1
|
Bugden M, Billing S, Mak KC, Norton F, Klokov D, Wang Y. Ionizing radiation affects miRNA composition in both young and old mice. Int J Radiat Biol 2019; 95:1404-1413. [DOI: 10.1080/09553002.2019.1569771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Michelle Bugden
- Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, Ontario, Canada
| | - Sukhmani Billing
- Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, Ontario, Canada
- Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada
| | - Kei Cheng Mak
- Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, Ontario, Canada
- Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada
| | - Farrah Norton
- Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, Ontario, Canada
| | - Dmitry Klokov
- Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Yi Wang
- Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Seong KM, Kwon T, Park J, Youn B, Cha HJ, Kim Y, Moon C, Lee SS, Jin YW. Proactive strategy for long-term biological research aimed at low-dose radiation risk in Korea. Int J Radiat Biol 2018; 94:685-693. [PMID: 29775393 DOI: 10.1080/09553002.2018.1478163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
PURPOSE Since the 2011 Fukushima nuclear power plant accident, Korean radiation experts have agreed that reliable data on health risks of low-dose radiation (LDR) are needed to ease the anxiety of lay people. The intent of this study was to devise a sustainable biological program suited for the research environment in Korea and aimed at the health effects of radiation exposures <100 millisieverts (mSv). To address pressing public concerns over LDR risk, we investigated the current understanding of LDR effects by analyzing the previous reports of international authorities for radiation protection and research publications that appeared after the Chernobyl accident. A research program appropriate for societal and scientific inclinations of Korea was then devised based on input from Korean radiation scientists. CONCLUSIONS After review by our advisory committee, program priorities were set, calling for an agenda that focused on dose-response relationships in carcinogenesis, health span responses to lifestyle variations, and systemic metabolic changes. Our long-term biological research program may contribute scientific evidence to reduce the uncertainties of LDR health risks and help stakeholders formulate policies for radiation protection.
Collapse
Affiliation(s)
- Ki Moon Seong
- a Laboratory of Low Dose Risk Assessment , National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences , Seoul , Republic of Korea
| | - TaeWoo Kwon
- a Laboratory of Low Dose Risk Assessment , National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences , Seoul , Republic of Korea
| | - Jina Park
- a Laboratory of Low Dose Risk Assessment , National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences , Seoul , Republic of Korea
| | - BuHyun Youn
- b Department of Biological Sciences , Pusan National University , Busan , Republic of Korea
| | - Hyuk-Jin Cha
- c School of Pharmacy , Seoul National University , Seoul , Republic of Korea
| | - Yonghwan Kim
- d Department of Biological Sciences , Sookmyung Women's University , Seoul , Republic of Korea
| | - Changjong Moon
- e Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 PLUS Project Team , Chonnam National University , Gwangju , Republic of Korea
| | - Seung-Sook Lee
- a Laboratory of Low Dose Risk Assessment , National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences , Seoul , Republic of Korea.,f Department of Pathology , Korea Cancer Center Hospital, Korea Institute of Radiological & Medical Sciences , Seoul , Republic of Korea
| | - Young Woo Jin
- a Laboratory of Low Dose Risk Assessment , National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences , Seoul , Republic of Korea
| |
Collapse
|
3
|
Tharmalingam S, Sreetharan S, Kulesza AV, Boreham DR, Tai TC. Low-Dose Ionizing Radiation Exposure, Oxidative Stress and Epigenetic Programing of Health and Disease. Radiat Res 2017; 188:525-538. [PMID: 28753061 DOI: 10.1667/rr14587.1] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ionizing radiation exposure from medical diagnostic imaging has greatly increased over the last few decades. Approximately 80% of patients who undergo medical imaging are exposed to low-dose ionizing radiation (LDIR). Although there is widespread consensus regarding the harmful effects of high doses of radiation, the biological effects of low-linear energy transfer (LET) LDIR is not well understood. LDIR is known to promote oxidative stress, however, these levels may not be large enough to result in genomic mutations. There is emerging evidence that oxidative stress causes heritable modifications via epigenetic mechanisms (DNA methylation, histone modification, noncoding RNA regulation). These epigenetic modifications result in permanent cellular transformations without altering the underlying DNA nucleotide sequence. This review summarizes the major concepts in the field of epigenetics with a focus on the effects of low-LET LDIR (<100 mGy) and oxidative stress on epigenetic gene modification. In this review, we show evidence that suggests that LDIR-induced oxidative stress provides a mechanistic link between LDIR and epigenetic gene regulation. We also discuss the potential implication of LDIR exposure during pregnancy where intrauterine fetal development is highly susceptible to oxidative stress-induced epigenetic programing.
