A1 as a T-cell target in EOC. METHODS Cyclin A1 mRNA expression in EOC and healthy tissues was quantified by microarray analysis and quantitative real-time PCR (qRT-PCR). Protein expression in clinical samples was assessed by immunohistochemistry (IHC) and was correlated to clinical features. RESULTS Cyclin A1 protein was homogeneously expressed in 43 of 62 grade 3 tumor samples and in 1 of 10 grade 2 specimens (p < 0.001). Survival analysis showed longer time to progression (TTP) among patients with at least moderate Cyclin A1 expression (univariate: p = 0.018, multivariate: p = 0.035). FIGO stage, grading, age, macroscopic residual tumor after debulking, and peritoneal carcinomatosis / distant metastasis had no impact on TTP or overall survival (OS). CONCLUSION Cyclin A1 is highly expressed in most EOCs. The mechanism behind the prolonged TTP in patients with high Cyclin A1 expression warrants further investigation. The frequent, selectively high expression of Cyclin A1 in EOC makes it a promising target for T-cell therapies.
Collapse
Affiliation(s)
- Ruza Arsenic
- Department of Pathology, Institute of Pathology, Charité - University Hospital Berlin, 10117, Berlin, Germany.
| | - Elena Ilona Braicu
- Departement of Gynecology, University Hospital Berlin, 13353, Berlin, Germany.
| | - Anne Letsch
- Department of Hematology, Oncology and Tumor Immunology - University Hospital Berlin, 12200, Berlin, Germany.
| | - Manfred Dietel
- Department of Pathology, Institute of Pathology, Charité - University Hospital Berlin, 10117, Berlin, Germany.
| | - Jalid Sehouli
- Departement of Gynecology, University Hospital Berlin, 13353, Berlin, Germany.
| | - Ulrich Keilholz
- Charité Cancer Comprehensive Center, Charité, 10117, Berlin, Germany.
| | - Sebastian Ochsenreither
- Department of Hematology, Oncology and Tumor Immunology - University Hospital Berlin, 12200, Berlin, Germany.
| |
Collapse
|