Collapse
Affiliation(s)
| | | | - Adomas V Kulesza
- b Department of Biology, McMaster University, Hamilton, Canada, L8S 4K1
| | - Douglas R Boreham
- a Northern Ontario School of Medicine, Laurentian University, Sudbury, Canada, P3E 2C6.,c Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Canada, L8S 4K1
| | - T C Tai
- a Northern Ontario School of Medicine, Laurentian University, Sudbury, Canada, P3E 2C6
| |
Collapse
|
4
|
The expression of miRNA-221 and miRNA-222 in gliomas patients and their prognosis. Neurol Sci 2016; 38:67-73. [DOI: 10.1007/s10072-016-2710-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/07/2016] [Indexed: 12/11/2022]
|
5
|
Hahn HJ, Youn HJ, Cha HJ, Kim K, An S, Ahn KJ. Single Low-Dose Radiation Induced Regulation of Keratinocyte Differentiation in Calcium-Induced HaCaT Cells. Ann Dermatol 2016; 28:433-7. [PMID: 27489424 PMCID: PMC4969471 DOI: 10.5021/ad.2016.28.4.433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 01/24/2023] Open
Abstract
Background We are continually exposed to low-dose radiation (LDR) in the range 0.1 Gy from natural sources, medical devices, nuclear energy plants, and other industrial sources of ionizing radiation. There are three models for the biological mechanism of LDR: the linear no-threshold model, the hormetic model, and the threshold model. Objective We used keratinocytes as a model system to investigate the molecular genetic effects of LDR on epidermal cell differentiation. Methods To identify keratinocyte differentiation, we performed western blots using a specific antibody for involucrin, which is a precursor protein of the keratinocyte cornified envelope and a marker for keratinocyte terminal differentiation. We also performed quantitative polymerase chain reaction. We examined whether LDR induces changes in involucrin messenger RNA (mRNA) and protein levels in calcium-induced keratinocyte differentiation. Results Exposure of HaCaT cells to LDR (0.1 Gy) induced p21 expression. p21 is a key regulator that induces growth arrest and represses stemness, which accelerates keratinocyte differentiation. We correlated involucrin expression with keratinocyte differentiation, and examined the effects of LDR on involucrin levels and keratinocyte development. LDR significantly increased involucrin mRNA and protein levels during calcium-induced keratinocyte differentiation. Conclusion These studies provide new evidence for the biological role of LDR, and identify the potential to utilize LDR to regulate or induce keratinocyte differentiation.
Collapse
Affiliation(s)
- Hyung Jin Hahn
- Department of Dermatology, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Korea
| | - Hae Jeong Youn
- Department of Dermatology, Konkuk University School of Medicine, Seoul, Korea
| | - Hwa Jun Cha
- Korea Institute for Skin and Clinical Sciences and Molecular-Targeted Drug Research Center, Konkuk University, Seoul, Korea
| | - Karam Kim
- Korea Institute for Skin and Clinical Sciences and Molecular-Targeted Drug Research Center, Konkuk University, Seoul, Korea
| | - Sungkwan An
- Korea Institute for Skin and Clinical Sciences and Molecular-Targeted Drug Research Center, Konkuk University, Seoul, Korea
| | - Kyu Joong Ahn
- Department of Dermatology, Konkuk University School of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Global Gene Expression Alterations as a Crucial Constituent of Human Cell Response to Low Doses of Ionizing Radiation Exposure. Int J Mol Sci 2015; 17:ijms17010055. [PMID: 26729107 PMCID: PMC4730300 DOI: 10.3390/ijms17010055] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 12/21/2015] [Accepted: 12/28/2015] [Indexed: 12/19/2022] Open
Abstract
Exposure to ionizing radiation (IR) is inevitable to humans in real-life scenarios; the hazards of IR primarily stem from its mutagenic, carcinogenic, and cell killing ability. For many decades, extensive research has been conducted on the human cell responses to IR delivered at a low dose/low dose (LD) rate. These studies have shown that the molecular-, cellular-, and tissue-level responses are different after low doses of IR (LDIR) compared to those observed after a short-term high-dose IR exposure (HDIR). With the advent of high-throughput technologies in the late 1990s, such as DNA microarrays, changes in gene expression have also been found to be ubiquitous after LDIR. Very limited subset of genes has been shown to be consistently up-regulated by LDIR, including CDKN1A. Further research on the biological effects and mechanisms induced by IR in human cells demonstrated that the molecular and cellular processes, including transcriptional alterations, activated by LDIR are often related to protective responses and, sometimes, hormesis. Following LDIR, some distinct responses were observed, these included bystander effects, and adaptive responses. Changes in gene expression, not only at the level of mRNA, but also miRNA, have been found to crucially underlie these effects having implications for radiation protection purposes.
Collapse
|